Viability of 4 Probiotic Bacteria Microencapsulated with Arrowroot Starch in the Simulated Gastrointestinal Tract (GIT) and Yoghurt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria, Growth Conditions, and Preparation of Cell Suspensions
2.2. Survival of Free and Freeze-Dried Strains in Low pH and Bile Salt Conditions
2.3. Particle Size and Moisture Content
2.4. Scanning Electron Microscopy (SEM)
2.5. Microencapsulation and Coating Procedures
2.6. Effects of Bacteria Encapsulated Arrowroot and Maltodextrin on Improving the Survival of Probiotics Organisms in Yoghurt
2.7. Statistical Analysis
3. Results and Discussion
3.1. Survival of Probiotic Strains in pH and Bile
3.2. Survival of Encapsulated Bacteria in Simulated Intestinal Juice at 4 °C and 25 °C
3.3. Moisture Content of the Microcapsules
3.4. Correlation Coefficients of Cells and Capsules
3.5. Survival of Strains in pH and Bile
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fuller, R. Probiotics in human medicine. Gut 1991, 32, 439. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, G.; Stanton, C.; Lynch, P.; Collins, J.; Fitzgerald, G.; Ross, R. Evaluation of cheddar cheese as a food carrier for delivery of a probiotic strain to the gastrointestinal tract. J. Dairy Sci. 1999, 82, 1379–1387. [Google Scholar] [CrossRef]
- Karabagias, I.; Karabagias, V.; Gatzias, I.; Riganakos, K. Bio-Functional Properties of Bee Pollen: The Case of “Bee Pollen Yoghurt”. Coatings 2018, 8, 423. [Google Scholar] [CrossRef]
- De Vos, P.; Faas, M.M.; Spasojevic, M.; Sikkema, J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J. 2010, 20, 292–302. [Google Scholar] [CrossRef]
- Kailasapathy, K.; Masondole, L. Survival of free and microencapsulated Lactobacillus acidophilus and Bifidobacterium lactis and their effect on texture of feta cheese. Aust. J. Dairy Technol. 2005, 60, 252. [Google Scholar] [CrossRef]
- Hansen, L.T.; Allan-Wojtas, P.; Jin, Y.-L.; Paulson, A. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 2002, 19, 35–45. [Google Scholar] [CrossRef]
- Erkkilä, S.; Petäjä, E. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 2000, 55, 297–300. [Google Scholar] [CrossRef]
- Kaprelyants, A.S.; Mukamolova, G.V.; Davey, H.M.; Kell, D.B. Quantitative Analysis of the Physiological Heterogeneity within Starved Cultures of Micrococcus luteus by Flow Cytometry and Cell Sorting. Appl. Environ. Microbiol. 1996, 62, 1311–1316. [Google Scholar] [Green Version]
- Sylvester, R.J.; van der Meijden, A.P.; Oosterlinck, W.; Witjes, J.A.; Bouffioux, C.; Denis, L.; Newling, D.W.; Kurth, K. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: A combined analysis of 2596 patients from seven EORTC trials. Eur. Urol. 2006, 49, 466–477. [Google Scholar] [CrossRef]
- Sultana, K.; Godward, G.; Reynolds, N.; Arumugaswamy, R.; Peiris, P.; Kailasapathy, K. Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol. 2000, 62, 47–55. [Google Scholar] [CrossRef]
- And, C.I.; Kailasapathy, K. Effect of co-encapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria under in vitro acidic and bile salt conditions and in yogurt. J. Food Sci. 2005, 70, M18–M23. [Google Scholar] [CrossRef]
- Fuentes-Zaragoza, E.; Sánchez-Zapata, E.; Sendra, E.; Sayas, E.; Navarro, C.; Fernández-López, J.; Pérez-Alvarez, J.A. Resistant starch as prebiotic: A review. Starch-Stärke 2011, 63, 406–415. [Google Scholar] [CrossRef]
- Miyamoto-Shinohara, Y.; Sukenobe, J.; Imaizumi, T.; Nakahara, T. Survival of freeze-dried bacteria. J. Gen. Appl. Microbiol. 2008, 54, 9–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strasser, S.; Neureiter, M.; Geppl, M.; Braun, R.; Danner, H. Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J. Appl. Microbiol. 2009, 107, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Xu, Q.; Zheng, Y.; Qian, L.; Lin, B. Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels. Braz. J. Microbiol. 2017, 48, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.-X.; Fang, X.-J.; Yu, Z.; Xin, Y.; Liu, X.-Y.; Shi, L.-E.; Tang, Z.-X. Encapsulation in alginate–skim milk microspheres improves viability of Lactobacillus bulgaricus in stimulated gastrointestinal conditions. Int. J. Food Sci. Nutr. 2013, 64, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Mortazavian, A.; Azizi, A.; Ehsani, M.; Razavi, S.; Mousavi, S.; Sohrabvandi, S.; Reinheimer, J. Survival of encapsulated probiotic bacteria in Iranian yogurt drink (Doogh) after the product exposure to simulated gastrointestinal conditions. Milchwissenschaft 2008, 63, 427. [Google Scholar]
- Picot, A.; Lacroix, C. Effects of micronization on viability and thermotolerance of probiotic freeze-dried cultures. Int. Dairy J. 2003, 13, 455–462. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Yu, R.-C.; Yang, H.-Y.; Chou, C.-C. Sugar and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with bifidobacteria. Food Microbiol. 2003, 20, 333–338. [Google Scholar] [CrossRef]
- Kailasapathy, K. Microencapsulation of probiotic bacteria: Technology and potential applications. Curr. Issues Intest. Microbiol. 2002, 3, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Rokka, S.; Rantamäki, P. Protecting probiotic bacteria by microencapsulation: Challenges for industrial applications. Eur. Food Res. Technol. 2010, 231, 1–12. [Google Scholar] [CrossRef]
- Arslan-Tontul, S.; Erbas, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT-Food Sci. Technol. 2017, 81, 160–169. [Google Scholar] [CrossRef]
- Shori, A.B. Microencapsulation improved probiotics survival during gastric transit. HAYATI J. Biosci. 2017, 24, 1–5. [Google Scholar] [CrossRef]
- De Barros Fernandes, R.V.; Borges, S.V.; Botrel, D.A. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr. Polym. 2014, 101, 524–532. [Google Scholar] [CrossRef]
- Loksuwan, J. Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocoll. 2007, 21, 928–935. [Google Scholar] [CrossRef]
- Capela, P.; Hay, T.; Shah, N. Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res. Int. 2006, 39, 203–211. [Google Scholar] [CrossRef]
- Bruno, F.; Lankaputhra, W.; Shah, N. Growth, viability and activity of Bifidobacterium spp. in skim milk containing prebiotics. J. Food Sci. 2002, 67, 2740–2744. [Google Scholar] [CrossRef]
- Hütt, P.; Andreson, H.; Kullisaar, T.; Vihalemm, T.; Unt, E.; Kals, J.; Kampus, P.; Zilmer, M.; Mikelsaar, M. Effects of a synbiotic product on blood anti-oxidative activity in subjects colonized with Helicobacter pylori. Lett. Appl. Microbiol. 2009, 48, 797–800. [Google Scholar] [CrossRef]
- Heidebach, T.; Först, P.; Kulozik, U. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J. Food Eng. 2010, 98, 309–316. [Google Scholar] [CrossRef]
- Chandramouli, V.; Kailasapathy, K.; Peiris, P.; Jones, M. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J. Microbiol. Methods 2004, 56, 27–35. [Google Scholar] [CrossRef]
- Iyer, C.; Phillips, M.; Kailasapathy, K. Release studies of Lactobacillus casei strain Shirota from chitosan-coated alginate-starch microcapsules in ex vivo porcine gastrointestinal contents. Lett. Appl. Microbiol. 2005, 41, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Puniya, A.; Singh, K. Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. Int. Dairy J. 2006, 16, 1190–1195. [Google Scholar] [CrossRef]
- Trindade, C.F.; Grosso, C. The effect of the immobilisation of Lactobacillus acidophilus and Bifidobacterium lactis in alginate on their tolerance to gastrointestinal secretions. Milchwissenschaft 2000, 55, 496–499. [Google Scholar]
- Begley, M.; Hill, C.; Gahan, C.G. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 2006, 72, 1729–1738. [Google Scholar] [CrossRef]
- Arjmandi, B.H.; Craig, J.; Nathani, S.; Reeves, R.D. Soluble dietary fiber and cholesterol influence in vivo hepatic and intestinal cholesterol biosynthesis in rats. J. Nutr. 1992, 122, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
- Ooi, L.-G.; Liong, M.-T. Cholesterol-lowering effects of probiotics and prebiotics: A review of in vivo and in vitro findings. Int. J. Mol. Sci. 2010, 11, 2499–2522. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Shah, N.P. Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci. 2009, 74, M100–M107. [Google Scholar] [CrossRef]
- Krasaekoopt, W.; Bhandari, B.; Deeth, H. Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 2003, 13, 3–13. [Google Scholar] [CrossRef]
- Chávarri, M.; Marañón, I.; Ares, R.; Ibáñez, F.C.; Marzo, F.; del Carmen Villarán, M. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol. 2010, 142, 185–189. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Heo, T.-R. Survival of Bifidobacterium longum Immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl. Environ. Microbiol. 2000, 66, 869–873. [Google Scholar] [CrossRef]
- Ding, W.; Shah, N.P. An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage. J. Food Sci. 2009, 74, M53–M61. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Sun, J.; Torley, P.; Wang, D.; Niu, S. Measurement of particle diameter of Lactobacillus acidophilus microcapsule by spray drying and analysis on its microstructure. World J. Microbiol. Biotechnol. 2008, 24, 1349–1354. [Google Scholar] [CrossRef]
- Ilha, E.C.; Da Silva, T.; Lorenz, J.G.; de Oliveira Rocha, G.; Sant’Anna, E.S. Lactobacillus paracasei isolated from grape sourdough: Acid, bile, salt, and heat tolerance after spray drying with skim milk and cheese whey. Eur. Food Res. Technol. 2015, 240, 977–984. [Google Scholar] [CrossRef]
- Lian, W.-C.; Hsiao, H.-C.; Chou, C.-C. Survival of bifidobacteria after spray-drying. Int. J. Food Microbiol. 2002, 74, 79–86. [Google Scholar] [CrossRef]
- De Valdez, G.F.; De Giori, G.S.; de Ruiz Holgado, A.P.; Oliver, G. Effect of drying medium on residual moisture content and viability of freeze-dried lactic acid bacteria. Appl. Environ. Microbiol. 1985, 49, 413–415. [Google Scholar] [PubMed]
Formulation Code | Arrowroot Starch (g) | Wall Materials Combination | Strains (g) | Water (mL) | |
---|---|---|---|---|---|
Maltodextrin (g) | Whey Protein (g) | ||||
Smb1 | - | 0.625 | 0.125 | 0.25 | 1 |
Smb2 | - | 0.650 | 0.10 | 0.25 | 1 |
Sab1 | 0.625 | - | 0.125 | 0.25 | 1 |
Sab2 | 0.650 | - | 0.10 | 0.25 | 1 |
Treatments | Isolates Name | Initial Mean Counts | Simulated Intestinal Juices | Bile Salt | ||||
---|---|---|---|---|---|---|---|---|
pH 2 | pH 3 | pH 6 | 0.3% | 0.5% | 0.8% | |||
L. paraplantarum | 8.84 ± 0.23 a 2 | 7.39 ± 0.32 b | 8.26 ± 0.22 b | 8.73 ± 0.17 a | 7.24 ± 0.34 b | 8.84 ± 0.23 a | 6.81 ± 0.37 b | |
Free-cells | E. faecalis | 9.13 ± 0.19 a | 7.77 ± 0.28 b | 8.21 ± 0.29 b | 9.19 ± 0.12 a | 7.79 ± 0.27 b | 9.13 ± 0.19 a | 7.73 ± 0.41 b |
L. plantarum | 8.92 ± 0.13 a | 7.13 ± 0.36 b | 8.58 ± 0.36 b | 8.81 ± 0.18 a | 6.84 ± 0.42 b | 8.92 ± 0.13 a | 6.64 ± 0.29 c | |
W. paramesenteroides | 9.03 ± 0.25 a | 7.89 ± 0.22 c | 7.74 ± 0.33 b | 9.08 ± 0.16 a | 6.51 ± 0.25 b | 9.03 ± 0.25 a | 7.18 ± 0.38 c | |
L. paraplantarum | 8.53 ± 0.16 a | 7.83 ± 0.37 c | 7.59 ± 0.21 b | 8.84 ± 0.13 a | 7.78 ± 0.38 b | 8.93 ± 0.16 a | 6.49 ± 0.39 b | |
Freeze-dried | E. faecalis | 9.01 ± 0.29 a | 8.15 ± 0.28 b | 8.41 ± 0.29 a | 9.21 ± 0.29 a | 7.91 ± 0.35 a | 9.21 ± 0.26 a | 7.84 ± 0.13 a |
L. plantarum | 9.11 ± 0.19 a | 8.43 ± 0.36 b | 8.87 ± 0.32 a | 9.19 ± 0.31 a | 9.01 ± 0.23 a | 8.91 ± 0.15 a | 9.12 ± 0.32 a | |
W. paramesenteroides | 8.93 ± 0.21 a | 8.97 ± 0.32 c | 8.83 ± 0.34 a | 8.97 ± 0.09 a | 7.43 ± 0.27 a | 8.94 ± 0.32 a | 8.97 ± 0.19 a |
Temperature | Treatment | Microsphere Size (μm; n = 100) | Moisture Content (%) | Log10 cfu/mL | Survival (%) | ||||
---|---|---|---|---|---|---|---|---|---|
0 Day | 15 Days | 30 Days | 60 Days | 90 Days | |||||
L. paraplantarum | 363.09 ± 3.16 a | 5.27 ± 0.69 a | 8.40 ± 0.19 a | 7.91 ± 0.62 a | 6.65 ± 0.12 c | 6.51 ± 0.21 c | 5.73 ± 0.23 d | 68.2 ± 0.73 a | |
4 °C (Maltodextrin-coated) | E. faecalis | 426.17 ± 6.38 b | 5.09 ± 0.45 a | 8.76 ± 0.31 a | 8.31 ± 0.35 a | 7.36 ± 0.36 b | 7.58 ± 0.13 a | 6.45 ± 0.38 d | 73.63 ± 1.28 a |
L. plantarum | 354.11 ± 2.96 a | 5.31 ± 0.28 a | 8.65 ± 0.32 a | 8.43 ± 0.18 a | 7.21 ± 0.44 b | 7.73 ± 0.35 a | 6.69 ± 0.22 c | 77.34 ± 0.81 a | |
W. paramesenteroides | 458.91 ± 6.29 b | 5.42 ± 0.17 a | 8.87 ±0.28 a | 9.03 ± 0.29 a | 7.28 ± 0.72 b | 6.42 ± 0.42 c | 6.54 ± 0.48 d | 73.73 ± 1.64 a | |
L. paraplantarum | 349.92 ± 3.09 a | 5.36 ± 0.83 a | 8.37 ± 0.32 a | 8.09 ± 0.57 a | 7.53 ± 0.29 a | 6.47 ± 0.27 c | 6.08 ± 0.18 d | 72.64 ± 0.62 a | |
25 °C (Maltodextrin-coated) | E. faecalis | 418.64 ± 6.05 a | 5.19 ± 0.96 a | 8.61 ± 0.11 a | 8.18 ± 0.48 a | 6.96 ± 0.48 b | 7.42 ± 0.08 a | 5.98 ± 0.83 d | 69.45 ± 0.92 a |
L. plantarum | 318.19 ± 2.89 a | 5.42 ± 0.31 a | 9.05 ± 0.42 a | 8.33 ± 0.19 a | 7.42 ± 0.79 a | 7.68 ± 0.74 a | 6.78 ± 0.67 c | 74.92 ± 0.68 a | |
W. paramesenteroides | 442.37 ± 6.15 b | 5.47 ± 0.53 a | 8.73 ± 0.92 a | 8.84 ± 0.82 a | 8.04 ± 0.82 a | 7.37 ± 0.19 b | 6.39 ± 0.85 d | 73.20 ± 0.98 a | |
L. paraplantarum | 571.09 ± 3.41 c | 8.31 ± 0.47 b | 8.74 ± 0.83 a | 8.02 ± 0.74 a | 6.95 ± 0.09 c | 6.67 ± 0.89 c | 6.07 ± 0.93 d | 69.45 ± 0.25 a | |
4 °C (Arrowroot starch-coated) | E. faecalis | 643.18 ± 5.49 d | 8.01 ± 0.78 b | 8.43 ± 0.57 a | 8.29 ± 0.93 a | 7.57 ± 0.67 a | 7.85 ± 0.78 a | 6.68 ± 0.65 c | 79.24 ± 0.92 a |
L. plantarum | 537.08 ± 2.89 c | 8.11 ± 0.35 b | 8.76 ± 0.29 a | 8.56 ± 0.84 a | 7.51 ± 0.94 b | 7.86 ± 0.81 a | 6.82 ± 0.28 c | 77.85 ± 0.82 a | |
W. paramesenteroides | 681.34 ± 5.75 d | 8.17 ± 0.19 b | 9.11 ± 0.71 a | 9.07 ± 0.27 a | 8.13 ± 0.78 a | 6.94 ± 0.65 b | 6.63 ± 0.92 c | 72.77 ± 0.62 a | |
L. paraplantarum | 527.09 ± 2.78 c | 8.39 ± 0.21 b | 8.40 ± 0.78 a | 7.82 ± 0.68 a | 7.58 ± 0.85 a | 6.57 ± 0.81 c | 6.03 ± 0.48 d | 71.79 ± 0.62 a | |
25 °C (Arrowroot starch-coated) | E. faecalis | 637.43 ± 5.83 d | 8.09 ± 0.18 b | 8.84 ± 0.28 a | 8.47 ± 0.58 a | 7.19 ± 0.58 b | 7.59 ± 0.47 a | 6.15 ± 0.72 d | 69.57 ± 1.36 a |
L. plantarum | 523.26 ± 3.18 c | 8.20 ± 0.23 b | 8.71 ± 0.49 a | 8.72 ± 0.72 a | 7.63 ± 0.83 b | 7.77 ± 0.84 a | 6.09 ± 0.28 d | 69.92 ± 1.12 a | |
W. paramesenteroides | 668.37 ± 3.11 d | 8.23 ± 0.28 b | 9.08 ± 0.69 a | 8.93 ± 0.37 a | 8.09 ± 0.91 a | 7.54 ± 0.38 a | 6.48 ± 0.84 d | 71.37 ± 0.23 a |
Control | L. plantarum | W. paramesenteroides | E. Faecalis | L. paraplantarum | Control | L. Plantarum | W. paramesenteroides | E. Faecalis | L. paraplantarum | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | 1 | ||||||||||
L. plantarum | 0.898 * | 1 | |||||||||
Maltodextrin | W. paramesenteroides | 0.666 | 0.896 * | 1 | |||||||
E. faecalis | 0.842 | 0.810 | 0.528 | 1 | |||||||
L. paraplantarum | 0.892 * | 0.997 ** | 0.919 * | 0.770 | 1 | ||||||
Control | 0.993 ** | 0.907 * | 0.653 | 0.896 * | 0.892 * | 1 | |||||
L. plantarum | 0.813 | 0.940 * | 0.969 ** | 0.637 | 0.963 ** | 0.792 | 1 | ||||
Arrowroot | W. paramesenteroides | 0.783 | 0.823 | 0.881 * | 0.468 | 0.864 | 0.728 | 0.948 * | 1 | ||
E. Faecalis | 0.862 | 0.989 ** | 0.910 * | 0.731 | 0.990 ** | 0.865 | 0.934 * | 0.823 | 1 | ||
L. paraplantarum | 0.927 * | 0.971 ** | 0.873 | 0.712 | 0.980 ** | 0.909 * | 0.942 * | 0.895 * | 0.975 ** | 1 |
Control | L. plantarum | W. paramesenteroides | E. Faecalis | L. paraplantarum | Control | L. Plantarum | W. paramesenteroides | E. Faecalis | L. paraplantarum | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Free-cells | Control | 1 | |||||||||
L. plantarum | 0.620 | 1 | |||||||||
W. paramesenteroides | 0.361 | 0.688 | 1 | ||||||||
E. faecalis | 0.626 | 0.960 ** | 0.617 | 1 | |||||||
L. paraplantarum | 0.800 | 0.502 | 0.590 | 0.602 | 1 | ||||||
Capsules of Freeze-dried | Control | 0.503 | 0.947 * | 0.443 | 0.933 * | 0.303 | 1 | ||||
L. plantarum | 0.768 | 0.933 * | 0.799 | 0.863 | 0.675 | 0.778 | 1 | ||||
W. paramesenteroides | 0.583 | 0.958 * | 0.811 | 0.855 | 0.474 | 0.837 | 0.962 ** | 1 | |||
E. Faecalis | 0.868 | 0.841 | 0.639 | 0.740 | 0.630 | 0.696 | 0.954 * | 0.882 * | 1 | ||
L. paraplantarum | 0.791 | 0.946 * | 0.622 | 0.866 | 0.549 | 0.862 | 0.963 ** | 0.938 * | 0.964 ** | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samedi, L.; Charles, A.L. Viability of 4 Probiotic Bacteria Microencapsulated with Arrowroot Starch in the Simulated Gastrointestinal Tract (GIT) and Yoghurt. Foods 2019, 8, 175. https://doi.org/10.3390/foods8050175
Samedi L, Charles AL. Viability of 4 Probiotic Bacteria Microencapsulated with Arrowroot Starch in the Simulated Gastrointestinal Tract (GIT) and Yoghurt. Foods. 2019; 8(5):175. https://doi.org/10.3390/foods8050175
Chicago/Turabian StyleSamedi, Lesly, and Albert Linton Charles. 2019. "Viability of 4 Probiotic Bacteria Microencapsulated with Arrowroot Starch in the Simulated Gastrointestinal Tract (GIT) and Yoghurt" Foods 8, no. 5: 175. https://doi.org/10.3390/foods8050175
APA StyleSamedi, L., & Charles, A. L. (2019). Viability of 4 Probiotic Bacteria Microencapsulated with Arrowroot Starch in the Simulated Gastrointestinal Tract (GIT) and Yoghurt. Foods, 8(5), 175. https://doi.org/10.3390/foods8050175