Effects of Industrial Boiling on the Nutritional Profile of Common Octopus (Octopus vulgaris)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Water Boiling Procedure
2.2. True Retention (TR)
2.3. Analyses
2.3.1. Proximate Composition and Energy Value
2.3.2. Fatty Acids
2.3.3. Total Amino Acids (AA)
2.3.4. Macro, Micro, and Toxic Elements
2.3.5. Analytical Quality Assurance
2.4. Nutritional Contribution (NC)
2.5. Statistical Treatment
3. Results and Discussion
3.1. Cooking Weight Yield
3.2. Proximate Composition and Energy Value
3.3. Fatty Acids
3.4. Amino Acids
3.5. Macro, Micro, and Toxic Elements
3.6. Nutritional Contribution
3.6.1. Protein Quality
3.6.2. Mineral Elements and Fatty Acids (EPA + DHA)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018; Available online: http://www.fao.org/3/i9540en/i9540en.pdf (accessed on 15 March 2019).
- Food and Agriculture Organization of the United Nations. FAO Yearbook. Fishery and Aquaculture Statistics 2016; FAO: Rome, Italy, 2018; Available online: http://www.fao.org/3/i9942t/I9942T.pdf (accessed on 30 April 2019).
- Rosa, R.; Costa, P.R.; Nunes, M.L. Effect of sexual maturation on the tissue biochemical composition of Octopus vulgaris and O. defilippi (Mollusca: Cephalopoda). Mar. Biol. 2004, 145, 563–574. [Google Scholar] [CrossRef]
- Mendes, R.; Vieira, H.; Pereira, J.; Teixeira, B. Water uptake and cooking losses in Octopus vulgaris during industrial and domestic processing. LWT-Food Sci. Technol. 2017, 78, 8–15. [Google Scholar] [CrossRef]
- Barbosa, A.; Vaz-Pires, P. Quality index method (QIM): Development of a sensorial scheme for common octopus (Octopus vulgaris). Food Control 2004, 15, 161–168. [Google Scholar] [CrossRef]
- Sobral, M.M.C.; Cunha, S.C.; Faria, M.A.; Ferreira, I.M. Domestic Cooking of Muscle Foods: Impaction Composition of Nutrients and Contaminants. Compr. Rev. Food Sci. Food Saf. 2018, 17, 309–333. [Google Scholar] [CrossRef]
- Gavahian, M.; Tiwari, B.K.; Chu, Y.-H.; Ting, Y.; Farahnaky, A. Food texture as affected by ohmic heating: Mechanisms involved, recent findings, benefits, and limitations. Trends Food Sci. Technol. 2019, 86, 328–339. [Google Scholar] [CrossRef]
- Luo, Q.; Hamid, N.; Oey, I.; Leong, S.Y.; Kantono, K.; Alfaro, A.; Lu, J. Physicochemical changes in New Zealand abalone (Haliotis iris) with pulsed T electric field (PEF) processing and heat treatments. LWT-Food Sci. Technol. 2019, 115, 1084438. [Google Scholar] [CrossRef]
- Karimian-Khosroshahi, N.; Hosseini, H.; Rezaei, M.; Khaksar, R.; Mahmoudzadeh, M. Effect of Different Cooking Methods on Minerals, Vitamins, and Nutritional Quality Indices of Rainbow Trout (Oncorhynchus mykiss). Int. J. Food Prop. 2016, 19, 2471–2480. [Google Scholar] [CrossRef]
- Murphy, E.W.; Criner, P.E.; Gray, B.C. Comparison of methods for calculating retentions of nutrients in cooked foods. J. Agric. Food Chem. 1975, 23, 1153–1157. [Google Scholar] [CrossRef]
- Bógnar, A. Tables on Weight Yield of Food and Retention Factors of Food Constituents for the Calculation of Nutrient Composition of Cooked Foods (Dishes); BFE-R-02-03; Berichte der Bundesforschungsanstalt für Ernährung: Karlsruhe, Germany, 2002; Available online: http://www.fao.org/uploads/media/bognar_bfe-r-02-03.pdf (accessed on 20 April 2019).
- Gokoglu, N.; Yerlikaya, P.; Cengiz, E. Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chem. 2004, 84, 19–22. [Google Scholar] [CrossRef]
- Hosseini, H.; Mahmoudzadeh, M.; Rezaei, M.; Mahmoudzadeh, L.; Khaksar, R.; Khosroshahi, N.K.; Babakhani, A. Effect of different cooking methods on minerals, vitamins and nutritional quality indices of kutum roach (Rutilus frisii kutum). Food Chem. 2014, 148, 86–91. [Google Scholar] [CrossRef]
- Lourenço, H.M.; Anacleto, P.; Afonso, C.; Ferraria, V.; Martins, M.F.; Carvalho, M.L.; Lino, A.R.; Nunes, M.L. Elemental composition of cephalopods from Portuguese continental waters. Food Chem. 2009, 113, 1146–1153. [Google Scholar] [CrossRef]
- Rjeibi, M.; Metian, M.; Hajji, T.; Guyot, T.; Chaouacha-Chekir, R.B.; Bustamante, P. Seasonal Survey of Contaminants (Cd and Hg) and Micronutrients (Cu and Zn) in Edible Tissues of Cephalopods from Tunisia: Assessment of Risk and Nutritional Benefits. J. Food Sci. 2014, 80, T199–T206. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, K.; Joy, M.; Vijayagopal, P. Nutritional qualities of common edible cephalopods at the Arabian Sea. Int. Food Res. J. 2016, 23, 1926–1938. [Google Scholar]
- Bandarra, N.M.; Calhau, M.A.; Oliveira, L.; Ramos, M.; Dias, M.G.; Bártolo, H.; Faria, M.R.; Fonseca, M.C.; Gonçalves, J.; Batista, I.; et al. Composition and Nutritional Value of Most Consumed Seafood Products in Portugal. Publicações Avulsas Do IPIMAR 11; IPIMAR: Lisboa, Portugal, 2004; Available online: https://www.ipma.pt/resources.www/docs/publicacoes.site/pescado/inicio.htm (accessed on 20 March 2019).
- World Health Organization. Global NCD Target Reduce Salt Intake; WHO/NMH/NMA/16.190; WHO: Geneva, Switzerland, 2016; Available online: http://www.who.int/beat-ncds/take-action/policy-brief-reduce-salt-intake.pdf?ua=1 (accessed on 15 March 2018).
- Marconi, S.; Durazzo, A.; Camilli, E.; Lisciani, S.; Gabrielli, P.; Aguzzi, A.; Gambelli, L.; Lucarini, M.; Marletta, L. Food composition databases: Considerations about complex food matrices. Foods 2018, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists International. Official Methods of Analysis, 16th ed.; AOAC International: Washington, DC, USA, 1998. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Food Energy—Methods of analysis and conversion factors. FAO Food Nutr. Pap. 2003, 77, 1–87. Available online: http://www.fao.org/uploads/media/FAO_2003_Food_Energy_02.pdf (accessed on 29 January 2019).
- Food and Agriculture Organization of the United Nations. Yield and nutritional value of the commercially more important fish species. FAO Fish. Tech. Pap. 1989, 309, 1–187. Available online: http://www.fao.org/3/T0219E/T0219E00.htm (accessed on 30 January 2019).
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 1986, 27, 114–120. [Google Scholar]
- Cohen, Z.; Vonshak, A.; Richmond, A. Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: Correlation to growth rate. J. Phycol. 1998, 24, 328–332. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Mota, C.; Santos, M.; Mauro, R.; Samman, N.; Matos, A.S.; Torres, D.; Castanheira, I. Protein content and amino acids profile of pseudocereals. Food Chem. 2016, 193, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Noltmann, E.A.; Mahowald, T.A.; Kuby, S.A. Studies on Adenosine Triphosphate Transphosphorylases. II. Amino acid composition of adenosine triphosphate-creatine transphosphorylase. J. Biol. Chem. 1962, 237, 1146–1154. [Google Scholar] [PubMed]
- Jorhem, L. Determination of metals in food by atomic absorption spectrometry after dry ashing: NMKL collaborative study. J. AOAC Int. 2000, 83, 1204–1211. [Google Scholar] [PubMed]
- International Organization for Standardization. Determination of Total Phosphorus Content—Spectrometric Method, ISO 13730:1996 Standard. International Standards Meat and Meat Products; ISO: Geneva, Switzerland, 1996. [Google Scholar]
- European Committee for Standardization. European Standard EN 15763:2009. Foodstuffs—Determination of Trace Elements—Determination of Arsenic, Cadmium, Mercury and Lead in Foodstuffs by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) after Pressure Digestion; CEN: Brussels, Belgium, 2009. [Google Scholar]
- European Committee for Standardization. European Standard EN 15111:2007. Foodstuffs—Determination of Trace Elements—Determination of Iodine by ICP-MS (Inductively Coupled Plasma Mass Spectrometry); CEN: Brussels, Belgium, 2007. [Google Scholar]
- European Committee for Standardization. European Standard EN 14084. Foodstuffs—Determination of Trace Elements—Determination of Lead, Cadmium, Zinc, Copper and Iron by Atomic Absorption Spectrometry (AAS) after Microwave Digestion; CEN: Brussels, Belgium, 2003. [Google Scholar]
- Environment Protection Agency. Test Method 7473: Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation and Atomic Absorption Spectrometry. SW-846; EPA: Washington, DC, USA, 2007; pp. 1–17.
- Magnusson, B.; Örnemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem: Lewis, MI, USA, 2014; ISBN 978-91-87461-59-0. Available online: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf (accessed on 15 March 2019).
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for iodine. EFSA J. 2014, 12, 3660. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for selenium. EFSA J. 2014, 12, 3846. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for zinc. EFSA J. 2014, 12, 3844. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for copper. EFSA J. 2015, 13, 4253. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for magnesium. EFSA J. 2015, 13, 4186. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for phosphorus. EFSA J. 2015, 13, 4185. [Google Scholar] [CrossRef]
- European Food Safety Authority. Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J. 2015, 13, 3982. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific opinion on dietary reference values for potassium. EFSA J. 2016, 14, 4592. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific opinion on Dietary Reference Values for sodium. EFSA J. 2019. Available online: https://www.efsa.europa.eu/sites/default/files/consultation/consultation/190403_Draft_opinion_DRV_for_sodium.pdf (accessed on 24 May 2019).
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for protein. EFSA J. 2012, 10, 2557. [Google Scholar] [CrossRef]
- World Health Organization. Protein and Amino Acid Requirements in Human Nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation; WHO Technical Report Series 935; WHO: Geneva, Switzerland, 2007; pp. 1–270. Available online: https://apps.who.int/iris/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf?sequence=1&isAllowed=y (accessed on 12 January 2019).
- Food and Agriculture Organization of the United Nations. Dietary protein quality evaluation in human nutrition: Report of an FAO Expert Consultation. FAO Food Nutr. Pap. 2013, 92, 1–66. Available online: http://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf (accessed on 24 February 2019).
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice Hall Pearson: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Rosas-Romero, Z.G.; Ramirez-Suarez, J.C.; Pacheco-Aguilar, R.; Lugo-Sánchez, M.E.; Carvallo-Ruiz, G.; García-Sánchez, G. Partial characterization of an effluent produced by cooking of Jumbo squid (Dosidicus gigas) mantle muscle. Bioresour. Technol. 2010, 101, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Kugino, M.; Kugino, K. Microstructural and rheological properties of cooked squid mantle. J. Food Sci. 1994, 59, 792–796. [Google Scholar] [CrossRef]
- Costa, S.; Afonso, C.; Bandarra, N.M.; Gueifão, S.; Castanheira, I.; Carvalho, M.L.; Cardoso, C.; Nunes, M.L. The emerging farmed fish species meagre (Argyrosomus regius): How culinary treatment affects nutrients and contaminants concentration and associated benefit-risk balance. Food Chem. Toxicol. 2013, 60, 277–285. [Google Scholar] [CrossRef]
- Rosa, R.; Bandarra, N.M.; Nunes, M.L. Nutritional quality of African catfish Clarias gariepinus (Burchell 1822): A positive criterion for the future development of the European production of Siluroidei. Int. J. Food Sci. Technol. 2007, 42, 342–351. [Google Scholar] [CrossRef]
- Badiani, A.; Stipa, S.; Bitossi, F.; Pirini, M.; Bonaldo, A.; Gatta, P.P.; Rotolo, M.; Testi, S. True retention of nutrients upon household cooking of farmed portion-size European sea bass (Dicentrarchus labrax L.). LWT-Food Sci. Technol. 2013, 50, 72–77. [Google Scholar] [CrossRef]
- Fernandes, C.E.; Vasconcelos, M.A.S.; Ribeiro, M.A.; Sarubbo, L.A.; Andrade, S.A.C.; Filho, A.B.M. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef]
- Chen, C.; Xia, S.; He, J.; Lu, G.; Xie, Z.; Han, H. Roles of taurine in cognitive function of physiology, pathologies and toxication. Life Sci. 2019, 231, 116584. [Google Scholar] [CrossRef] [PubMed]
- Erkan, N. Iodine content of cooked and processed fish in Turkey. Int. J. Food Sci. Technol. 2011, 46, 1734–1738. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. OJEU 2006, L364, 5–24. [Google Scholar]
- European Union. Commission Regulation (EU) No. 2015/1005 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of lead in certain foodstuffs. OJEU 2015, L161, 9–13. [Google Scholar]
- Raimundo, J.; Vale, C.; Canário, J.; Branco, V.; Moura, I. Relations between mercury, methyl-mercury and selenium in tissues of Octopus vulgaris from the Portuguese Coast. Environ. Pollut. 2010, 158, 2094–2100. [Google Scholar] [CrossRef]
Elements | Technique | DL | Proficiency Test or CRM | Certified 1 | Present work 2 |
---|---|---|---|---|---|
Proximate composition (g/100 g) | |||||
Moisture | Drying | n.a. | FAPAS Test 01120 | 66.64 ± 0.47 | 66.44 ± 0.12 |
Ash | Incineration | 0.16 | 2.12 ± 0.08 | 2.13 ± 0.01 | |
Nitrogen | Combustion | 0.0004 | 2.17 ± 0.04 | 2.20 ± 0.00 | |
Fat | Soxhlet extraction | 0.1 | 15.53 ± 0.47 | 15.88 ± 0.40 | |
Fatty acids (g/100 g) | |||||
14:0 16:0 16:1 18:0 18:1 18:2n-6 18:3n-3 20:5n-3 22:5n-3 22:6n-3 | GC–FID | 4 × 10−6–10 × 10−6 | SRM-1946 | 0.316 ± 0.009 1.22 ± 0.04 0.816 ± 0.026 0.263 ± 0.011 2.64 ± 0.08 0.348 ± 0.023 0.221 ± 0.025 0.296 ± 0.019 0.335 ± 0.026 0.92 ± 0.10 | 0.238 ± 0.006 1.14 ± 0.04 0.735 ± 0.023 0.260 ± 0.005 2.39 ± 0.06 0.338 ± 0.009 0.200 ± 0.005 0.304 ± 0.009 0.323 ± 0.024 0.93 ± 0.10 |
Macroelements (mg/kg) | |||||
Magnesium | FAAS | 0.02 | Dorm-4 | 910 ± 80 | 835 ± 12 |
Potassium | FAAS | 0.01 | Dorm-4 | 15500 ± 1000 | 14500 ± 495 |
Sodium | FAAS | 0.09 | FAPAS Test 01120 | 0.60 ± 0.03 | 0.55 ± 0.02 |
Phosphorus | MAS | 0.01 | n.d. | n.d. | n.d. |
Microelements (mg/kg) | |||||
Copper | FAAS | 0.02 | Dorm-4 | 15.7 ± 0.5 | 15.4 ± 0.7 |
Zinc | FAAS | 0.06 | Dorm-4 | 51.6 ± 2.8 | 48.4 ± 1.0 |
Selenium | ICP-MS | 6.4 × 10−3 | ERM®-BB422 | 1.33 ± 0.13 | 1.20 ± 0.02 |
Iodine | ICP-MS | 7.8 × 10−3 | n.d. | n.d | Recovery = 111% |
Toxic elements (mg/kg) | |||||
Cadmium | GFAAS | 0.002 | Dorm-4 | 0.299 ± 0.018 | 0.298 ± 0.011 |
Lead | GFAAS | 0.02 | Dorm-4 | 0.404 ± 0.062 | 0.412 ± 0.037 |
Mercury | AAS | 0.004 | Dorm-4 | 0.412 ± 0.036 | 0.407 ± 0.049 |
Amino Acid (g/100 g) | Detection Limit | Certified Value Average ± U 1 | Analyzed Values Average ± SD 2 |
---|---|---|---|
Alanine | 1.13 × 10−3 | 2.12 ± 0.96 | 2.02 ± 0.01 |
Arginine | 2.49 × 10−3 | 2.26 ± 0.52 | 2.15 ± 0.19 |
Aspartate | 2.68 × 10−3 | 5.29 ± 0.28 | 5.00 ± 0.18 |
Cysteine | 3.18 × 10−3 | 0.48 ± 0.14 | 0.32 ± 0.07 |
Glutamate | 2.82 × 10−3 | 14.3 ± 2.10 | 14.64 ± 0.28 |
Glycine | 1.01 × 10−3 | 1.23 ± 0.13 | 1.32 ± 0.08 |
Histidine | 2.78 × 10−3 | 1.73 ± 0.17 | 1.52 ± 0.07 |
Isoleucine | 0.85 × 10−3 | 3.00 ± 0.61 | 2.56 ± 0.04 |
Leucine | 1.23 × 10−3 | 6.16 ± 0.88 | 5.78 ± 0.05 |
Lysine | 3.79 × 10−3 | 4.78 ± 0.77 | 4.07 ± 0.44 |
Methionine | 2.02 × 10−3 | 1.71 ± 0.28 | 1.66 ± 0.03 |
Phenylalanine | 3.08 × 10−3 | 3.48 ± 0.50 | 3.67 ± 0.28 |
Proline | 0.82 × 10−3 | 6.64 ± 0.73 | 6.36 ± 0.19 |
Serine | 1.00 × 10−3 | 3.80 ± 0.35 | 3.16 ± 0.06 |
Threonine | 1.11 × 10−3 | 2.76 ± 0.54 | 2.28 ± 0.03 |
Tryptophan | 2.53 × 10−3 | 0.84 ± 0.29 | 0.51 ± 0.01 |
Tyrosine | 3.94 × 10−3 | 3.16 ± 0.71 | 3.36 ± 0.26 |
Valine | 0.73 × 10−3 | 3.67 ± 0.98 | 3.28 ± 0.04 |
Proximate Composition (g/100 g) | Raw 1 | Boiled 1 | TR (%) |
---|---|---|---|
Moisture | 80.3 ± 1.0 a | 72.8 ± 1.1 b | 47.8 |
Ash | 1.72 ± 0.07 | 1.60 ± 0.04 | 49.2 |
Protein | 16.9 ± 1.1 a | 25.2 ± 0.9 b | 78.8 |
Fat | 0.43 ± 0.03 a | 0.72 ± 0.03 b | 89.5 |
Energy value (kcal/100 g) 2 | 81 ± 5 a | 120 ± 4 b |
Fatty Acids (mg/100 g) | Raw 1 | Boiled 1 | TR (%) | |
---|---|---|---|---|
Miristic | 14:0 | 3.40 ± 0.92 a | 5.85 ± 1.08 b | 90.9 |
Palmitic | 16:0 | 72.91 ± 5.08 a | 128.77 ± 8.16 b | 93.2 |
Stearic | 18:0 | 35.26 ± 5.81 a | 55.18 ± 4.90 b | 82.6 |
Total saturated | ΣSFA | 125.74 ± 12.70 a | 213.20 ± 9.23 b | 89.5 |
Vaccenic | 18:1n-7 | 7.28 ± 0.52 a | 13.92 ± 1.36 b | 100.9 |
Oleic | 18:1n-9 | 9.58 ± 2.24 a | 17.50 ± 3.33 b | 96.4 |
11-Eicosenoic | 20:1n-9 | 14.99 ± 2.13 a | 24.00 ± 1.23 b | 84.5 |
Total monounsaturated | ΣMUFA | 47.68 ± 4.83 a | 83.24 ± 0.98 b | 92.1 |
Linoleic | 18:2n-6 | 1.65 ± 0.20 a | 2.89 ± 0.32 b | 92.2 |
Arachidonic | 20:4n-6 | 29.00 ± 3.78 a | 51.20 ± 3.36 b | 93.2 |
Eicosapentaenoic (EPA) | 20:5n-3 | 77.20 ± 3.97 a | 131.89 ± 11.46 b | 90.2 |
Docosapentaenoic | 22:5n-3 | 6.97 ± 0.92 a | 11.53 ± 0.63 b | 87.3 |
Docosahexaenoic (DHA) | 22:6n-3 | 100.43 ± 4.96 a | 169.50 ± 5.07 b | 89.1 |
Total polyunsaturated | ΣPUFA | 252.18 ± 17.59 a | 425.05 ± 22.15 b | 89.0 |
EPA+DHA | 177.63 ± 8.40 a | 301.39 ± 15.74 b | 89.5 | |
Total omega 3 | ΣPUFAn-3 | 210.10 ± 11.31 a | 354.02 ± 20.98 b | 88.9 |
Total omega 6 | ΣPUFAn-6 | 40.34 ± 5.79 a | 68.63 ± 4.17 b | 89.8 |
PUFAn-3/PUFAn-6 | 5.25 ± 0.46 | 5.17 ± 0.37 | ----- | |
Thrombogenic index | TI | 0.16 ± 0.01 | 0.17 ± 0.00 | ----- |
Atherogenic index | AI | 0.29 ± 0.01 | 0.30 ± 0.02 | ----- |
Hypocholesterolemic to hypercholesterolemic ratio | h/H | 2.95 ± 0.08 | 2.86 ± 0.10 | ----- |
Amino Acid | Raw 1 | Boiled 1 | TR (%) |
---|---|---|---|
mg/100 g | |||
Indispensable (IAA) 2 | |||
Histidine | 275.5 ± 15.1 a | 441.2 ± 41.8 b | 84.5 |
Isoleucine | 479.3 ± 25.4 a | 897.3 ± 115.8 b | 98.8 |
Leucine | 940.1 ± 60.9 a | 1613.4 ± 126.9 b | 90.6 |
Lysine | 660.5 ± 5.7 a | 1238.1 ± 100.3 b | 98.9 |
Methionine | 347.8 ± 18.6 a | 568.5 ± 42.9 b | 86.3 |
Phenylalanine | 544.8 ± 38.8 a | 861.1 ± 72.1 b | 83.4 |
Threonine | 495.4 ± 26.0 a | 798.3 ± 41.5 b | 85.0 |
Tryptophan | 127.1 ± 8.6 a | 179.7 ± 9.7 b | 74.6 |
Valine | 454.7 ± 25.2 a | 828.2 ± 96.6 b | 96.1 |
∑IAA | 4104.9 ± 584.3 a | 7425.8 ± 632.9 b | |
Dispensable (DAA) 2 | |||
Alanine | 729.6 ± 53.7 a | 1116.7 ± 81.0 b | 80.8 |
Arginine * | 1049.6 ± 26.3 a | 1594.3 ± 154.9 b | 80.2 |
Aspartate | 1325.0 ± 66.5 a | 2239.7 ± 136.6 b | 89.2 |
Cystine + Cysteine * | 72.8 ± 11.6 a | 111.0 ± 5.3 b | 79.7 |
Glutamate | 1971.5 ± 84.7 a | 3257.1 ± 206.3 b | 87.2 |
Glycine * | 1179.5 ± 302.1 | 1467.6 ± 163.5 | 65.7 |
Proline * | 698.7 ± 114.9 a | 957.8 ± 54.8 b | 72.3 |
Serine | 615.6 ± 13.5 a | 904.4 ± 41.3 b | 77.5 |
Taurine * | 1225.0 ± 142.9 | 1007.6 ± 124.8 | 43.4 |
Tyrosine * | 539.5 ± 40.3 a | 841.7 ± 70.2 b | 82.3 |
∑DAA | 9407.0 ± 371.6 a | 13496.9 ± 973.8 b | |
∑AA | 13511.9 ± 714.6 a | 20922.7 ± 1606.7 b | |
∑IAA/∑AA (%) | 30.3 ± 3.2 a | 35.5 ± 0.3 b |
Raw 1 | Boiled 1 | TR (%) | |
---|---|---|---|
Macroelements (mg/100 g) | |||
Mg | 57.4 ± 2.5 | 56.1 ± 2.4 | 51.6 |
P | 162.2 ± 6.5 a | 205.2 ± 13.3 b | 66.8 |
K | 262.2 ± 24.1 | 241.7 ± 27.9 | 48.6 |
Na | 393.3 ± 41.6 | 332.5 ± 24.3 | 44.6 |
Microelements (mg/kg) | |||
I | 0.08 ± 0.01 a | 0.12 ± 0.01 b | 86.8 |
Se | 0.35 ± 0.06 | 0.35 ± 0.01 | 53.5 |
Cu | 1.8 ± 0.4 | 2.7 ± 0.6 | 80.5 |
Zn | 12.6 ± 0.6 a | 16.6 ± 0.8 b | 69.8 |
Toxic elements (mg/kg) | |||
Hg | 0.04 ± 0.01 a | 0.08 ± 0.02 b | 95.7 |
Cd | 0.03 ± 0.02 | 0.02 ± 0.00 | 42.5 |
Pb | <0.06 * | 0.10 ± 0.03 | ---- |
Amino Acid | Concentration (mg/g Protein) | AA Score (%) 1 | |
---|---|---|---|
FAO Standard * | Boiled Octopus 1 | ||
Histidine | 15 | 17.5 ± 1.9 | 116.8 ± 12.4 |
Isoleucine | 30 | 35.6 ± 4.6 | 118.7 ± 15.2 |
Leucine | 59 | 64.1 ± 5.7 | 108.6 ± 9.6 |
Lysine | 45 | 49.2 ± 4.1 | 109.2 ± 9.1 |
Methionine + Cysteine | 22 | 27.0 ± 2.3 | 122.5 ± 10.6 |
Phenylalanine + Tyrosine | 38 | 67.7 ± 6.6 | 178.0 ± 17.4 |
Threonine | 23 | 31.7 ± 2.2 | 137.9 ± 9.6 |
Tryptophan | 6 | 7.1 ± 0.6 | 119.0 ± 9.2 |
Valine | 39 | 32.9 ± 3.8 | 84.3 ± 9.8 |
Adult | DRVs 1: AI or PRI (mg/day) 2 | Nutritional Contribution (%) | |
---|---|---|---|
Macroelements | |||
Mg | Men | 350 3 | 24.0 ± 1.0 |
Women | 300 3 | 28.0 ± 1.2 | |
P | Men/Women | 550 4 | 56.0 ± 3.6 |
K | Men/Women | 3500 5 | 10.4 ± 1.2 |
Na | Men/Women | 2000 6 | 24.9 ± 1.8 |
Microelements | |||
Cu | Men | 1.6 7 | 25.5 ± 5.3 |
Women | 1.3 7 | 31. 3± 6.5 | |
Zn | Men | 9.4 8 | 26.5 ± 1.4 |
Women | 7.5 8 | 33.2 ± 1.7 | |
Se | Men/Women | 0.07 9 | 75.6 ± 2.9 |
I | Men/Women | 0.15 10 | 12.4 ± 1.1 |
n-3 fatty acids | |||
EPA+DHA | Men/Women | 250 11 | 180.8 ± 9.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, H.; Muniz, J.A.; Bandarra, N.M.; Castanheira, I.; Coelho, I.R.; Delgado, I.; Gonçalves, S.; Lourenço, H.M.; Motta, C.; Duarte, M.P.; et al. Effects of Industrial Boiling on the Nutritional Profile of Common Octopus (Octopus vulgaris). Foods 2019, 8, 411. https://doi.org/10.3390/foods8090411
Oliveira H, Muniz JA, Bandarra NM, Castanheira I, Coelho IR, Delgado I, Gonçalves S, Lourenço HM, Motta C, Duarte MP, et al. Effects of Industrial Boiling on the Nutritional Profile of Common Octopus (Octopus vulgaris). Foods. 2019; 8(9):411. https://doi.org/10.3390/foods8090411
Chicago/Turabian StyleOliveira, Helena, José António Muniz, Narcisa Maria Bandarra, Isabel Castanheira, Inês Ribeiro Coelho, Inês Delgado, Susana Gonçalves, Helena Maria Lourenço, Carla Motta, Maria Paula Duarte, and et al. 2019. "Effects of Industrial Boiling on the Nutritional Profile of Common Octopus (Octopus vulgaris)" Foods 8, no. 9: 411. https://doi.org/10.3390/foods8090411
APA StyleOliveira, H., Muniz, J. A., Bandarra, N. M., Castanheira, I., Coelho, I. R., Delgado, I., Gonçalves, S., Lourenço, H. M., Motta, C., Duarte, M. P., Nunes, M. L., & Gonçalves, A. (2019). Effects of Industrial Boiling on the Nutritional Profile of Common Octopus (Octopus vulgaris). Foods, 8(9), 411. https://doi.org/10.3390/foods8090411