Impact of Milk Fortification on the Microbiological and Physicochemical Properties of Set-Type Skimmed Yoghurt Using Three Commercial Soluble Prebiotics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Chemicals
2.2. Sample Preparation
2.3. Chemical and Rheological Assays
2.4. Assays of Hardness and Syneresis
2.5. Assays of Lactic Acid and Other Three Organic Acids
2.6. Determination of Viable Starter Strains
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Prebiotics Fortification on the Acidity of Yoghurt Samples
3.2. Effect of Prebiotics Fortification on Organic Acid Contents
3.3. Effect of Prebiotics Fortification on Texture of Yoghurt Samples
3.4. Effect of Prebiotics Fortification on Survival of Starter Strains
4. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Fiszman, S.M.; Salvador, A. Effect of gelatine on the texture of yoghurt and of acid-heat-induced milk gels. Eur. Food Res. Technol. 1999, 208, 100–105. [Google Scholar] [CrossRef]
- Staffolo, M.D.; Bertola, N.; Martino, M.; Bevilacqua, Y.A. Influence of dietary fiber addition on sensory and rheological properties of yoghurts. Int. Dairy J. 2004, 14, 263–268. [Google Scholar] [CrossRef]
- Weickert, M.O.; Pfeiffer, A.F. Metabolic effects of dietary fiber consumption and prevention of diabetes. J. Nutr. 2008, 138, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R. Fibre and effects on probiotics (the prebiotic concept). Clin. Nutr. 2004, 1, 25–31. [Google Scholar] [CrossRef]
- Kaczmarczyk, M.M.; Miller, M.J.; Freund, G.G. The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metab. Clin. Exp. 2012, 61, 1058–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.J. Consumption of Dietary Fiber 1992–2000. In The CRC Handbook of Dietary Fiber in Human Nutrition, 3rd ed.; Spiller, G.A., Ed.; CRC Press LLC: Los Atols, CA, USA, 2001; pp. 553–566. [Google Scholar]
- El-Nagar, G.; Clowes, G.; Tudoricǎ, C.M.; Kuri, V.; Brennan, C.S. Rheological quality and stability of yog-ice cream with added inulin. Int. J. Dairy Technol. 2002, 55, 89–93. [Google Scholar] [CrossRef]
- Lee, C.C.; Wang, H.F.; Lin, S.D. Effect of isomaltooligosaccharide syrup on quality characteristics of sponge cake. Cereal Chem. 2008, 85, 515–521. [Google Scholar] [CrossRef]
- Aachary, A.A.; Prapulla, S.G. Xylooligosaccharides (XOS) as an emerging prebiotic: Microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr. Rev. Food. Sci. Food Saf. 2011, 10, 2–16. [Google Scholar] [CrossRef]
- Schaafsma, G.; Slavin, J.L. Significance of inulin fructans in the human diet. Compr. Rev. Food. Sci. Food Saf. 2015, 14, 37–47. [Google Scholar] [CrossRef]
- Rodríguez-García, J.; Salvador, A.; Hernando, I. Replacing fat and sugar with inulin in cakes: Bubble size distribution, physical and sensory properties. Food Bioprocess Technol. 2014, 7, 964–974. [Google Scholar] [CrossRef]
- Ozer, D.; Akin, S.; Ozer, B. Effect of inulin and lactulose on survival of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-02 in acidophilus-bifidus yoghurt. Food Sci. Technol. Int. 2005, 11, 19–24. [Google Scholar] [CrossRef]
- Guggisberg, D.; Cuthbert-Steven, J.; Piccinali, P.; Butikofer, U.; Eberhard, P. Rheological, microstructural and sensory characterization of low-fat and whole milk set yoghurt as influenced by inulin addition. Int. Dairy J. 2009, 19, 107–115. [Google Scholar] [CrossRef]
- Hennelly, P.J.; Dunne, P.G.; O’Sullivan, M.; O’Riordan, E.D. Textural, rheological and microstructural properties of imitation cheese containing inulin. J. Food Eng. 2006, 75, 388–395. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Khafila, S.A. Bacteriological, physicochemical and sensory properties of probiotic fermented camel’s milk as affected by added inulin. Egypt. J. Appl. Sci. 2013, 28, 295–313. [Google Scholar]
- Donkor, O.N.; Nilmini, S.L.I.; Stolic, P.; Vasiljevic, T.; Shah, N.P. Survival and activity of selected probiotic organisms in set-type yoghurt during cold storage. Int. Dairy J. 2007, 17, 657–665. [Google Scholar] [CrossRef]
- Patel, A.R.; Prajapati, J.B. Biological properties of xylooligosaccharides as an emerging prebiotic and future perspective. Curr. Trends Biotechnol. Pharm. 2015, 9, 472–480. [Google Scholar]
- Hsu, C.K.; Liao, J.W.; Chung, Y.C.; Hsieh, C.P.; Chan, Y.C. Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J. Nutr. 2004, 134, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Summanen, P.H.; Komoriya, T.; Finegold, S.M. In vitro study of the prebiotic xylooligosaccharides (XOS) on the growth of Bifidobacterium spp. and Lactobacillus spp. Int. J. Food Sci. Nutr. 2015, 66, 919–922. [Google Scholar] [CrossRef]
- Aachary, A.A.; Gobinath, D.; Srinivasan, K.; Prapulla, S.G. Protective effect of xylooligosaccharides from corncob on 1,2-dimethylhydrazine induced colon cancer in rats. Bioact. Carbohyd. Dietary Fibre 2015, 5, 146–152. [Google Scholar] [CrossRef]
- Mumtaz, S.; Rehman, S.U.; Huma, N.; Jamil, A.; Nawaz, H. Xylooligosaccharide enriched yoghurt: Physicochemical and sensory evaluation. Pak. J. Nutr. 2008, 7, 566–569. [Google Scholar] [CrossRef]
- Wang, X.X.; Song, P.X.; Wu, H.; Xue, J.X.; Zhong, X.; Zhang, L.Y. Effects of graded levels of isomaltooligosaccharides on the performance, immune function and intestinal status of weaned pigs. Asian Australas. J. Anim. Sci. 2016, 29, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.F.; Lim, P.S.; Kao, M.D.; Chan, E.C.; Lin, L.C.; Wang, N.P. Use of isomalto-oligosaccharides in the treatment of lipid profiles and constipation in hemodialysis patients. J. Renal Nutr. 2001, 11, 73–79. [Google Scholar] [CrossRef]
- Mountzouris, K.C.; Gilmour, S.G.; Rastall, R.A. Continuous production of oligodextrans via controlled hydrolysis of dextran in an enzyme membrane reactor. J. Food Sci. 2002, 67, 1767–1771. [Google Scholar] [CrossRef]
- Ghoddusi, H.B.; Grandison, M.A.; Grandison, A.S.; Tuohy, K.M. In vitro study on gas generation and prebiotic effects of some carbohydrates and their mixtures. Anaerobe 2007, 13, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Goffin, D.; Delzenne, N.; Blecker, C.; Hanon, E.; Deroanne, C.; Paquot, M. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit. Rev. Food Sci. Nutr. 2011, 51, 394–409. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Lucey, J.A. Formation and physical properties of yoghurt. Asian Australas. J. Anim. Sci. 2010, 23, 152–160. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International, 16th ed.; Gaithersburg, M.D., Ed.; Association of Official Analytical Chemists: Colombia, MD, USA, 1999. [Google Scholar]
- Chang, C.H.; Kong, B.H.; Zhao, X.H. Quality attributes of the set-style yoghurt from whole bovine milk as affected by an enzymatic oxidative cross-linking. CyTA J. Food 2014, 12, 249–255. [Google Scholar] [CrossRef]
- Han, Y.P.; Fu, M.; Zhao, X.H. The quality of set-style yoghurt responsible to partial lactose hydrolysis followed by protein cross-linking of the skimmed milk. Int. J. Dairy Technol. 2015, 68, 427–433. [Google Scholar] [CrossRef]
- Sandoval-Castilla, O.; Lobato-Calleros, C.; Aguirre-Mandujano, E.; Vernon-Carterb, E.J. Microstructure and texture of yoghurt as influenced by fat replacer. Int. Dairy J. 2004, 14, 151–159. [Google Scholar] [CrossRef]
- Shi, J.; Li, D.; Zhao, X.H. Quality attributes of the set-style skimmed yoghurt containing enzymatic cross-linked or thermal polymerized whey protein isolate. CyTA J. Food 2017, 15, 34–40. [Google Scholar] [CrossRef]
- Barker, S.B.; Summerson, W.H. The colorimetric determination of lactic acid in biological material. J. Biol. Chem. 1941, 138, 535–554. [Google Scholar] [CrossRef]
- Zhu, C.L.; Zhao, X.H. In vitro fermentation of a retrograded maize starch by healthy adult fecal extract and impacts of exogenous microorganisms on three acids production. Starch Starke 2013, 65, 330–337. [Google Scholar] [CrossRef]
- Dave, R.I.; Shah, N.P. Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. Int. Dairy J. 1997, 7, 31–41. [Google Scholar] [CrossRef]
- Guven, M.; Yasar, K.; Karaca, O.B.; Hayaloglu, A.A. The effect of inulin as a fat replacer on the quality of set-type low-fat yogurt manufacture. Int. J. Dairy Technol. 2005, 58, 180–184. [Google Scholar] [CrossRef]
- Aryana, K.J.; Plauche, S.; Rao, R.M.; McGrew, P.; Shah, N.P. Fat-free plain yoghurt manufactured with inulins of various chain lengths and Lactobacillus acidophilus. J. Food Sci. 2007, 72, 79–84. [Google Scholar] [CrossRef]
- Gilliland, S.E.; Kim, H.S. Effect of viable starter culture bacteria in yogurt on lactose utilization in humans. J. Dairy Sci. 1984, 67, 1–6. [Google Scholar] [CrossRef]
- Shi, J.; Han, Y.P.; Zhao, X.H. Quality attributes of the set-style yoghurt from skimmed milk affected by the addition of a cross-linked bovine gelatin. CyTA J. Food 2017, 15, 320–325. [Google Scholar] [CrossRef]
- Brennan, C.S.; Tudorica, C.M. Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: Comparative study of the utilization of barley beta-glucan, guar gum and inulin. Int. J. Food Sci. Technol. 2008, 43, 824–833. [Google Scholar] [CrossRef]
- Rudra, S.G.; Nath, P.; Kaur, C.; Basu, S. Rheological, storage stability and sensory profiling of low-fat yoghurt fortified with red capsicum carotenoids and inulin. J. Food Process Preserv. 2017, 41, e13067. [Google Scholar] [CrossRef]
- Cruz, A.G.; Cadena, R.S.; Walter, E.H.M.; Mortazavian, A.M.; Granato, D.; Faria, J.A.F.; Bolini, H.M.A. Sensory analysis: Relevance for prebiotic, probiotic, and synbiotic product development. Compr. Rev. Food. Sci. Food Saf. 2010, 9, 358–373. [Google Scholar] [CrossRef]
- Rezaei, R.; Khomeiri, M.; Aalami, M.; Kashaninejad, M. Effect of inulin on the physicochemical properties, flow behavior and probiotic survival of frozen yogurt. J. Food Sci. Technol. Mysore 2014, 51, 2809–2814. [Google Scholar] [CrossRef] [PubMed]
Samples | Titratable Acidity | pH Values | ||||
---|---|---|---|---|---|---|
1 day | 7 day | 21 day | 1 day | 7 day | 21 day | |
Yoghurt I | 0.81 ± 0.01 bA | 0.90 ± 0.01 cB | 0.93 ± 0.01 aC | 4.42 ± 0.02 aC | 4.28 ± 0.01 aB | 4.16 ± 0.02 aA |
Yoghurt II | 0.84 ± 0.01 cA | 0.91 ± 0.01 dB | 0.94 ± 0.01 abC | 4.41 ± 0.03 aC | 4.24 ± 0.02 aB | 4.18 ± 0.04 aA |
Yoghurt III | 0.81 ± 0.01 bA | 0.89 ± 0.01 bB | 0.96 ± 0.01 bC | 4.44 ± 0.01 aC | 4.28 ± 0.01 aB | 4.16 ± 0.01 aA |
Yoghurt IV | 0.80 ± 0.01 abA | 0.89 ± 0.01 bB | 0.93 ± 0.01 aC | 4.41 ± 0.01 aC | 4.28 ± 0.03 aB | 4.13 ± 0.02 aA |
Yoghurt V | 0.83 ± 0.01 cA | 0.88 ± 0.01 aB | 0.94 ± 0.01 abC | 4.40 ± 0.03 aC | 4.28 ± 0.01 aB | 4.16 ± 0.04 aA |
Yoghurt VI | 0.79 ± 0.01 aA | 0.90 ± 0.01 cB | 0.94 ± 0.01 abC | 4.39 ± 0.03 aC | 4.28 ± 0.04 aB | 4.11 ± 0.01 aA |
Yoghurt VII | 0.81 ± 0.01 bA | 0.91 ± 0.01 dB | 0.94 ± 0.01 aC | 4.41 ± 0.05 aC | 4.25 ± 0.02 aB | 4.19 ± 0.08 aA |
Samples | Lactic Acid | Acetic Acid | ||||
---|---|---|---|---|---|---|
1 day | 7 day | 21 day | 1 day | 7 day | 21 day | |
Yoghurt I | 8.57 ± 0.28 aA | 9.74 ± 0.30 aB | 10.68 ± 0.27 aC | 0.09 ± 0.01 aA | 0.09 ± 0.01 aA | 0.10 ± 0.01 aB |
Yoghurt II | 9.55 ± 0.01 bA | 10.72 ± 0.17 bB | 12.72 ± 0.01 bC | 0.09 ± 0.01 aA | 0.10 ± 0.01 bB | 0.10 ± 0.01 aB |
Yoghurt III | 9.20 ± 0.01 bA | 10.65 ± 0.54 bB | 12.94 ± 0.05 bC | 0.09 ± 0.01 aA | 0.09 ± 0.01 aA | 0.10 ± 0.01 aB |
Yoghurt IV | 9.53 ± 0.25 bA | 10.65 ± 0.21 bB | 12.92 ± 0.13 bC | 0.09 ± 0.01 aA | 0.09 ± 0.01 aA | 0.10 ± 0.01 aB |
Yoghurt V | 9.26 ± 0.20 bA | 10.52 ± 0.02 bB | 13.06 ± 0.21 bC | 0.09 ± 0.01 aA | 0.09 ± 0.01 aA | 0.10 ± 0.01 aB |
Yoghurt VI | 8.61 ± 0.31 aA | 10.78 ± 0.10 bB | 12.95 ± 0.53 bC | 0.09 ± 0.01 aA | 0.10 ± 0.01 bB | 0.10 ± 0.01 aB |
Yoghurt VII | 8.49 ± 0.63 aA | 10.68 ± 0.13 bB | 13.02 ± 0.07 bC | 0.09 ± 0.01 aA | 0.10 ± 0.01 bB | 0.10 ± 0.01 aB |
Samples | Storage Time of 1 day | Storage Time of 21 day | ||||
---|---|---|---|---|---|---|
Hardness (g) | Syneresis (%) | Hysteresis Loop Area | Hardness (g) | Syneresis (%) | Hysteresis Loop Area | |
Yoghurt I | 139.6 ± 2.7 a | 30.9 ± 1.4 a | 209.4 ± 9.0 a | 138.2 ± 3.2 a | 31.8 ± 0.1 a | 209.0 ± 6.0 a |
Yoghurt II | 141.7 ± 4.0 a | 30.0 ± 1.4 a | 215.2 ± 6.3 a | 139.4 ± 4.8 a | 32.1 ± 0.7 a | 210.8 ± 6.3 a |
Yoghurt III | 138.2 ± 1.8 a | 30.4 ± 0.8 a | 219.3 ± 8.8 a | 139.4 ± 1.8 a | 32.8 ± 0.3 a | 210.7 ± 9.8 a |
Yoghurt IV | 141.2 ± 2.9 a | 29.9 ± 0.9 a | 211.2 ± 7.3 a | 138.7 ± 3.3 a | 32.0 ± 0.2 a | 208.2 ± 5.2 a |
Yoghurt V | 139.5 ± 1.7 a | 30.2 ± 1.2 a | 212.5 ± 2.2 a | 139.1 ± 3.9 a | 31.7 ± 0.6 a | 210.5 ± 6.1 a |
Yoghurt VI | 138.1 ± 0.5 a | 30.6 ± 1.4 a | 214.4 ± 4.3 a | 139.1 ± 3.4 a | 32.6 ± 0.7 a | 211.9 ± 8.3 a |
Yoghurt VII | 138.5 ± 1.5 a | 30.3 ± 1.2 a | 219.1 ± 10.0 a | 138.4 ± 3.3 a | 32.8 ± 1.3 a | 211.8 ± 9.7 a |
Samples | S. thermophilus (108 cfu/mL) | L. delbrueckii subsp. bulgaricus (108 cfu/mL) | ||||
---|---|---|---|---|---|---|
1 day | 7 day | 21 day | 1 day | 7 day | 21 day | |
Yoghurt I | 3.7 ± 0.3 aA | 4.0 ± 0.1 abA | 3.9 ± 0.2 bA | 2.0 ± 0.5 aB | 2.6 ± 0.2 abB | 1.1 ± 0.2 abA |
Yoghurt II | 5.1 ± 0.4 cA | 5.1 ± 0.4 cA | 4.8 ± 0.1 cA | 3.3 ± 0.6 bB | 1.6 ± 0.6 aA | 1.0 ± 0.1 abA |
Yoghurt III | 5.2 ± 0.3 cA | 5.2 ± 0.3 cA | 4.8 ± 0.3 cA | 3.0 ± 0.3 abC | 1.9 ± 0.2 abB | 0.9 ± 0.4 abA |
Yoghurt IV | 5.2 ± 0.3 cA | 5.2 ± 0.5 cA | 4.9 ± 0.3 cA | 2.9 ± 0.5 abB | 1.6 ± 0.5 aAB | 0.7 ± 0.3 aA |
Yoghurt V | 4.4 ± 0.4 bA | 4.5 ± 0.1 bA | 4.1 ± 0.2 bA | 2.8 ± 0.7 abB | 2.0 ± 0.5 abAB | 1.3 ± 0.1 bA |
Yoghurt VI | 4.1 ± 0.4 abB | 3.9 ± 0.1 aB | 3.5 ± 0.1 aA | 3.7 ± 0.5 bB | 2.5 ± 0.4 abA | 2.0 ± 0.1 cA |
Yoghurt VII | 4.2 ± 0.2 abB | 4.3 ± 0.2 abB | 3.8 ± 0.1 abA | 3.6 ± 0.8 bB | 2.7 ± 0.4b AB | 1.9 ± 0.3 cA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Ding, Q.; Zhao, X.-H. Impact of Milk Fortification on the Microbiological and Physicochemical Properties of Set-Type Skimmed Yoghurt Using Three Commercial Soluble Prebiotics. Foods 2019, 8, 181. https://doi.org/10.3390/foods8060181
Li R, Ding Q, Zhao X-H. Impact of Milk Fortification on the Microbiological and Physicochemical Properties of Set-Type Skimmed Yoghurt Using Three Commercial Soluble Prebiotics. Foods. 2019; 8(6):181. https://doi.org/10.3390/foods8060181
Chicago/Turabian StyleLi, Rui, Qi Ding, and Xin-Huai Zhao. 2019. "Impact of Milk Fortification on the Microbiological and Physicochemical Properties of Set-Type Skimmed Yoghurt Using Three Commercial Soluble Prebiotics" Foods 8, no. 6: 181. https://doi.org/10.3390/foods8060181
APA StyleLi, R., Ding, Q., & Zhao, X. -H. (2019). Impact of Milk Fortification on the Microbiological and Physicochemical Properties of Set-Type Skimmed Yoghurt Using Three Commercial Soluble Prebiotics. Foods, 8(6), 181. https://doi.org/10.3390/foods8060181