The Use of Upcycled Defatted Sunflower Seed Flour as a Functional Ingredient in Biscuits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biscuit Preparation
2.3. Proximate Analysis
2.4. Determination of Total Phenolic Content and Antioxidant Capacity
2.4.1. Total Phenolic Content (TPC)
2.4.2. Antioxidant Capacity
2.5. Physical Analyses
2.6. Colour
2.7. Sensory Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Properties of Defatted Sunflower Seed Flour
3.2. Effect of Defatted Sunflower Seed Flour on the Physical and Chemical Properties of Biscuits
3.3. Effect of Defatted Sunflower Seed Flour on the Proximate Conmposition and Chemical Properties of Biscuits
3.4. Effect of Defatted Sunflower Seed Flour on Sensory Properties of Biscuits
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yegorov, B.; Turpurova, T.; Sharabaeva, E.; Bondar, Y. Prospects of using by-products of sunflower oil production in compound feed industry. J. Food Sci. Technol. Ukr. 2019, 13, 106–113. [Google Scholar] [CrossRef]
- González-Pérez, S.; Merck, K.B.; Vereijken, J.M.; van Koningsveld, G.A.; Gruppen, H.; Voragen, A.G.J. Isolation and Characterization of Undenatured Chlorogenic Acid Free Sunflower (Helianthus annuus) Proteins. J. Agric. Food Chem. 2002, 50, 1713–1719. [Google Scholar] [CrossRef] [PubMed]
- Wanjari, N.; Waghmare, J. Phenolic and antioxidant potential of sunflower meal. Adv. Appl. Sci. Res. 2015, 6, 221–229. [Google Scholar]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Zhang, X.; Han, G.; Jiang, W.; Zhang, Y.; Li, X.; Li, M. Effect of Steam pressure on chemical and structural properties of kenaf fibers during steam explosion process. BioResources 2016, 11, 10. [Google Scholar] [CrossRef]
- Jung, J.Y.; Heo, J.M.; Yang, J.K. Effects of steam-exploded wood as an insoluble dietary fiber source on the performance characteristics of Broilers. BioResources 2019, 14, 1512–1524. [Google Scholar]
- Gu, X.; Dong, W.; He, Y. Detoxification of Rapeseed Meals by Steam Explosion. J. Am. Oil Chem. Soc. 2011, 88, 1831–1838. [Google Scholar] [CrossRef]
- Zhao, Z.M.; Wang, L.; Chen, H.Z. A novel steam explosion sterilization improving solid-state fermentation performance. Bioresour. Technol. 2015, 192, 547–555. [Google Scholar] [CrossRef]
- Planetarians. White Paper. Planetarians: Helping Companies to Find Better Ingredients for People and the Planet. Available online: https://www.planetarians.com/planetarians-technology (accessed on 28 June 2019).
- Kuchtová, V.; Karovičová, J.; Kohajdová, Z.; Minarovičová, L.; Kimličková, V. Effects of white grape preparation on sensory quality of cookies. Acta Chim. Slovaca 2016, 9, 84–88. [Google Scholar] [CrossRef] [Green Version]
- The Association of Official Analytical Chemists. AOAC (2000) Office Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Ajila, C.; Leelavathi, K.; Rao, U.P. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Vamanu, E.; Nita, S. Antioxidant capacity and the correlation with major phenolic compounds, anthocyanin, and tocopherol content in various extracts from the wild edible Boletus edulis mushroom. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Optimizing a sustainable ultrasound-assisted extraction method for the recovery of polyphenols from lemon by-products: Comparison with hot water and organic solvent extractions. Eur. Food Res. Technol. 2018, 244, 1353–1365. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Kohajdová, Z.; Karovičová, J.; Magala, M.; Kuchtová, V. Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chem. Pap. 2014, 68, 1059–1065. [Google Scholar] [CrossRef]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Alongi, M.; Melchior, S.; Anese, M. Reducing the glycemic index of short dough biscuits by using apple pomace as a functional ingredient. LWT 2019, 100, 300–305. [Google Scholar] [CrossRef]
- Ratcliff, R.K. Nutritional Value of Sunflower Meal for Ruminants; Texas Tech University: Lubbock, TX, USA, 1977. [Google Scholar]
- Hidalgo, A.; Brandolini, A.; Čanadanović-Brunet, J.; Ćetković, G.; Šaponjac, V.T. Microencapsulates and extracts from red beetroot pomace modify antioxidant capacity, heat damage and colour of pseudocereals-enriched einkorn water biscuits. Food Chem. 2018, 268, 40–48. [Google Scholar] [CrossRef]
- Lomascolo, A.; Uzan-Boukhris, E.; Sigoillot, J.C.; Fine, F. Rapeseed and sunflower meal: A review on biotechnology status and challenges. Appl. Microbiol. Biotechnol. 2012, 95, 1105–1114. [Google Scholar] [CrossRef]
- Vaher, M.; Matso, K.; Levandi, T.; Helmja, K.; Kaljurand, M. Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem. 2010, 2, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Genitha, T.; Yadav, V. Preparation and quality evaluation of flour and biscuit from sweet potato. J. Food Process Technol. 2012, 3, 113–118. [Google Scholar] [CrossRef]
- Bhat, M.; Hafiza, A. Physico-chemical characteristics of cookies prepared with tomato pomace powder. J. Food Process. Technol. 2016, 7, 1–4. [Google Scholar]
- Chauhan, A.; Saxena, D.; Singh, S. Physical, textural, and sensory characteristics of wheat and amaranth flour blend cookies. Cogent Food Agric. 2016, 2, 1125773. [Google Scholar] [CrossRef]
- Gandhi, A.; Kotwaliwale, N.; Kawalkar, J.; Srivastav, D.; Parihar, V.; Nadh, P.R. Effect of incorporation of defatted soyflour on the quality of sweet biscuits. J. Food Sci. Technol. 2001, 38, 502–503. [Google Scholar]
- Gallagher, E.; Kenny, S.; Arendt, E.K. Impact of dairy protein powders on biscuit quality. Eur. Food Res. Technol. 2005, 221, 237–243. [Google Scholar] [CrossRef]
- De Toledo, N.M.V.; Nunes, L.P.; da Silva, P.P.M.; Spoto, M.H.F.; Canniatti-Brazaca, S.G. Influence of pineapple, apple and melon by-products on cookies: Physicochemical and sensory aspects. Int. J. food Sci. Technol. 2017, 52, 1185–1192. [Google Scholar] [CrossRef]
- EFSA. EU Register on Nutrition and Health Claims. Available online: https://ec.europa.eu/food/safety/labelling_nutrition/claims/nutrition_claims_en (accessed on 28 June 2019).
- Piluzza, G.; Bullitta, S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm. Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef]
- Gbenga-Fabusiwa, F.J.; Oladele, E.P.; Oboh, G.; Adefegha, S.A.; Oshodi, A.A. Polyphenol contents and antioxidants activities of biscuits produced from ginger-enriched pigeon pea–wheat composite flour blends. J. Food Biochem. 2018, 42, e12526. [Google Scholar] [CrossRef]
- Aksoylu, Z.; Çağindi, Ö.; Köse, E. Effects of blueberry, grape seed powder and poppy seed incorporation on physicochemical and sensory properties of biscuit. J. Food Qual. 2015, 38, 164–174. [Google Scholar] [CrossRef]
- Martins, S.; Jongen, W.; van Boekel, M. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 2001, 11, 364–373. [Google Scholar] [CrossRef]
- Naknaen, P.; Itthisoponkul, T.; Sondee, A.; Angsombat, N. Utilization of watermelon rind waste as a potential source of dietary fiber to improve health promoting properties and reduce glycemic index for cookie making. Food Sci. Biotechnol. 2016, 25, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Davidov-Pardo, G.; Moreno, M.; Arozarena, I.; Marín-Arroyo, M.; Bleibaum, R.; Bruhn, C. Sensory and consumer perception of the addition of grape seed extracts in cookies. J. Food Sci. 2012, 77, S430–S438. [Google Scholar] [CrossRef] [PubMed]
Parameters | Wheat Flour | DSSF | |
---|---|---|---|
Moisture (%) | 10.22 ± 0.02 a | 4.59 ± 0.02 b | |
Protein (%) | 9.8 ± 0.02 b | 38.01 ± 0.01 a | |
Fat (%) | 1.62 ± 0.01 b | 1.84 ± 0.03 a | |
Ash (%) | 0.94 ± 0.05 b | 7.19 ± 0.03 a | |
WHC (g water/g dry weight) | 0.69 ± 0.14 b | 2.21 ± 0.18 a | |
OAC (g oil/g dry weight) | 0.87 ± 0.03 b | 1.25 ± 0.06 a | |
Colour | L* | 93.93 ± 0.36 a | 62.99 ± 0.12 b |
a* | −0.79 ± 0.06 b | 1.47 ± 0.02 a | |
b* | 11.45 ± 0.15 b | 14.38 ± 0.07 a |
Parameters | Control | 18% DSSF | 36% DSSF | |
---|---|---|---|---|
Diameter (mm) | 55.15 ± 1.26 a | 54.18 ± 1.03 b | 53.9 ± 0.91 b | |
Thickness (mm) | 8.66 ± 0.40 a | 8.62 ± 0.27 a | 8.13 ± 0.25 b | |
Spread ratio | 6.38 ± 0.35 b | 6.29 ± 0.24 b | 6.64 ± 0.26 a | |
L* | 38.10 ± 0.88 a | 37.40 ± 0.58 b | 36.55 ± 0.42 c | |
Colour | a* | 6.8 ± 0.26 a | 4.96 ± 0.26 b | 3.93 ± 0.28 c |
b* | 5.16 ± 0.60 a | 4.49 ± 0.39 b | 3.87 ± 0.37 c | |
Delta E | - | 4.3 | 11.9 | |
Hardness (N) | 40.98 ± 5.44 b | 50.25 ± 5.53 a | 53.27 ± 7.10 a |
Parameters | Control | 18% DSSF | 36% DSSF |
---|---|---|---|
Carbohydrate (%) | 69.56 a | 65.16 b | 61.42 c |
Fat (%) | 17.37 ± 0.5 b | 18.33 ± 0.1 a | 18.47 ± 0.4 a |
Protein (%) | 7.98 ± 0.08 c | 10.80 ± 0.12 b | 13.61 ± 0.18 a |
Ash (%) | 2.18 ± 0.05 c | 2.68 ± 0.03 b | 3.27 ± 0.04 a |
Estimated calories (Kcal/100 g) | 465 | 467 | 464 |
Calories from protein (%) | 7 | 9 | 12 |
Parameters | Descriptor | Control | 18% DSSF | 36% DSSF | p-Value |
---|---|---|---|---|---|
Appearance | Brown | 69.4 b | 75.6 a | 80.3 a | 0.0024 |
Crumb aeration | 48.2 a | 45.4 a | 31.3 b | 0.0001 | |
Aroma | Burnt | 23.6 b | 30.6 a | 31.3 a | 0.0390 |
Taste and flavour | Off note | 4.1 b | 6.3 b | 22.3 a | 0.0162 |
Mouthfeel | Firm bite | 65.5 b | 70.7 ab | 76.2 a | 0.0313 |
Crumbly | 55.5 a | 56.0 a | 43.6 b | 0.0219 | |
After effects | Drying | 46.7 b | 46.9 b | 55.0 a | 0.0053 |
Bitter | 23.5 b | 24.8 b | 32.5 a | 0.0385 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasso, S.; Omoarukhe, E.; Wen, X.; Papoutsis, K.; Methven, L. The Use of Upcycled Defatted Sunflower Seed Flour as a Functional Ingredient in Biscuits. Foods 2019, 8, 305. https://doi.org/10.3390/foods8080305
Grasso S, Omoarukhe E, Wen X, Papoutsis K, Methven L. The Use of Upcycled Defatted Sunflower Seed Flour as a Functional Ingredient in Biscuits. Foods. 2019; 8(8):305. https://doi.org/10.3390/foods8080305
Chicago/Turabian StyleGrasso, Simona, Ese Omoarukhe, Xiaokang Wen, Konstantinos Papoutsis, and Lisa Methven. 2019. "The Use of Upcycled Defatted Sunflower Seed Flour as a Functional Ingredient in Biscuits" Foods 8, no. 8: 305. https://doi.org/10.3390/foods8080305
APA StyleGrasso, S., Omoarukhe, E., Wen, X., Papoutsis, K., & Methven, L. (2019). The Use of Upcycled Defatted Sunflower Seed Flour as a Functional Ingredient in Biscuits. Foods, 8(8), 305. https://doi.org/10.3390/foods8080305