Xanthan Gum Capped ZnO Microstars as a Promising Dietary Zinc Supplementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. General Procedure for the Synthesis of XG-Capped ZnO Microstars
2.3. Material Characterization
2.4. Microorganism and Bacterial Culture Conditions
2.5. Determination of Antimicrobial Activity of XG-Capped ZnO Microstars
3. Results and Discussion
3.1. Synthesis of ZnO Microstars
3.2. Characterization of ZnO Microstars
3.2.1. FTIR Spectra Analysis
3.2.2. XRD Analysis
3.2.3. TEM Analysis
3.3. Microbicidal Activity of Fabricated XG-Capped ZnO Microstars
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Broadley, M.R.; White, P.J. Eats roots and leaves. Can edible horticultural crops address dietary calcium, magnesium and potassium deficiencies? Proc. Nutr. Soc. 2010, 69, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Hambidge, M. Zinc and Health: Current Status and Future Directions. J. Nutr. 2000, 130, 1341s–1519s. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Vitamin and Mineral Requirements in Human Nutrition; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Nutritious Food for All in a Changing World. Cell 2014, 157, 1493–1495. [CrossRef]
- Gregory, P.J.; Wahbi, A.; Adu-Gyamfi, J.; Heiling, M.; Gruber, R.; Joy, E.J.M.; Broadley, M.R. Approaches to reduce zinc and iron deficits in food systems. Glob. Food Secur. 2017, 15, 1–10. [Google Scholar] [CrossRef]
- Hassan, M. Zinc Oxide Nanoparticles Fortified Biscuits as a Nutritional Supplement for Zinc Deficient Rats. J. Nanomed. Res. 2016, 4, 81. [Google Scholar] [CrossRef]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar] [PubMed]
- IZiNCG. International Zinc Nutrition Consultative Group (IZiNCG) technical document# 1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S99–S203. [Google Scholar]
- Chaumeil, J. Micronization: A method of improving the bioavailability of poorly soluble drugs. Methods Find. Exp. Clin. Pharmacol. 1998, 20, 211–216. [Google Scholar] [PubMed]
- Ramesh, M.; Anbuvannan, M.; Viruthagiri, G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta Mol. Biomol. Spectrosc. 2015, 136, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Banoee, M.; Seif, S.; Nazari, Z.E.; Jafari-Fesharaki, P.; Shahverdi, H.R.; Moballegh, A.; Moghaddam, K.M.; Shahverdi, A.R. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Ambika, S.; Sundrarajan, M. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J. Photochem. Photobiol. B 2015, 146, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed]
- Pung, S.-Y.; Lee, W.-P.; Aziz, A. Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst. Int. J. Inorg. Chem. 2012, 2012, 608183. [Google Scholar] [CrossRef]
- Wallace, I.; Eshu, O.V.; Chukwunonso, O.B.; Okoro, U.C. Synthesis and characterization of zinc oxide (ZnO) nanowire. J. Nanomed. Nanotechnol. 2015, 6, 2. [Google Scholar]
- Hosseini-Sarvari, M.; Tavakolian, M. Preparation, characterization, and catalysis application of nano-rods zinc oxide in the synthesis of 3-indolyl-3-hydroxy oxindoles in water. Appl. Catal. A Gen. 2012, 441, 65–71. [Google Scholar] [CrossRef]
- Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011, 77, 2325–2331. [Google Scholar] [CrossRef] [PubMed]
- Gunalan, S.; Sivaraj, R.; Rajendran, V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci. Mater. Int. 2012, 22, 693–700. [Google Scholar] [CrossRef]
- Emami-Karvani, Z.; Chehrazi, P. Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. Afr. J. Microbiol. Res. 2011, 5, 1368–1373. [Google Scholar]
- Sawai, J.; Kawada, E.; Kanou, F.; Igarashi, H.; Hashimoto, A.; Kokugan, T.; Shimizu, M. Detection of Active Oxygen Generated from Ceramic Powders Having Antibacterial Activity. J. Chem. Eng. Jpn. 1996, 29, 627–633. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Barrere, G.; Barber, C.; Daniels, M. Molecular cloning of genes involved in the production of the extracellular polysaccharide xanthan by Xanthomonas campestris pv. campestris. Int. J. Biol. Macromol. 1986, 8, 372–374. [Google Scholar] [CrossRef]
- Becker, A.; Katzen, F.; Pühler, A.; Ielpi, L. Xanthan gum biosynthesis and application: A biochemical/genetic perspective. Appl. Microbiol. Biotechnol. 1998, 50, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Comba, S.; Dalmazzo, D.; Santagata, E.; Sethi, R. Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. J. Hazard. Mater. 2011, 185, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Sethi, R. Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro-and nanoparticles. J. Nanopart. Res. 2012, 14, 1239. [Google Scholar] [CrossRef]
- Sereno, N.M.; Hill, S.E.; Mitchell, J.R. Impact of the extrusion process on xanthan gum behaviour. Carbohydr. Res. 2007, 342, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Naresh, L.; Dhuldhoya, N.; Merchant, S.; Merchant, U. Xanthan gum—A boon to food industry. Food Promot. Chron. 2006, 1, 27–30. [Google Scholar]
- Rosalam, S.; England, R. Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzym. Microb. Technol. 2006, 39, 197–207. [Google Scholar] [CrossRef]
- Benny, I.S.; Gunasekar, V.; Ponnusami, V. Review on application of xanthan gum in drug delivery. Int. J. PharmTech Res. 2014, 6, 1322–1326. [Google Scholar]
- Palaniraj, A.; Jayaraman, V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng. 2011, 106, 1–12. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebrahiminezhad, A.; Moeeni, F.; Taghizadeh, S.-M.; Seifan, M.; Bautista, C.; Novin, D.; Ghasemi, Y.; Berenjian, A. Xanthan Gum Capped ZnO Microstars as a Promising Dietary Zinc Supplementation. Foods 2019, 8, 88. https://doi.org/10.3390/foods8030088
Ebrahiminezhad A, Moeeni F, Taghizadeh S-M, Seifan M, Bautista C, Novin D, Ghasemi Y, Berenjian A. Xanthan Gum Capped ZnO Microstars as a Promising Dietary Zinc Supplementation. Foods. 2019; 8(3):88. https://doi.org/10.3390/foods8030088
Chicago/Turabian StyleEbrahiminezhad, Alireza, Fatemeh Moeeni, Seyedeh-Masoumeh Taghizadeh, Mostafa Seifan, Christine Bautista, Donya Novin, Younes Ghasemi, and Aydin Berenjian. 2019. "Xanthan Gum Capped ZnO Microstars as a Promising Dietary Zinc Supplementation" Foods 8, no. 3: 88. https://doi.org/10.3390/foods8030088
APA StyleEbrahiminezhad, A., Moeeni, F., Taghizadeh, S. -M., Seifan, M., Bautista, C., Novin, D., Ghasemi, Y., & Berenjian, A. (2019). Xanthan Gum Capped ZnO Microstars as a Promising Dietary Zinc Supplementation. Foods, 8(3), 88. https://doi.org/10.3390/foods8030088