A Rat Study to Evaluate the Protein Quality of Three Green Microalgal Species and the Impact of Mechanical Cell Wall Disruption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Production of Three Green Microalgal Species
2.2. Mechanical Cell Rupture of Microalgae Biomass
2.3. Proximate Analysis of Microalgal Biomass and Casein Samples
2.4. Amino Acid Analysis of Microalgae Samples and Casein
2.5. Animal Study
2.6. Protein Analysis of Diet and Fecal Samples
2.7. Protein Digestibility and Protein Digestibility-Corrected Amino Acid Score
2.8. In Vitro Protein Digestibility and In Vitro Protein Digestibility-Corrected Amino Acid Score
2.9. Data Analysis
3. Results
3.1. Nutrient Composition of Three Microalgal Species
3.2. Effect of Mechanical Cell Rupture on the Nutrient Content of Three Microalgae Species
3.3. Amino Acid Composition of Three Microalgal Species
3.4. Impact of Mechanical Cell Rupture on the Amino Acid Content of Three Microalgal Species
3.5. Amino Acid Score of Three Microalgae Species and the Impact of Mechanical Cell Rupture
3.6. In Vivo and In Vitro Protein Digestibility of Three Microalgal Species
3.7. Impact of Mechanical Cell Rupture on the in Vivo and in Vitro Protein Digestibility of Microalgal Species
3.8. PDCAAS of Three Microalgal Species and the Impact of Mechanical Cell Rupture
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, C.L. Rising consumption of meat and milk in developing countries has created a new food revolution. J. Nutr. 2003, 133 (Suppl. 2), 3907S–3910S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Murphy, S.P.; Allen, L.H. Nutritional importance of animal source foods. J. Nutr. 2003, 133 (Suppl. 2), 3932S–3935S. [Google Scholar] [CrossRef] [Green Version]
- Randolph, T.F.; Schelling, E.; Grace, D.; Nicholson, C.F.; Leroy, J.L.; Cole, D.C.; Demment, M.W.; Omore, A.; Zinsstag, J.; Ruel, M. Invited review: Role of livestock in human nutrition and health for poverty reduction in developing countries. J. Anim. Sci. 2007, 85, 2788–2800. [Google Scholar] [CrossRef] [Green Version]
- Gerber, P.J.; Mottet, A.; Opio, C.I.; Falcucci, A.; Teillard, F. Environmental impacts of beef production: Review of challenges and perspectives for durability. Meat Sci. 2015, 109, 2–12. [Google Scholar] [CrossRef]
- Herrero, M.; Havlik, P.; Valin, H.; Notenbaert, A.; Rufino, M.C.; Thornton, P.K.; Blummel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef] [Green Version]
- Van Krimpen, M.M.; Bikker, P.; Van der Meer, I.M.; Van der Peet-Schwering, C.M.C.; Vereijken, J.M. Cultivation, Processing and Nutritional Aspects for Pigs and Poultry of European Protein Sources as Alternatives for Imported Soybean Products; Wageningen UR Livestock Research: Lelystad, The Netherlands, 2013; p. 10. [Google Scholar]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.-T.; Show, P.-L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Cardozo, K.H.M.; Guaratini, T.; Barros, M.P.; Falcão, V.R.; Tonon, A.P.; Lopes, N.P.; Campos, S.; Torres, M.A.; Souza, A.O.; Colepicolo, P.; et al. Metabolites from algae with economical impact. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 146, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, S.M.; Patelakis, S.J.J.; Whitney-Lalonde, C.G.; Garrison, L.L.; Wall, C.L.; MacQuarrie, S.P. Nutrient composition and protein quality of microalgae meals produced from the marine prymnesiophyte Pavlova sp. 459 mass-cultivated in enclosed photobioreactors for potential use in salmonid aquafeeds. J. Appl. Phycol. 2020, 32, 299–318. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Whitney, C.G.; MacPherson, M.J.; Bhatti, S.; Banskota, A.H.; Stefanova, R.; McGinn, P.J. Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Res. 2015, 11, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol. 2015, 27, 1109–1119. [Google Scholar] [CrossRef] [Green Version]
- Anele, U.Y.; Yang, W.Z.; McGinn, P.J.; Tibbetts, S.M.; McAllister, T.A. Ruminal in vitro gas production, dry matter digestibility, methane abatement potential and fatty acid biohydrogenation of six species of microalgae. Can. J. Anim. Sci. 2016, 96, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Tibbetts, S.M.; MacPherson, T.; McGinn, P.J.; Fredeen, A.H. In vitro digestion of microalgal biomass from freshwater species isolated in Alberta, Canada for monogastric and ruminant animal feed applications. Algal Res. 2016, 19, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Tibbetts, S.M.; Fredeen, A.H. Nutritional evaluation of whole and lipid-extracted biomass of the microalga Scenedesmus sp. AMDD for animal feeds: Simulated ruminal fermentation and in vitro monogastric digestibility. Curr. Biotechnol. 2017, 6, 264–272. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Mann, J.; Dumas, A. Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels. Aquaculture 2017, 481, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Wild, K.J.; Steingass, H.; Rodehutscord, M. Variability in nutrient composition and in vitro crude protein digestibility of 16 microalgae products. J. Anim. Physiol Anim. Nutr. (Berl) 2018, 102, 1306–1319. [Google Scholar] [CrossRef]
- Kose, A.; Ozen, M.O.; Elibol, M.; Oncel, S.S. Investigation of in vitro digestibility of dietary microalga Chlorella vulgaris and cyanobacterium Spirulina platensis as a nutritional supplement. 3 Biotech. 2017, 7, 170. [Google Scholar] [CrossRef]
- Skrede, A.; Mydland, L.T.; Ahlstrøm, Ø.; Reitan, K.I.; Gislerød, H.R.; Øverland, M. Evaluation of microalgae as sources of digestible nutrients for monogastric animals. J. Anim. Feed Sci. 2011, 20, 131–142. [Google Scholar] [CrossRef]
- MacDougall, K.M.; McNichol, J.; McGinn, P.J.; O’Leary, S.J.B.; Melanson, J.E. Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography–high-resolution mass spectrometry. Anal. Bioanal. Chem. 2011, 401, 2609–2616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Sukenik, A.; Zmora, O.; Carmeli, Y. Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 1993, 117, 313–326. [Google Scholar] [CrossRef]
- Fernandes, B.; Dragone, G.; Abreu, A.P.; Geada, P.; Teixeira, J.; Vicente, A. Starch determination in Chlorella vulgaris—A comparison between acid and enzymatic methods. J. Appl. Phycol. 2012, 24, 1203–1208. [Google Scholar] [CrossRef] [Green Version]
- White, J.A.; Hart, R.J.; Fry, J.C. An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. J. Autom. Chem. 1986, 8, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Hirs, C.H.W. [19] Performic acid oxidation. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1967; Volume 11, pp. 197–199. [Google Scholar]
- FAO. Dietary Protein Quality Evaluation in Human nuTrition: Report of an FAO Expert Consultation. FAO Food and Nutrition Paper no. 92; Food and Agriculture Organization: Rome, Italy, 2013. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists International 17th Edition. Section 45.3.06 (AOAC Officeical Method 991.29, True Protien Digestibility of Foods and Food Ingredients, Rat Bioaassay); Journal of AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Nosworthy, M.G.; Franczyk, A.J.; Medina, G.; Neufeld, J.; Appah, P.; Utioh, A.; Frohlich, P.; House, J.D. Effect of Processing on the in Vitro and in Vivo Protein Quality of Yellow and Green Split Peas (Pisum sativum). J. Agric. Food Chem. 2017, 65, 7790–7796. [Google Scholar] [CrossRef]
- Cabuk, B.; Nosworthy, M.G.; Stone, A.K.; Korber, D.R.; Tanaka, T.; House, J.D.; Nickerson, M.T. Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate. Food Technol. Biotechnol. 2018, 56, 257–264. [Google Scholar] [CrossRef]
- McDonough, F.E.; Steinke, F.H.; Sarwar, G.; Eggum, B.O.; Bressani, R.; Huth, P.J.; Barbeau, W.E.; Mitchell, G.V.; Phillips, J.G. In vivo rat assay for true protein digestibility: Collaborative study. J. Assoc. Off. Anal. Chem. 1990, 73, 801–805. [Google Scholar] [CrossRef]
- Sarwar, G. The protein digestibility-corrected amino acid score method overestimates quality of proteins containing antinutritional factors and of poorly digestible proteins supplemented with limiting amino acids in rats. J. Nutr. 1997, 127, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Gilani, G.S.; Sepehr, E. Protein digestibility and quality in products containing antinutritional factors are adversely affected by old age in rats. J. Nutr. 2003, 133, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Nosworthy, M.G.; Neufeld, J.; Frohlich, P.; Young, G.; Malcolmson, L.; House, J.D. Determination of the protein quality of cooked Canadian pulses. Food Sci. Nutr. 2017, 5, 896–903. [Google Scholar] [CrossRef] [PubMed]
- York, J.J.; Clemens, E.T. Casein, red meat and soyprotein effects on nutrient digestibility and the colonic microstructure of tghe laboratory rat. Nutr. Res. 1998, 18, 1057–1066. [Google Scholar] [CrossRef]
- Fleddermann, M.; Fechner, A.; Rossler, A.; Bahr, M.; Pastor, A.; Liebert, F.; Jahreis, G. Nutritional evaluation of rapeseed protein compared to soy protein for quality, plasma amino acids, and nitrogen balance--a randomized cross-over intervention study in humans. Clin. Nutr. 2013, 32, 519–526. [Google Scholar] [CrossRef]
- Mathai, J.K.; Liu, Y.; Stein, H.H. Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS). Br. J. Nutr. 2017, 117, 490–499. [Google Scholar] [CrossRef]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [Green Version]
- Pasiakos, S.M.; Agarwal, S.; Lieberman, H.R.; Fulgoni, V.L. 3rd, Sources and Amounts of Animal, Dairy, and Plant Protein Intake of US Adults in 2007–2010. Nutrients 2015, 7, 7058–7069. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.R. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 1991, 145, 79–99. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Falvo, M.J. Protein—Which is Best? J. Sports Sci. Med. 2004, 3, 118–130. [Google Scholar]
- FAO/WHO. Protein Quality Evaluation: Report of Joint FAO/WHO Expert Consultation; FAO Food and Nutrition Paper 51; Food and Agriculture Organization: Rome, Italy, 1991. [Google Scholar]
- FAO/WHO. Energy and Protein Requirements: Report of a joint FAO/WHO.UNU Expert Consultation; WHO Technical Report Series 724; World Health Organization: Geneva, Switzerland, 1985. [Google Scholar]
- FAO. Protein Quality Assessment in Follow-Up Formula for Young Children and Ready to Use Therapeutic Foods; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Han, S.-W.; Chee, K.-M.; Cho, S.-J. Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chem. 2015, 172, 766–769. [Google Scholar] [CrossRef]
- House, J.D.; Neufeld, J.; Leson, G. Evaluating the Quality of Protein from Hemp Seed (Cannabis sativa L.) Products Through the use of the Protein Digestibility-Corrected Amino Acid Score Method. J. Agric. Food Chem. 2010, 58, 11801–11807. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Moughan, P.J. The Digestible Amino Acid Composition of Several Milk Proteins: Application of a New Bioassay. J. Dairy Sci. 1998, 81, 909–917. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Fanning, A.C.; Miller, B.J.; Moughan, P.J. Protein digestibility-corrected amino acid scores and digestible indispensable amino acid scores differentially describe protein quality in growing male rats. J. Nutr. 2015, 145, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Niccolai, A.; Chini Zittelli, G.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res. 2019, 42, 101617. [Google Scholar] [CrossRef]
- Janczyk, P. Evaluation of Nutritional Value and Activity of Green Microalgae Chlorella vulgaris in Rats and Mice; Free Universität: Berlin, Germany, 2005. [Google Scholar]
- Adeola, O.; Xue, P.C.; Cowieson, A.J.; Ajuwon, K.M. Basal endogenous losses of amino acids in protein nutrition research for swine and poultry. Anim. Feed Sci. Technol. 2016, 221, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Darragh, A.J.; Hodgkinson, S.M. Quantifying the digestibility of dietary protein. J. Nutr. 2000, 130, 1850S–1856S. [Google Scholar] [CrossRef] [Green Version]
- Hughes, G.J.; Ryan, D.J.; Mukherjea, R.; Schasteen, C.S. Protein digestibility-corrected amino acid scores (PDCAAS) for soy protein isolates and concentrate: Criteria for evaluation. J. Agric. Food Chem. 2011, 59, 12707–12712. [Google Scholar] [CrossRef]
- Tessier, R.; Calvez, J.; Khodorova, N.; Gaudichon, C. Protein and amino acid digestibility of 15N Spirulina in rats. Eur. J. Nutr. 2020. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Chen, Y.; Kaur, A.; Yu, L. Pulse proteins: Secondary structure, functionality and applications. J. Food Sci. Technol. 2019, 56, 2787–2798. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in Microalgae Incorporation Into Innovative Food Products With Potential Health Benefits. Front. Nutr. 2018, 31, 58. [Google Scholar] [CrossRef]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: Revisiting our understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef] [PubMed]
- Banaszek, A.; Townsend, J.R.; Bender, D.; Vantrease, W.C.; Marshall, A.C.; Johnson, K.D. The Effects of Whey vs. Pea Protein on Physical Adaptations Following 8-Weeks of High-Intensity Functional Training (HIFT): A Pilot Study. Sports 2019, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
CV | CS | AO | CVMR | CSMR | AOMR | |
---|---|---|---|---|---|---|
Dry matter | 97.81 ± 0.08 | 98.38 ± 0.34 | 98.86 ± 0.28 | 95.99 ± 0.13 | 95.98 ± 0.13 | 95.22 ± 0.07 |
Moisture | 2.19 ± 0.08 | 1.62 ± 0.34 | 1.14 ± 0.28 | 4.01 ± 0.13 | 4.02 ± 0.13 | 4.78 ± 0.07 |
Ash | 5.26 ± 0.03 | 4.84 ± 0.07 | 3.92 ± 0.03 | 5.16 ± 0.04 | 4.76 ± 0.05 | 3.86 ± 0.05 |
Nitrogen | 8.56 ± 0.07 | 8.03 ± 0.10 | 6.45 ± 0.03 | 8.53 ± 0.04 | 7.96 ± 0.02 | 6.30 ± 0.09 |
Crude protein | 53.50 ± 0.42 | 50.21 ± 0.64 | 40.34 ± 0.18 | 53.33 ± 0.26 | 49.78 ± 0.13 | 39.36 ± 0.54 |
Crude lipid | 10.54 ± 0.12 | 20.01 ± 0.02 | 19.00 ± 0.66 | 25.41 ± 0.46 | 21.24 ± 1.12 | 21.96 ± 0.73 |
Carbohydrate | 7.89 ± 0.12 | 17.83 ± 0.79 | 22.35 ± 0.92 | 7.29 ± 0.54 | 17.42 ± 1.39 | 21.19 ± 1.48 |
Starch | 2.41 ± 0.42 | 14.07 ± 0.95 | 4.89 ± 0.42 | 2.36 ± 0.12 | 16.26 ± 0.11 | 11.27 ± 0.12 |
Crude fiber | 4.75 ± 1.71 | 0.74 ± 0.24 | 0.18 ± 0.13 | 4.11 ± 0.89 | 1.95 ± 0.40 | 5.28 ± 0.23 |
Casein | CV | CS | AO | CVMR | CSMR | AOMR | |
---|---|---|---|---|---|---|---|
Asparagine + aspartic acid | 69.06 | 98.21 | 102.72 | 100.38 | 97.97 | 102.72 | 94.97 |
Glutamine + glutamic acid | 219.95 | 118.23 | 126.22 | 114.93 | 108.83 | 122.71 | 102.81 |
Serine | 59.37 | 50.92 | 50.15 | 67.66 | 52.42 | 49.29 | 66.91 |
Glycine | 17.89 | 58.21 | 63.21 | 62.82 | 62.01 | 64.50 | 66.49 |
Histidine | 23.12 | 17.71 | 20.45 | 14.12 | 17.99 | 19.47 | 12.47 |
Arginine | 37.09 | 87.91 | 74.03 | 58.22 | 88.53 | 77.49 | 54.83 |
Threonine | 41.64 | 42.93 | 52.76 | 58.64 | 44.72 | 49.78 | 61.01 |
Alanine | 29.06 | 84.22 | 83.38 | 93.16 | 89.10 | 83.76 | 99.26 |
Proline | 120.98 | 53.52 | 58.97 | 62.73 | 56.83 | 59.02 | 69.44 |
Tyrosine | 53.94 | 44.31 | 43.50 | 42.30 | 43.57 | 43.71 | 40.04 |
Valine | 63.65 | 58.03 | 58.75 | 59.62 | 60.10 | 59.08 | 62.31 |
Methionine | 26.52 | 18.69 | 16.43 | 19.42 | 17.44 | 16.98 | 20.23 |
Isoleucine | 45.58 | 36.14 | 34.76 | 36.25 | 36.59 | 34.92 | 38.14 |
Leucine | 85.79 | 91.93 | 83.84 | 85.44 | 93.18 | 82.83 | 88.97 |
Phenylalanine | 40.37 | 53.70 | 43.42 | 49.52 | 51.90 | 42.45 | 49.98 |
Lysine | 48.20 | 51.91 | 57.00 | 41.48 | 47.81 | 57.62 | 35.90 |
Cysteine | 2.54 | 10.18 | 10.75 | 13.57 | 7.98 | 11.23 | 13.77 |
Tryptophan | 15.27 | 23.25 | 19.65 | 19.74 | 23.03 | 22.43 | 22.48 |
Σ EAAs ∗ | 390.1 | 394.3 | 387.1 | 384.2 | 392.8 | 385.6 | 391.5 |
Casein | CV | CS | AO | CVMR | CSMR | AOMR | |
---|---|---|---|---|---|---|---|
Histidine | 1.44 | 1.10 | 1.27 | 0.86 | 1.12 | 1.21 | 0.76 |
Isoleucine | 1.52 | 1.20 | 1.16 | 1.18 | 1.21 | 1.16 | 1.25 |
Leucine | 1.41 | 1.50 | 1.37 | 1.37 | 1.52 | 1.35 | 1.43 |
Lysine | 1.54 | 1.66 | 1.82 | 1.30 | 1.52 | 1.84 | 1.13 |
Methionine + cysteine | 1.26 | 1.25 | 1.18 | 1.40 | 1.10 | 1.22 | 1.45 |
Phenylalanine + tyrosine | 2.30 | 2.38 | 2.11 | 2.19 | 2.32 | 2.10 | 2.15 |
Threonine | 1.67 | 1.71 | 2.10 | 2.30 | 1.78 | 1.99 | 2.39 |
Tryptophan | 2.31 | 3.51 | 2.97 | 2.93 | 3.47 | 3.39 | 3.34 |
Valine | 1.59 | 1.44 | 1.46 | 1.46 | 1.49 | 1.47 | 1.53 |
Casein | CV | CS | AO | CVMR | CSMR | AOMR | |
---|---|---|---|---|---|---|---|
Food intake (g/day) | 18.0 ± 2.4 | 18.1 ± 3.4 | 14.1 ± 2.5 | 13.7 ± 2.6 | 15.5 ± 2.4 | 16.1 ± 3.1 | 15.1 ± 3.4 |
Weight gain( g)∗ | 23.6 ± 8.7 | 0.0 ± 11.2 | 12.9 ± 12.2 | −17.1 ± 4.6 | -3.1 ± 9.6 | 3.2 ± 12.6 | −0.6 ± 13.4 |
APD | 94.4 ± 0.4 | 60.6 ± 0.7a | 54.8 ± 1.0b | 32.6 ± 1.8c | 72.9 ± 0.5a,# | 70.5 ± 0.5a,# | 62.4 ± 1.1b,# |
TPD | 98.4 ± 0.4 | 64.7 ± 0.8a | 59.3 ± 1.2b | 37.9 ± 1.8c | 77.5 ± 0.6a,# | 74.9 ± 0.7a,# | 67.2 ± 1.3b,# |
IVPD | NA | 61.6 | 60.6 | 31.8 | 73.3 | 76.5 | 64.3 |
PDCAAS | 1.00 | 0.63 | 0.64 | 0.29 | 0.77 | 0.81 | 0.46 |
IVPDCAAS | NA | 0.60 | 0.66 | 0.24 | 0.73 | 0.82 | 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Tibbetts, S.M.; Berrue, F.; McGinn, P.J.; MacQuarrie, S.P.; Puttaswamy, A.; Patelakis, S.; Schmidt, D.; Melanson, R.; MacKenzie, S.E. A Rat Study to Evaluate the Protein Quality of Three Green Microalgal Species and the Impact of Mechanical Cell Wall Disruption. Foods 2020, 9, 1531. https://doi.org/10.3390/foods9111531
Wang Y, Tibbetts SM, Berrue F, McGinn PJ, MacQuarrie SP, Puttaswamy A, Patelakis S, Schmidt D, Melanson R, MacKenzie SE. A Rat Study to Evaluate the Protein Quality of Three Green Microalgal Species and the Impact of Mechanical Cell Wall Disruption. Foods. 2020; 9(11):1531. https://doi.org/10.3390/foods9111531
Chicago/Turabian StyleWang, Yanwen, Sean M. Tibbetts, Fabrice Berrue, Patrick J. McGinn, Scott P. MacQuarrie, Anil Puttaswamy, Shane Patelakis, Dominique Schmidt, Ronald Melanson, and Sabrena E. MacKenzie. 2020. "A Rat Study to Evaluate the Protein Quality of Three Green Microalgal Species and the Impact of Mechanical Cell Wall Disruption" Foods 9, no. 11: 1531. https://doi.org/10.3390/foods9111531
APA StyleWang, Y., Tibbetts, S. M., Berrue, F., McGinn, P. J., MacQuarrie, S. P., Puttaswamy, A., Patelakis, S., Schmidt, D., Melanson, R., & MacKenzie, S. E. (2020). A Rat Study to Evaluate the Protein Quality of Three Green Microalgal Species and the Impact of Mechanical Cell Wall Disruption. Foods, 9(11), 1531. https://doi.org/10.3390/foods9111531