Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals and Reagents
2.2. Juice Preparation and Characterization of the Phenolic Content
2.3. Experimental Design
2.4. Urine Samples Collection, Processing, and Analysis by UHPLC-ESI-MS/MS
2.5. Statistical Analysis
3. Results and Discussion
3.1. Flavanone Content of Juices
3.2. Qualitative Analysis of Urine Metabolites of Flavanones from Maqui-Citrus Juice
3.3. Quantification of Flavanone Metabolites in Urine Samples
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Avena, N.M.; Rada, P.; Hoebel, B.G. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 2008, 32, 20–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hone-Blanchet, A.; Fecteau, S. Overlap of food addiction and substance use disorders definitions: Analysis of animal and human studies. Neuropharmacology 2014, 85, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Markus, C.R.; Rogers, P.J.; Brouns, F.; Schepers, R. Eating dependence and weight gain; no human evidence for a ‘sugar-addiction’ model of overweight. Appetite 2017, 114, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.G.; Robbins, T.W. The neurobiological underpinnings of obesity and binge eating: A rationale for adopting the food addiction model. Biol. Psychiatry 2013, 73, 804–810. [Google Scholar] [CrossRef]
- Malik, V.S.; Schulze, M.B.; Hu, F.B. Intake of sugar-sweetened beverages and weight gain: A systematic review. Am. J. Clin. Nutr. 2006, 84, 274–288. [Google Scholar] [CrossRef]
- Palmer, J.R.; Boggs, D.A.; Krishnan, S.; Hu, F.B.; Singer, M.; Rosenberg, L. Sugar-Sweetened Beverages and Incidence of Type 2 Diabetes Mellitus in African American Women. Arch. Intern. Med. 2008, 168, 1487–1492. [Google Scholar] [CrossRef]
- Schulze, M.B.; Manson, J.E.; Ludwig, D.S.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Sugar-Sweetened Beverages, Weight Gain, and Incidence of Type 2 Diabetes in Young and Middle-Aged Women. JAMA 2004, 292, 927–934. [Google Scholar] [CrossRef]
- Bernstein, A.M.; de Koning, L.; Flint, A.J.; Rexrode, K.M.; Willett, W.C. Soda consumption and the risk of stroke in men and women. Am. J. Clin. Nutr. 2012, 95, 1190–1199. [Google Scholar] [CrossRef]
- Reedy, J.; Krebs-Smith, S.M. Dietary sources of energy, solid fats, and added sugars among children and adolescents in the United States. J. Am. Diet. Assoc. 2010, 110, 1477–1484. [Google Scholar] [CrossRef] [Green Version]
- Amiot, M.J.; Riva, C.; Vinet, A. Effects of dietary polyphenols on metabolic syndrome features in humans: A systematic review. Obes. Rev. 2016, 17, 573–586. [Google Scholar] [CrossRef]
- Chen, L.; Cao, H.; Xiao, J. Polyphenols. In Polyphenols: Properties, Recovery, and Applications; Woodhead Publishing: Duxford, UK, 2018; pp. 45–67. [Google Scholar] [CrossRef]
- Breda, J.; Jewell, J.; Keller, A. The Importance of the World Health Organization Sugar Guidelines for Dental Health and Obesity Prevention. Caries Res. 2019, 53, 149–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girones-Vilaplana, A.; Mena, P.; Moreno, D.A.; Garcia-Viguera, C. Evaluation of sensorial, phytochemical and biological properties of new isotonic beverages enriched with lemon and berries during shelf life. J. Sci. Food Agric. 2014, 94, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Sloan, A.E. Top 10 Functional Food Trends. Food Technol. 2018, 72, 26–43. [Google Scholar]
- Törrönen, R.; McDougall, G.J.; Dobson, G.; Stewart, D.; Hellström, J.; Mattila, P.; Pihlava, J.-M.; Koskela, A.; Karjalainen, R. Fortification of blackcurrant juice with crowberry: Impact on polyphenol composition, urinary phenolic metabolites, and postprandial glycemic response in healthy subjects. J. Funct. Foods 2012, 4, 746–756. [Google Scholar] [CrossRef]
- Morand, C.; Dubray, C.; Milenkovic, D.; Lioger, D.; Martin, J.F.; Scalbert, A.; Mazur, A. Hesperidin contributes to the vascular protective effects of orange juice: A randomized crossover study in healthy volunteers. Am. J. Clin. Nutr. 2011, 93, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Napoleone, E.; Cutrone, A.; Zurlo, F.; Di Castelnuovo, A.; D’Imperio, M.; Giordano, L.; De Curtis, A.; Iacoviello, L.; Rotilio, D.; Cerletti, C.; et al. Both red and blond orange juice intake decreases the procoagulant activity of whole blood in healthy volunteers. Thromb. Res. 2013, 132, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Molina, E.; Dominguez-Perles, R.; Moreno, D.A.; Garcia-Viguera, C. Natural bioactive compounds of Citrus limon for food and health. J. Pharm. Biomed. Anal. 2010, 51, 327–345. [Google Scholar] [CrossRef]
- Gironés-Vilaplana, A.; Mena, P.; García-Viguera, C.; Moreno, D.A. A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. LWT-Food Sci. Technol. 2012, 47, 279–286. [Google Scholar] [CrossRef]
- Medina, S.; Dominguez-Perles, R.; Garcia-Viguera, C.; Cejuela-Anta, R.; Martinez-Sanz, J.M.; Ferreres, F.; Gil-Izquierdo, A. Physical activity increases the urinary excretion of flavanones after dietary aronia-citrus juice intake in triathletes. Food Chem. 2012, 135, 2133–2137. [Google Scholar] [CrossRef]
- Réveillon, T.; Rota, T.; Chauvet, É.; Lecerf, A.; Sentis, A. Repeatable inter-individual variation in the thermal sensitivity of metabolic rate. Oikos 2019, 128. [Google Scholar] [CrossRef] [Green Version]
- Hollman, P.C.; de Vries, J.H.; van Leeuwen, S.D.; Mengelers, M.J.; Katan, M.B. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 1995, 62, 1276–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daher, M.I.; Matta, J.M.; Abdel Nour, A.M. Non-nutritive sweeteners and type 2 diabetes: Should we ring the bell? Diabetes Res. Clin. Pract. 2019, 155, 107786. [Google Scholar] [CrossRef] [PubMed]
Beverages | Flavanones Z (mg/100 mL) | ||||
---|---|---|---|---|---|
N-Hexoside Derivated | E-Rutinoside | N-Rutinoside | H-Rutinoside | Total | |
Stevia | 0.15 ± 0.02 | 0.32 ± 0.04 | 1.30 ± 0.01 | 4.87 ± 0.01 | 6.64 ± 0.2 |
Sucralose | 0.14 ± 0.02 | 0.32 ± 0.01 | 1.31 ± 0.01 | 4.86 ± 0.01 | 6.63 ± 0.1 |
Sucrose | 0.14 ± 0.01 | 0.31 ± 0.03 | 1.31 ± 0.01 | 4.88 ± 0.01 | 6.64 ± 0.1 |
p-value | >0.05 N.s. | >0.05 N.s. | >0.05 N.s. | >0.05 N.s. | >0.05 N.s. |
Compound | R.T. (min) | Precursor Ion | Product Ion | Fragmentation (V) | C.E. (V) | Polarity |
---|---|---|---|---|---|---|
Eriodyctiol metabolites | ||||||
Eriodyctiol (E) | 6.49 | 287.0 | 151.0 | 70 | 10 | Negative |
Eriocitrin | N.f. | 449.0 | 287.0 | 70 | 10 | Negative |
E-glucuronide | 4.87 | 463.0 | 287.0 | 70 | 10 | Negative |
E-di-glucuronide | N.f. | 639.0 | 287.0 | 70 | 10 | Negative |
E-sulfate | 5.53 | 367.0 | 287.0 | 70 | 10 | Negative |
E-di-sulfate | 4.24 | 447.0 | 287.0 | 70 | 10 | Negative |
E-glucuronide-sulfate | N.f. | 543.0 | 287.0 | 70 | 10 | Negative |
Hesperetine metabolites | ||||||
Hesperetine (H) | 7.30 | 302.0 | 151.0 | 70 | 20 | Negative |
Hesperidin | N.f. | 609.0 | 302.0 | 70 | 20 | Negative |
H-glucuronide | N.f. | 478.0 | 302.0 | 70 | 20 | Negative |
H-di-glucuronide | N.f. | 664.0 | 302.0 | 70 | 20 | Negative |
H-sulfate | N.f. | 382.0 | 302.0 | 70 | 20 | Negative |
H-di-sulfate | N.f. | 462.0 | 302.0 | 70 | 20 | Negative |
H-glucuronide-sulfate | N.f. | 558.0 | 302.0 | 70 | 20 | Negative |
Homoeriodyctiol metabolites | ||||||
Homoeriodyctiol (HE) | 7.30 | 301.0 | 151.0 | 110 | 15 | Negative |
HE-glucuronide | 5.50 | 477.0 | 301.0 | 110 | 15 | Negative |
HE-di-glucuronide | 4.22 | 653.0 | 301.0 | 110 | 15 | Negative |
HE-sulfate | 5.90 | 381.0 | 301.0 | 110 | 15 | Negative |
HE-di-sulfate | N.f. | 461.0 | 301.0 | 110 | 15 | Negative |
HE-glucuronide-sulfate | 4.67 | 557.0 | 301.0 | 110 | 15 | Negative |
Naringenin (N) | 7.26 | 271.0 | 119.0 | 130 | 20 | Negative |
N-glucoside | 4.63 | 433.0 | 271.0 | 130 | 20 | Negative |
Narirutin | 4.86 | 579.0 | 271.0 | 130 | 20 | Negative |
N-glucuronide | 5.07 | 433.0 | 271.0 | 130 | 20 | Negative |
N-di-glucuronide | 4.09 | 623.0 | 271.0 | 130 | 20 | Negative |
N-sulfate | 5.90 | 351.0 | 271.0 | 130 | 20 | Negative |
N-di-sulfate | N.f. | 431.0 | 271.0 | 130 | 20 | Negative |
N-glucuronide-sulfate | 4.87 | 527.0 | 271.0 | 130 | 20 | Negative |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agulló, V.; Domínguez-Perles, R.; Moreno, D.A.; Zafrilla, P.; García-Viguera, C. Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage. Foods 2020, 9, 41. https://doi.org/10.3390/foods9010041
Agulló V, Domínguez-Perles R, Moreno DA, Zafrilla P, García-Viguera C. Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage. Foods. 2020; 9(1):41. https://doi.org/10.3390/foods9010041
Chicago/Turabian StyleAgulló, Vicente, Raúl Domínguez-Perles, Diego A. Moreno, Pilar Zafrilla, and Cristina García-Viguera. 2020. "Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage" Foods 9, no. 1: 41. https://doi.org/10.3390/foods9010041
APA StyleAgulló, V., Domínguez-Perles, R., Moreno, D. A., Zafrilla, P., & García-Viguera, C. (2020). Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage. Foods, 9(1), 41. https://doi.org/10.3390/foods9010041