Headspace Gas Chromatography-Mass Spectrometry for Volatile Components Analysis in Ipomoea Cairica (L.) Sweet Leaves: Natural Deep Eutectic Solvents as Green Extraction and Dilution Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regents and Materials
2.2. Preparation of NADESs
2.3. Preparation of ICS Leaves Powder
2.4. SHS-GC-MS Analysis Conditions
2.5. Preparation of ICS Samples for SHS-GC-MS Analysis
2.6. Determination of Retention Index
3. Results and Discussions
3.1. Optimization of SHS Parameters
3.2. Selection of NADESs for SHS-GC-MS Analysis
3.3. Effects of the Solid–Liquid Ratio and Water Content of NADESs on SHS Efficiency
3.4. Volatile Components’ Characterization by SHS-GC-MS
3.4.1. Identification of Terpenoids
3.4.2. Identification of Aromatics
3.4.3. Identification of Aliphatics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Maffei, M.E.; Gertsch, J.; Appendino, G. Plant Volatiles: Production, Function and Pharmacology. Nat. Prod. Rep. 2011, 28, 1359–1380. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, J.; Kovačević, D.B.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; Stulić, V.; Barba, F.J.; Chemat, F.; Barbosa-Cánovas, G.; et al. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Sullca, C.; Vargas, M.; Atarés, L.; Chiralt, A. Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloid. 2018, 75, 107–115. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant Activity of Essential Oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017, 220, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Filly, A.; Fernandez, X.; Minuti, M.; Visinoni, F.; Cravotto, G.; Chemat, F. Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale. Food Chem. 2014, 150, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, P.D.M.; De Lima, L.S.; Caetano, I.K.; Torres, Y.R. Comparative analysis of the volatile composition of honeys from Brazilian stingless bees by static headspace GC-MS. Food Res. Int. 2017, 102, 536–543. [Google Scholar] [CrossRef]
- Obistioiu, D.; Cristina, R.T.; Schmerold, I.; Chizzola, R.; Stolze, K.; Nichita, I.; Chiurciu, V. Chemical characterization by GC-MS and in vitro activity against Candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris. Chem. Cent. J. 2014, 8, 6. [Google Scholar] [CrossRef]
- Saeidi, K.; Moosavi, M.; Lorigooini, Z.; Maggi, F. Chemical characterization of the essential oil compositions and antioxidant activity from Iranian populations of Achillea wilhelmsii K. Koch. Ind. Crop. Prod. 2018, 112, 274–280. [Google Scholar] [CrossRef]
- Song, L.; Wu, J.; Li, F.; Peng, S.; Chen, B. Different responses of invasive and native species to elevated CO2 concentration. Acta Oecol. 2009, 35, 128–135. [Google Scholar] [CrossRef]
- Lin, R.J.; Chen, C.Y.; Lo, W.L. Cytotoxic activity of Ipomoea cairica. Nat. Prod. Res. 2008, 22, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.Q.; Wang, J.S.; Luo, J.G.; Kong, L.Y. Novel acylated lipo-oligosaccharides from the tubers of Ipomoea batatas. Carbohyd. Res. 2009, 344, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.G.; Rao, S.; Lal, S. Mosquito larvicidal properties of essential oil of an indigenous plant, Ipomoea cairica Linn. Jpn. J. Infect. Dis. 2004, 57, 176–177. [Google Scholar] [PubMed]
- Meira, M.; Da Silva, E.P.; David, J.M.; David, J.P. Review of the genus Ipomoea: chemistry and biological activities. Rev. Bras. Farmacogn. 2012, 22, 682–713. [Google Scholar] [CrossRef]
- Li, J.H.; Pan, J.T.; Yin, Y.Q. Two novel resin glycosides isolated from Ipomoea cairica with α-glucosides inhibitory activity. Chin. J. Nat. Med. 2016, 14, 227–231. [Google Scholar] [PubMed]
- Yu, B.; Luo, J.; Wang, J.; Zhang, D.; Yu, S.; Kong, L. Pentasaccharide resin glycosides from Ipomoea cairica and their cytotoxic activities. Phytochemistry 2013, 95, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Chen, L.; Zhang, W. Peroxidase from Ipomoea cairica (L) SW. Isolation, purification and some properties. Process Biochem. 1996, 31, 443–448. [Google Scholar]
- Ishak, A.R.; Dom, N.C.; Hussain, H.; Sabri, N.H. Biolarvacidal potential of Ipomoea Cairica extracts against key Dengue vevtors. Procedia Soc. Behav. Sci. 2014, 153, 180–188. [Google Scholar] [CrossRef]
- Samuel, L.; Lalrotluanga, R.; Muthukumaran, R.B.; Gurusubramanian, G.; Senthilkumar, N. Larvicidal activity of Ipomoea cairica (L) Sweet and Ageratina adenophora (Spreng.) King & H. Rob. plant extracts against arboviral and filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Exp. Parasitol. 2014, 141, 112–121. [Google Scholar] [PubMed]
- Ferreira, A.A.; Amaral, F.A.; Duarte, I.D.G.; Oliveira, P.M.; Alves, R.B.; Silveira, D.; Azevedo, A.O.; Raslan, D.S.; Castro, M.S.A. Antinociceptive effect from Ipomoea cairica extract. J. Ethnopharmacol. 2006, 105, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Tulukcu, E.; Cebi, N.; Sagdic, O. Chemical Fingerprinting of Seeds of Some Salvia Species in Turkey by Using GC-MS and FTIR. Foods 2019, 8, 118. [Google Scholar] [CrossRef]
- Nagyová, S.; Tölgyessy, P. Validation Including Uncertainty Estimation of a GC–MS/MS Method for Determination of Selected Halogenated Priority Substances in Fish Using Rapid and Efficient Lipid Removing Sample Preparation. Foods 2019, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Sitaramaraju, Y.; Van Hul, A.; Wolfs, K.; Van Schepdael, A.; Hoogmartens, J.; Adams, E. Static headspace gas chromatography of (semi-) volatile drugs in pharmaceuticals for topical use. J. Pharmaceut. Biomed. 2008, 47, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Rustum, A. Development and validation of a fast static headspace GC method for determination of residual solvents in permethrin. J. Pharmaceut. Biomed. 2016, 128, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Varona-Torres, E.; Carlton, D.D.; Hildenbrand, Z.L.; Schug, K.A. Matrix-effect-free determination of BTEX in variable soil compositions using room temperature ionic liquid co-solvents in static headspace gas chromatography mass spectrometry. Anal. Chim. Acta. 2018, 1021, 41–50. [Google Scholar] [CrossRef]
- D’Autry, W.; Zheng, C.; Bugalama, J.; Wolfs, K.; Hoogmartens, J.; Adams, E.; Wang, B.; Van Schepdael, A. Liquid paraffin as new dilution medium for the analysis of high boiling point residual solvents with static headspace-gas chromatography. J. Pharmaceut. Biomed. 2011, 55, 1017–1023. [Google Scholar] [CrossRef]
- Wang, M.; Fang, S.; Liang, X.R. Natural deep eutectic solvents as eco-friendly and sustainable dilution medium for the determination of residual organic solvents in pharmaceuticals with static headspace-gas chromatography. J. Pharmaceut. Biomed. Anal. 2018, 158, 262–268. [Google Scholar] [CrossRef]
- Dai, Y.; Van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta. 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Re. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Yoo, D.E.; Jeong, K.M.; Han, S.Y.; Kim, E.M.; Jin, Y.; Lee, J. Deep eutectic solvent-based valorization of spent coffee grounds. Food Chem. 2018, 255, 357–364. [Google Scholar] [CrossRef]
- Pereira, F.P.; Namiesnik, J. Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. ChemSusChem 2014, 7, 1784–1800. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.M.; Jin, Y.; Yoo, D.E.; Han, S.Y.; Kim, E.M.; Lee, J. One-step sample preparation for convenient examination of volatile monoterpenes and phenolic compounds in peppermint leaves using deep eutectic solvents. Food Chem. 2018, 251, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Fraige, K.; Arrua, R.D.; Sutton, A.T.; Funari, C.S.; Cavalheiro, A.J.; Hilder, E.F.; Da Silva Bolzani, V. Using natural deep eutectic solvents for the extraction of metabolites in Byrsonima intermedia leaves. J. Sep. Sci. 2019, 42, 591–597. [Google Scholar] [CrossRef]
- Malaeke, H.; Housaindokht, M.R.; Monhemi, H.; Izadyar, M. Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification. J. Mol. Liq. 2018, 263, 193–199. [Google Scholar] [CrossRef]
- Ni, M.; Sun, T.; Zhang, L.; Liu, Y.; Xu, M.; Jiang, Y. Relationship study of partition coefficients between ionic liquid and headspace for organic solvents by HS-GC. J. Chromatogr. B 2014, 945, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Zuo, X.B.; Xu, X.J.; Ren, D.H. Density, viscosity and excess molar volume of binary mixtures of tri-n-octylamine + diluents (n-heptane, n-octane, n-nonane, and n-decane) at various temperatures. J. Chem. Thermodyn. 2014, 68, 281–287. [Google Scholar] [CrossRef]
- Duan, L.; Dou, L.L.; Guo, L.; Li, P.; Liu, E.H. Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products. ACS Sustain. Chem. Eng. 2016, 4, 2405–2411. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their application. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Kim, S.; Koo, I.; Wei, X.L.; Zhang, X. A method of finding optimal weight factors for compound identification in gas chromatography-mass spectrometry. Bioinformatics 2012, 28, 1158–1163. [Google Scholar] [CrossRef]
- Koo, I.; Kim, S.; Zhang, X. Comparative analysis of mass spectral matching-based compound identification in gas chromatography-mass spectrometry. J. Chromatogr. A 2013, 1298, 132–138. [Google Scholar] [CrossRef]
- Lee, H.; Finckbeiner, S.; Yu, J.S.; Wiemer, D.F.; Eisner, T.; Attygalle, A.B. Characterization of (E, E)-farnesol and its fatty acid esters from anal scent glands of nutria (Myocasgor coypus) by gas chromatography-mass spectrometry and gas chromatography-infrared spectrometry. J. Chromatogr. A 2007, 1165, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Kooa, I.; Shia, X.; Kimb, S.; Zhanga, X. iMatch2: Compound identification using retention index for analysis of gas chromatography-mass spectrometry data. J. Chromatogr. A 2014, 1337, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xu, M.; Li, N.; Li, Z.; Li, H.; Shao, S.; Zou, K.; Zou, L. β-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer. Biochem. Bioph. Res. Commun. 2017, 490, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Liu, F.; Davis, R.W. Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds. Metab. Eng. Commun. 2018, 6, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Ngamprasertsith, S.; Menwa, J.; Sawangkeaw, R. Caryophyllene oxide extraction from lemon basil (Ocimum citriodorum Vis.) straw by hydrodistillation and supercritical CO2. J. Supercrit. Fluid. 2018, 138, 1–6. [Google Scholar] [CrossRef]
- Varsha, K.K.; Devendra, L.; Shilpa, G.; Priya, S.; Pandey, A.; Nampoothiri, K.M. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int. J. Food Microbiol. 2015, 211, 44–50. [Google Scholar] [CrossRef] [PubMed]
No. | Components | RT | Formula | CAS | Score | RI | Contents * (%) |
---|---|---|---|---|---|---|---|
1 | 5-Methyl-5-hexen-2-ol | 2.07 | C7H14O | 50551-88-7 | 70.73 | 692 | 3.65 |
2 | 2-Ethyl-furan | 2.14 | C6H8O | 3208-16-0 | 77.37 | 708 | 1.41 |
3 | 1-(Methylencyclopropyl)-ethanol | 2.36 | C6H10O | 70.89 | 725 | 0.14 | |
4 | 4-Penten-1-ol | 2.69 | C5H10O | 821-09-0 | 65.28 | 766 | 0.43 |
5 | 2, 4-Dimethyl-3-pentanol | 3.10 | C7H16O | 600-36-2 | 80.18 | 803 | 3.75 |
6 | 3-Furaldehyde | 3.72 | C5H4O2 | 498-60-2 | 90.06 | 829 | 4.73 |
7 | (E)-2-hexenal | 4.15 | C6H10O | 6728-26-3 | 80.70 | 849 | 1.07 |
8 | 4-Methyl-2-penten-1-ol | 4.46 | C6H12O | 5362-55-0 | 67.13 | 863 | 0.59 |
9 | Heptanal | 5.42 | C7H14O | 111-71-7 | 67.55 | 904 | 0.27 |
10 | (+/-)-2-Amino-1-propanol | 5.61 | C3H9NO | 2749-11-3 | 72.19 | 910 | 0.13 |
11 | 1-(2-Furanyl)-ethanone, | 5.83 | C6H6O2 | 1192-62-7 | 60.92 | 916 | 0.30 |
12 | Butyrolactone | 6.26 | C4H6O2 | 96-48-0 | 63.77 | 923 | 0.21 |
13 | (1R)-2, 6, 6-Trimethylbicyclo [3.1.1] hept-2-ene | 6.50 | C10H16 | 7785-70-8 | 54.28 | 936 | 0.14 |
14 | 1-Methyl-3-cyclohexen-1-ol | 7.27 | C7H12O | 33061-16-4 | 53.39 | 959 | 0.12 |
15 | Benzaldehyde | 7.36 | C7H8O | 100-52-7 | 87.31 | 962 | 1.52 |
16 | 1-Methyl-pyrazole-4-carboxaldehyde | 7.53 | C5H6N2O | 25016-11-9 | 73.89 | 966 | 0.41 |
17 | 2-Methyl-1-hepten-6-one | 8.34 | C8H14O | 10408-15-8 | 69.68 | 991 | 0.19 |
18 | 2-Pentyl-furan | 8.46 | C9H14O | 3777-69-3 | 77.14 | 994 | 0.57 |
19 | 1-Methyl-1H-pyrrole-2-carboxaldehyde | 8.90 | C6H7NO | 1192-58-1 | 67.63 | 1004 | 0.31 |
20 | Benzeneacetaldehyde | 10.22 | C8H8O | 122-78-1 | 85.65 | 1023 | 0.81 |
21 | 2, 5-Furandicarboxaldehyde | 11.44 | C6H4O3 | 823-82-5 | 61.79 | 1042 | 0.19 |
22 | Nonanal | 12.27 | C9H18O | 124-19-6 | 74.41 | 1107 | 0.20 |
23 | Levomenthol | 12.38 | C10H20O | 2216-51-5 | 65.21 | 1110 | 0.16 |
24 | Phenylethyl alcohol | 12.57 | C8H10O | 60-12-8 | 73.38 | 1116 | 0.17 |
25 | 2, 6, 6-Trimethyl-1, 3-cyclohexadiene-1-carboxaldehyde | 15.27 | C10H14O | 116-26-7 | 61.78 | 1202 | 0.10 |
26 | 2, 6, 6-Trimethyl-1-cyclohexene-1-carboxaldehyde | 15.90 | C10H16O | 432-25-7 | 64.44 | 1204 | 0.16 |
27 | 4-(2, 6, 6-Trimethyl-1, 3-cyclohexadien-1-yl)-2-butanone | 17.11 | C13H20O | 20483-36-7 | 66.03 | 1266 | 0.20 |
28 | (1R, 2R, 5R, E)-7-Ethylidene-1, 2, 8, 8-tetramethylbicyclo [3.3.1] octane | 17.61 | C14H14 | 193695-14-6 | 54.09 | 1283 | 0.17 |
29 | Tetrahydro-6-propyl-2H-pyran-2-one | 17.79 | C8H14O2 | 542-28-9 | 69.71 | 1289 | 0.19 |
30 | 2, 6, 10, 10-Tetramethyl-1-oxaspiro [4.5] dec-6-ene | 18.17 | C13H22O | 36431-72-8 | 80.79 | 1302 | 0.25 |
31 | (3R-trans)-4-Ethenyl-4-methyl-3-(1-methylethenyl)-1-(1-methylethyl)-cyclohexene | 19.24 | C15H24 | 20307-84-0 | 73.27 | 1342 | 0.14 |
32 | trans-Calamenene | 19.57 | C15H22 | 73209-42-4 | 74.69 | 1355 | 0.14 |
33 | α-Cubebene | 20.28 | C15H24 | 17699-14-8 | 81.24 | 1381 | 0.17 |
34 | β-Elemene | 20.52 | C15H24 | 515-13-9 | 97.06 | 1389 | 0.63 |
35 | 2, 4, 6-Trimethyl-decane | 20.85 | C12H26 | 2801-84-5 | 51.23 | 1402 | 0.11 |
36 | δ-Selinene | 20.92 | C15H24 | 28624-23-9 | 71.98 | 1405 | 0.11 |
37 | 4-(Dimethylamine)-benzaldehyde | 21.02 | C9H11NO | 100-10-7 | 90.17 | 1409 | 0.90 |
38 | (E)-1-(2, 3, 6-trimethylphenyl) buta-1, 3-diene (TPB,1) | 21.29 | C13H16 | 1000357-25-7 | 58.90 | 1419 | 0.23 |
39 | β-Caryophyllene | 21.44 | C15H24 | 87-44-5 | 98.21 | 1424 | 22.68 |
40 | (+)-epi-Bicyclosesquiphellandrene | 21.67 | C15H24 | 54274-73-6 | 93.89 | 1435 | 0.75 |
41 | [1aR-(1aα, 7aα, 7bα)]-1a, 2, 3, 5, 6, 7, 7a, 7b-Octahydro-1, 1, 7, 7a-tetramethyl-1H-cyclopropa [a] naphthalene | 21.76 | C15H24 | 17334-55-3 | 82.99 | 1439 | 0.32 |
42 | (1S-cis)-1, 2, 3, 5, 6, 8a-Hexaahydro-4, 7-dimethyl-1-(1-methylethyl)-naphthalene | 21.84 | C15H24 | 483-76-1 | 75.42 | 1442 | 0.12 |
43 | α-Guaiene | 21.91 | C15H24 | 3691-12-1 | 90.65 | 1444 | 0.58 |
44 | cis-Calamenene | 22.23 | C15H22 | 72937-55-4 | 69.79 | 1457 | 0.18 |
45 | α-Humulene | 22.31 | C15H24 | 6753-98-6 | 97.41 | 1460 | 11.23 |
46 | Bicyclosesquiphellandrene | 22.54 | C15H24 | 54324-03-7 | 91.10 | 1469 | 0.61 |
47 | 2, 6-Bis (1, 1-dimethylethyl)-2, 5-cyclohexadiene-1, 4-dione | 22.61 | C14H20O2 | 719-22-2 | 91.04 | 1472 | 0.11 |
48 | cis-Muurola-4(15), 5-diene | 22.70 | C15H24 | 157477-72-0 | 68.22 | 1476 | 0.14 |
49 | (1α, 4aβ, 8aα)- (+/-)-1, 2, 4a, 5, 8, 8a-Hexahydro-4, 7-1-(1-methylethyl)-naphthalene | 22.86 | C15H24 | 5951-61-1 | 89.26 | 1482 | 0.75 |
50 | β-Guaiene | 23.00 | C15H24 | 88-84-6 | 93.97 | 1487 | 4.09 |
51 | [4aR-(4aα, 7α, 8aβ)]-Decahydro-4a-methyl-1-methylene-7-(1-methylethenyl)-naphthalene | 23.13 | C15H24 | 17066-67-0 | 87.43 | 1493 | 2.13 |
52 | 2-Isopropenyl-4a, 8-dimethyl-1, 2, 3, 4, 4a, 5, 6, 8a-octahydronaphthalene | 23.35 | C15H24 | 1000193-57-0 | 90.13 | 1501 | 2.78 |
53 | [1S-(1α, 7α, 8aβ)]-1, 2, 3, 5, 6, 7, 8,8a-octahydro-1,4-dimethyl-7-(1-methylethenyl)-azulene | 23.60 | C15H24 | 3691-11-0 | 89.20 | 1512 | 0.70 |
54 | Di-tert-butylphenol | 23.69 | C14H22O | 96-76-4 | 93.23 | 1515 | 20.11 |
55 | 1, 2, 3, 4, 4a, 5, 6, 8a-Octahydro-7-methyl-4-methylene-naphthalene | 23.80 | C15H24 | 39029-41-9 | 76.36 | 1520 | 0.37 |
56 | Selina-3, 7(11)-diene | 23.90 | C15H24 | 6813-21-4 | 54.29 | 1525 | 0.12 |
57 | (1S-cis)-1, 2, 3, 5, 6, 8a-Hexahydro-4, 7-dimethyl-1-(1-methylethyl)-naphthalene | 24.02 | C15H24 | 483-76-1 | 90.16 | 1530 | 0.90 |
58 | Epizonarene | 24.37 | C15H24 | 41702-63-0 | 63.48 | 1544 | 0.16 |
59 | Caryophyllene oxide | 24.74 | C15H24O | 1139-30-6 | 59.71 | 1560 | 0.18 |
60 | Patchoulene | 24.84 | C15H26 | 25491-20-7 | 85.19 | 1565 | 0.34 |
61 | Dehydro-aromadendrene | 25.32 | C15H22 | 85.63 | 1585 | 0.78 | |
62 | β-Vatirenene | 25.41 | C15H22 | 27840-40-0 | 72.71 | 1588 | 0.35 |
63 | Aristol-1(10)-en-9-ol | 25.47 | C15H24O | 1372763-27-3 | 81.55 | 1591 | 0.54 |
64 | (8R, 8aS)-8, 8a-Dimethyl-2-(propan-2-ylidene)-1, 2, 3, 7, 8, 8a-hexahydronaphthalene | 25.57 | C15H22 | 27840-40-0 | 69.23 | 1595 | 0.15 |
65 | Salvial-4(14)-en-1-one | 25.73 | C15H24O | 73809-82-2 | 66.55 | 1602 | 0.31 |
66 | 1, 3-Bis-(2-cyclopropyl,2-methylcyclopropyl)-but-2-en-1-one | 25.85 | C18H26O | 72.68 | 1607 | 0.11 | |
67 | [3R-(3α, 3aβ, 7β, 8aα)]-2, 3, 4, 7, 8, 8a-Hexahydro-3, 6, 8, 8-tetramethyl-1H-3a, 7-methanoazulene | 25.90 | C15H24 | 469-61-4 | 74.34 | 1610 | 0.19 |
68 | (+)-Epi-, β-santalyl acetate | 26.09 | C17H26O2 | 41414-75-9 | 75.95 | 1617 | 0.64 |
69 | (1S, 7S, 8aR)-1, 8a-Dimethyl-7-(prop-1-en-2-yl)-1, 2, 3, 7, 8, 8a-hexahydronaphthalene | 26.60 | C15H22 | 190327-38-9 | 61.30 | 1640 | 0.11 |
70 | 4a, 5-Dimethyl-3-(prop-1-en-2-yl)-1, 2, 3, 4, 4a, 5, 6, 7-octahydronaphthalen-1-ol | 26.69 | C15H24O | 61847-19-6 | 67.23 | 1645 | 0.19 |
71 | 1-Isopropyl-4, 7-dimethyl-1, 2, 3, 4, 5, 6-hexahydronaphthalene | 26.89 | C15H24 | 16729-00-3 | 59.31 | 1649 | 0.12 |
72 | (4aR-trans)-Decahydro-4a-methyl-1-methylene-7-(1-methylethylidene)-naphthalene | 27.09 | C15H24 | 515-17-3 | 80.30 | 1662 | 0.62 |
73 | trans-Valerenyl acetate | 27.14 | C17H26O2 | 101527-74-6 | 72.98 | 1665 | 0.21 |
74 | (E)-2-((8R, 8aS)-8, 8a-Dimethyl-3, 4, 6, 7, 8, 8a-hexahydronaphthalen-2 (1H)-ylidene) propyl formate | 27.41 | C16H24O2 | 352457-47-7 | 54.29 | 1679 | 0.72 |
75 | cis-α-Copaene-8-ol | 27.79 | C15H24O | 58569-25-8 | 55.35 | 1694 | 0.29 |
76 | Heptadecane | 27.98 | C17H36 | 629-78-7 | 68.57 | 1702 | 0.19 |
77 | (E)-1, 3, 3-trimethyl-2-(3-methyl-2-methylene-3-butenylidene)-cyclohexanol | 28.27 | C15H24O | 69296-93-1 | 50.18 | 1716 | 0.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Liang, X. Headspace Gas Chromatography-Mass Spectrometry for Volatile Components Analysis in Ipomoea Cairica (L.) Sweet Leaves: Natural Deep Eutectic Solvents as Green Extraction and Dilution Matrix. Foods 2019, 8, 205. https://doi.org/10.3390/foods8060205
Zhang W, Liang X. Headspace Gas Chromatography-Mass Spectrometry for Volatile Components Analysis in Ipomoea Cairica (L.) Sweet Leaves: Natural Deep Eutectic Solvents as Green Extraction and Dilution Matrix. Foods. 2019; 8(6):205. https://doi.org/10.3390/foods8060205
Chicago/Turabian StyleZhang, Wei, and Xianrui Liang. 2019. "Headspace Gas Chromatography-Mass Spectrometry for Volatile Components Analysis in Ipomoea Cairica (L.) Sweet Leaves: Natural Deep Eutectic Solvents as Green Extraction and Dilution Matrix" Foods 8, no. 6: 205. https://doi.org/10.3390/foods8060205
APA StyleZhang, W., & Liang, X. (2019). Headspace Gas Chromatography-Mass Spectrometry for Volatile Components Analysis in Ipomoea Cairica (L.) Sweet Leaves: Natural Deep Eutectic Solvents as Green Extraction and Dilution Matrix. Foods, 8(6), 205. https://doi.org/10.3390/foods8060205