Quality Assessment of Chilled and Frozen Fish—Mini Review
Abstract
:1. Introduction
2. Fish Freshness Degradation
2.1. Postmortem Alterations
2.2. Rigor Mortis
2.3. Autolysis and Bacterial Spoilage
2.4. Lipid Oxidation
3. Evaluation of Fish Quality
4. Deterioration of Fish Stored on Ice
Refrigeration Temperature Requirements
5. Deterioration of Frozen Fish
Freezing Temperature Requirements
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahmud, A.; Abraha, B.; Samuel, M.; Mohammedidris, H.; Abraham, W.; Mahmud, E. Fish preservation: A multi-dimensional approach. MOJ Food Process. Technol. 2018, 6, 303–310. [Google Scholar] [CrossRef]
- Nagarajarao, R.C. Recent advances in processing and packaging of fishery products: A review. Aquat. Procedia 2016, 7, 201–213. [Google Scholar] [CrossRef]
- Banerjee, R.; Maheswarappa, N.B. Superchilling of muscle foods: Potential alternative for chilling and freezing. Crit. Rev. Food Sci. Nutr. 2019, 59, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Tian, Y.; Yamashita, T.; Ishimura, G.; Sasaki, K.; Niu, Y.; Yuan, C. Effects of thawing methods on the biochemical properties and microstructure of pre-rigor frozen scallop striated adductor muscle. Food Chem. 2020, 319, 126559. [Google Scholar] [CrossRef] [PubMed]
- Boran, G.; Karaçam, H.; Boran, M. Changes in the quality of fish oils due to storage temperature and time. Food Chem. 2006, 98, 693–698. [Google Scholar] [CrossRef]
- Tolstorebrov, I.; Eikevik, T.M.; Bantle, M. Effect of low and ultra-low temperature applications during freezing and frozen storage on quality parameters for fish. Int. J. Refrig. 2016, 63, 37–47. [Google Scholar] [CrossRef]
- Roiha, I.S.; Tveit, G.M.; Backi, C.J.; Jónsson, Á.; Karlsdóttir, M.; Lunestad, B.T. Effects of controlled thawing media temperatures on quality and safety of pre-rigor frozen Atlantic cod (Gadus morhua). LTW Food Sci. Technol. 2018, 90, 138–144. [Google Scholar] [CrossRef]
- Rong, C.; Ruihuan, L.; Huihui, S.; Qi, L. Microbiota and shelf life of whole and gutted pacific saury (Cololabis saira) during refrigerated storage. J. Ocean. Univ. China 2020, 19, 473–478. [Google Scholar]
- Nguyen, M.V.; Phan, L.M.T. Influences of bleeding conditions on the quality and lipid degradation of cobia (Rachycentron canadum) fillets during frozen storage. Turk. J. Fish. Aquat. Sci. 2018, 18, 289–300. [Google Scholar] [CrossRef]
- Soares, K.; Gonçalves, A.A. Qualidade e segurança do pescado. Rev. Inst. Adolfo Lutz 2012, 7, 10–11. [Google Scholar]
- Gil, M.M.; Barbosa, A.L. Microorganisms and safety. In Pratical Food and Research, 3rd ed.; Cruz, R.M.S., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 195–217. [Google Scholar]
- Huss, H.H. Quality and Quality Changes in Fresh Fish—Technical Paper nº 348; FAO: Fisheries, Roma, 1995. [Google Scholar]
- Singh, A.; Benjakul, S. Proteolysis and its control using protease inhibitors in fish and fish products: A review. Compr. Rev. Food Sci. Food Saf. 2018. [Google Scholar] [CrossRef]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Modern Food Microbiology, 7th ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Li, Q.; Zhang, L.; Lu, H.; Song, S.; Luo, Y. Comparison of postmortem changes in ATP-related compounds, protein degradation and endogenous enzyme activity of white muscle and dark muscle from common carp (Cyprinus carpio) stored at 4 °C. LWT Food Sci. Technol. 2017, 78, 317–324. [Google Scholar] [CrossRef]
- Prabhakar, P.K.; Vatsa, S.; Srivastav, P.P.; Pathak, S.S. A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations. Food Res. Int. 2020, 133, 109157. [Google Scholar] [CrossRef] [PubMed]
- Stone, H.; Bleibaum, R.N.; Thomas, H.A. Sensory Evaluation Practices, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Martinsdóttir, E.; Sveinsdottir, K.; Luten, J.B.; Schelvis-Smit, R.; Hyldig, G. Reference Manual for the Fish Sector: Sensory Evaluation of Fish Freshness; QIM Eurofish: Ijmuiden, The Netherlands, 2001; pp. 1–49. [Google Scholar]
- Esteves, E.; Aníbal, J. Sensory evaluation of seafood freshness using the Quality Index Method: A meta-analysis. Int. J. Food Microbiol. 2020, 337, 108934. [Google Scholar] [CrossRef]
- Ólafsdóttir, G.; Martinsdóttir, E.; Oehlenschläger, J.; Dalgaard, P.; Jensen, B.; Undeland, I.; Mackie, I.M.; Henehan, G.; Nielsen, J.; Nilsen, H. Methods to evaluate fish freshness in research and industry. Trends Food Sci. Technol. 1997, 8, 258–265. [Google Scholar] [CrossRef]
- Esteves, E. Relating sensory and instrumental analyses of well-known and emerging fish and seafood products. In Handbook of Seafood: Quality and Safety Maintenance and Applications; Genç, I.Y., Esteves, E., Diler, A., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2016; pp. 31–64. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Silva, N.; Hernández, E.P.; Araújo, C.S.; Joele, M.R.S.P.; Lourenço, L. Development and optimization of biodegradable fish gelatin composite film added with buriti oil. CyTA J. Food 2018, 16, 340–349. [Google Scholar] [CrossRef]
- Lakshmanan, P.T. Fish spoilage and quality assessment. In Quality Assurance in Seafood Processing; Iyer, T.S.G., Kandoran, M.K., Thomas, M., Mathew, P.T., Eds.; Society of Fisheries Technologists: Cochin, India, 2000; pp. 26–40. [Google Scholar]
- Bland, J.M.; Bett-Garber, K.L.; Li, C.H.; Brashear, S.S.; Lea, J.M.; Bechtel, P.J. Comparison of sensory and instrumental methods for the analysis of texture of cooked individually quick frozen and fresh-frozen catfish fillets. Food Sci. Nutr. 2018, 6, 1692–1705. [Google Scholar] [CrossRef]
- Araújo, D.A.F.V.; Soares, K.M.P.; Góis, V.A. Características gerais, processos de deterioração e conservação do pescado. Pubvet 2010, 4, 766–772. [Google Scholar]
- Hocaoğlu, A.; Demirci, A.S.; Gümüs, T.; Demirci, M. Effects of gamma irradiation on chemical, microbial quality and shelf life of shrimp. Radiat. Phys. Chem. 2012, 81, 1923–1929. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, W.; Jen, H.; Liu, B.; Huang, K.; Hwang, D.F. Comparative variations of extractive nitrogenous components and quality in fresh muscle and dried product of rabbitfish (Siganus fuscescens) in Taiwan. J. Aquat. Food Prod. Technol. 2020, 29, 693–706. [Google Scholar] [CrossRef]
- Senapati, M.; Sahu, P.P. Onsite fish quality monitoring using ultra-sensitive patch electrode capacitive sensor at room temperature. Biosens. Bioelectron. 2020, 168, 112570. [Google Scholar] [CrossRef]
- Wu, L.; Pu, H.; Sun, D. Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends Food Sci. Technol. 2019, 83, 259–273. [Google Scholar] [CrossRef]
- Hassoun, A.; Sahar, A.; Lakhal, L.; Aït-Kaddour, A. Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fish and meat products: Impact of different preservation conditions. LWT Food Sci. Technol. 2019, 103, 279–292. [Google Scholar] [CrossRef]
- Ólafsdóttir, G.; Nesvadba, P.; Di Natale, C.; Careche, C.; Oehlenschläger, J.; Tryggvadóttir, S.V.; Schubring, R.; Kroeger, M.; Hei, K.; Esaiassen, M.; et al. Multisensor for fish quality determination. Trends Food Sci. Technol. 2004, 15, 86–93. [Google Scholar] [CrossRef]
- Marrakchi, A.E.; Bennour, M.; Bouchriti, N.; Hamama, A.; Tagafait, H. Sensory, chemical, and microbiological assessments of Moroccan sardines (Sardina pilchardus) stored in ice. J. Food Prot. 1990, 53, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Losada, V.; Barros-Velázquez, J.; Gallardo, J.M.; Aubourg, S.P. Effect of advanced chilling methods on lipid damage during sardine (Sardina pilchardus) storage. Eur. J. Lipid Sci. Tech. 2004, 106, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Aubourg, S.P. Damage detection in horse mackerel (Trachurus trachurus) during chilled storage. J. Am. Oil Chem. Soc. 2001, 78, 857–862. [Google Scholar] [CrossRef]
- Panguila, E.A.; Sousa, M.I.; Esteves, E.; Figueira, A.C. Evaluation of the freshness and shelf-life of fresh and chilled mackerel (Scomber spp.) and horse mackerel (Trachurus spp.), marketed in Luanda (Angola) and in Faro (Portugal). In Proceedings of the INCREaSE, Faro, Portugal, 2017; Mortal, A., Aníbal, J., Monteiro, J., Sequeira, C., Semião, J., Silva, M.M., Eds.; Springer: Cham, Switzerland, 2018; pp. 168–181. [Google Scholar]
- Chudasama, B.G.; Dave, T.H.; Bhola, D.V. Comparative study of quality changes in physicochemical and sensory characteristics of iced and refrigerated chilled store Indian mackerel (Rastrelliger kanagurta). J. Entomol. Zool. Stud. 2018, 6, 533–537. [Google Scholar]
- Vázquez-Sánchez, D.; García, E.E.S.; Galvã, J.A.; Oetterer, M. Quality index method (QIM) scheme developed for whole Nile tilapias (Oreochromis niloticus) ice stored under refrigeration and correlation with physicochemical and microbiological quality parameters. J. Aquat. Food Prod. Technol. 2020. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.; Zhang, C.; Li, X.; Yi, S.; Li, J. Physicochemical responses and quality changes of turbot (Psetta maxima) during refrigerated storage. Int. J. Food Prop. 2015, 19, 196–209. [Google Scholar] [CrossRef]
- Dawson, P.; Al-Jeddawi, W.; Remington, N. Effect of freezing on the shelf life of Salmon. Int. J. Food Sci. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aubourg, S.P.; Piñeiro, C.; González, M.J. Quality loss related to rancidity development during frozen storage of horse mackerel (Trachurus trachurus). J. Am. Oil Chem. Soc. 2004, 81, 671–678. [Google Scholar] [CrossRef] [Green Version]
- Aubourg, S.P.; Lehmann, I.; Gallardo, J.M. Effect of previous chilled storage on rancidity development in frozen horse mackerel (Trachurus trachurus). J. Sci. Food Agric. 2002, 82, 1764–1771. [Google Scholar] [CrossRef] [Green Version]
- Calanche, J.; Tomas, A.; Martinez, S.; Jover, M.; Alonso, V.; Roncalés, P.; Beltrán, J.A. Relation of quality and sensory perception with changes in free amino acids of thawed seabream (Sparus aurata). Food Res. Int. 2019, 119, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Popelka, P.; Jevinova, P.; Marcinčák, S. Microbiological and chemical quality of fresh and frozen whole trout and trout fillets. Potravin. Slovak J. Food Sci. 2016, 10, 431–436. [Google Scholar] [CrossRef]
- Dang, H.T.T.; Gudjónsdóttir, M.; Karlsdóttir, M.G.; Nguyen, M.V.; Romotowska, P.E.; Tómasson, T.; Arason, S. Influence of temperature stress on lipid stability of Atlantic herring (Clupea harengus) muscle during frozen storage. J. Am. Oil Chem. Soc. 2017, 94, 1439–1449. [Google Scholar] [CrossRef]
- Romotowska, P.E.; Gudjónsdóttir, M.; Karlsdóttir, M.G.; Kristinsson, H.G.; Arason, S. Stability of frozen Atlantic mackerel (Scomber scombrus) as affected by temperature abuse during transportation. LWT Food Sci. Technol. 2017, 83, 275–282. [Google Scholar] [CrossRef]
- Avramiuc, M. The influence of slow thawing on evolution of some biochemical compounds in frozen fishes. Food Environ. Saf. J. 2017, 16, 92–97. [Google Scholar]
- Hematyar, N.; Masiko, J.; Mraz, J.; Sampels, S. Nutritional quality, oxidation, and sensory parameters in fillets of common carp (Cyprinus carpio L.) influenced by frozen storage (−20 °C). J. Food Process. Preserv. 2018, 42, e13589. [Google Scholar] [CrossRef]
- Johnston, W.A.; Nicholson, F.J.; Roger, A.; Stroud, G.D. Freezing and Refrigerated Storage in Fisheries; FAO Fisheries Technical Paper, n. 340; CSL Food Science Laboratory: Torry, Aberdeen; Scotland, UK, 1994. [Google Scholar]
Fish Species | Origin | Storage Conditions | Type of Analysis and Results | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sensory | Physicochemical | Biochemical | Microbiological | ||||||||
Sardine (Sardina pilchardus) | Morocco (analyzed 4–6 h after capture) | Layers of sardines and ice in polystyrene boxes (2–4 °C) | Shelf-life: 9 days Hardly bright, rigor mortis moderately tense, cloudy eyes, absent gills cover, scales fall easily, anus partially open | pH | Day 0: 5.83 | - | TVC 1 (cfu/g): 106–107 on 9th day | [33] | |||
Day 9: 6.36 | |||||||||||
Day 18: 6.57 | |||||||||||
Atlantic Coast (analyzed 10 h after capture) | Flake ice 1:1 (w/w) (2 °C) | Shelf-life: 8 days Limiting factors: Gills and flesh odor | Moisture (%): 71–73.5 | TBA 2 (mg MDA 3/kg) | Day 0: 0.65 | - | [34] | ||||
Day 19: 2.66 | |||||||||||
Horse mackerel (Trachurus trachurus) | Unknown (analyzed 10 h after capture) | Ice (0 °C) | Shelf-life: 12 days classified as “2—fair quality” in a scale from 1 (rejectable) to 4 (highest quality) | Moisture (%): 75–80 | TBA 2 (mg MDA 3/kg) | Day 0: 0.10 | - | [35] | |||
Day 19: 0.85 | |||||||||||
Horse mackerel (Trachurus trachurus) | Portugal | Covered with ice in polystyrene boxes (5 °C) | Shelf-life: 7 days by QIM 4 demerit points variation: 13.40 ± 1.92 (Portugal) and 11.25 ± 1.75 (Luanda) Limiting factors: Color, gills odor and muscle firmness | Moisture (%): 71–77 | TBVN 5 (mg/100 g) | Day 0: 12.37 ± 0.802 | - | [36] | |||
Color: | Day 0: L*6 = 44.79 ± 11.74; a*6 = −1.63 ± 0.44; b*6 = −1.63 ± 1.09 | ||||||||||
Day 7: L*6 = 60.85 ± 16.53; a*6 = 0.32 ± 2.2; b*6 = 1.92 ± 5.04 | Day 7: 46.69 ± 0.34 | ||||||||||
aw: 0.98 | |||||||||||
pH | Day 0: 6.34 ± 0.18 | TBA (µg MDA/g) | Day 0: 1.47 ± 0.00 | ||||||||
Day 7: 6.33 ± 0.057 | |||||||||||
Texture (hardness) (kgf) | Day 0: 525.01 ± 81.797 | Day 7: 11.50 ± 2.18 | |||||||||
Day 7: 474.31 ± 102.72 | |||||||||||
Luanda | Moisture (%): 73 | TBVN 5 (mg/100 g) | Day 0: 10.86 ± 0.54 | ||||||||
Day 7: 30.15 ± 3.45 | |||||||||||
pH | Day 0: 6.32 ± 0.10 | TBA (µg MDA/g) | Day 0: 1.80 ± 0.58 | ||||||||
Day 7: 6.43 ± 0.112 | Day 7: 7.44 ± 2.84 | ||||||||||
Indian mackerel (Rastrelliger kanagurta) | Obtained from Indian fishing harbor | Ice (2–4 °C) | Spoiled: 5 days Appearance, color, odor and overall acceptability classified as 5—neither like or dislike | Moisture (%) | Day 0: 74.37 ± 0.19 | TVBN (mg/100 g) | Day 0: 3.8 ± 0.18 | - | [37] | ||
Day 3: 77.72 ± 0.20 | |||||||||||
Day 7: 78.41 ± 0.12 | Day 3: 22.4 ± 1.55 | ||||||||||
Total fat (%) | Day 0: 4.11 ± 0.12 | ||||||||||
Day 3: 3.95 ± 0.07 | Day 7: 41.3 ± 1.47 | ||||||||||
Day 7: 4.18 ± 0.16 | |||||||||||
Crude protein (%) | Day 0: 18.46 ± 0.18 | TMA 7 (mg/100 g) | Day 0: 1.11 ± 0.19 | ||||||||
Day 3: 17.19 ± 0.13 | |||||||||||
Day 7: 16.79 ± 0.04 | Day 3: 5.66 ± 0.22 | ||||||||||
pH | Day 0: 5.67 ± 0.15 | ||||||||||
Day 3: 6.50 ± 0.30 | Day 7: 14.73 ± 0.15 | ||||||||||
Day 7: 7.27 ± 0.21 | |||||||||||
Refrigerator chilled (2–4 °C) | Good quality: 7 days (end of the study) Appearance, color, odor and overall acceptability classified as 6—like slightly | Moisture (%) | Day 0: 74.37 ± 0.19 | TVBN (mg/100 g) | Day 0: 3.8 ± 0.18 | ||||||
Day 3: 73.39 ± 0.26 | Day 3: 9.2 ± 0.35 | ||||||||||
Day 7: 72.35 ± 0.28 | Day 7: 25.9 ± 0.61 | ||||||||||
Total fat (%) | Day 0: 4.11 ± 0.12 | TMA 7 (mg/100 g) | Day 0: 1.11 ± 0.19 | ||||||||
Day 3: 4.28 ± 0.03 | |||||||||||
Day 7: 4.33 ± 0.14 | |||||||||||
Crude protein (%) | Day 0: 18.46 ± 0.18 | Day 3: 2.86 ± 0.25 | |||||||||
Day 3: 17.90 ± 0.15 | |||||||||||
Day 7: 17.17 ± 0.22 | |||||||||||
pH | Day 0: 5.67 ± 0.15 | Day 7: 9.80 ± 0.23 | |||||||||
Day 3: 6.27 ± 0.25 | |||||||||||
Day 7: 6.53 ± 0.25 | |||||||||||
Tilapias (Oreochromis niloticus) | Brazil | Layers of ice and fish 1:1 (w:w) (0–1 °C) in plastic trays and refrigerated (1 ± 0.5 °C) | Spoiled: 10 days Fishy odor, slightly sour flavor, trace of “off flavor” very dry and fibrous texture. | Color: Ventral and dorsal area redness decrease in the first 6 and 3 days, respectively; yellowness was negatively correlated with days of storage | TVBN (mg/100 g): Lower than 30 during the entire storage | TVC (ISO 4833–2:2013) (log cfu/g): 3.32 ± 0.05 at 13th day | [38] | ||||
Texture: Negative correlation between days of storage and the hardness and chewiness; adhesiveness was positively correlated with days of storage | |||||||||||
TBARS (mg MDA/kg): Up to 0.474 after 13 days | |||||||||||
pH: Do not exceeded 7 during the entire storage. | PC 8 (ISO 17410:2001) (log cfu/g): 3.59 ± 0.06 at 13th day | ||||||||||
Turbot (Psetta maxima) | China (local market) | Refrigerated (4 ± 0.5 °C, 67% relative humidity) | Shelf-life: 8 days by QIM acceptable appearance, gill, eye color and flesh odor. Limiting factors: Ammoniac odor, acidic taste and darker color. | pH: Initial decrease followed by increase | TVBN (mg/100 g) | Day 0: 6.36 ± 0.04 | TVC (log cfu/g) | Day 0: 3.15 | [39] | ||
Texture: Hardness, springiness and resilience decreased during the storage | |||||||||||
Day 20: 44.34 ± 2.04 | Day 20: 6.67 | ||||||||||
Color: Whiteness minimum value at day 0 and maximum on 20th day | |||||||||||
Pacific saury (Cololabis saira) | Mainly Pseudomonadaceae: 90% on day 8 | [8] | |||||||||
Pacific saury (Cololabis saira) | North Pacific Quick-freeze (−35 °C, less than 2 months) on the vessel | Transported at −28 °C, stored (2 ± 1 °C) | Gutted | Spoiled: 6–8 days Classified below 6—acceptable in a scale from 0 to 9 Limiting factors: Odor deterioration, and the secondary cause was the altered appearance | - | TVBN (mg/100 g): values close to 30 on day 6 | TVC (Log10cfu/g) | Day 0: 3.75 | [8] | ||
Day 6: Close to 7 | |||||||||||
TBARS 9 (mg MDA/kg): values close to 5 on day 10 | Mainly Pseudomonadaceae | Day 0: 35.8% | |||||||||
Day 8: 95% | |||||||||||
Whole | Acceptable: 10 days Classified as 6—acceptable in a scale from 0 to 9 | - | TVBN (mg/100 g): Values close to 30 on day 10 | TVC (Log10cfu/g) | Day 0: 3.29 | ||||||
TBARS 8 (mg MDA/kg): Values close to 5 on day 14 | Day 10: Close to 7 |
Fish Species | Origin | Storage Conditions | Type of Analysis and Results | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sensory | Physicochemical | Biochemical | Microbiological | ||||||||
Horse mackerel (Trachurus trachurus) | Spain (analyzed 10 h after capture) | Control sample (raw fish) | - | Moisture (difference between fresh and dehydrated mass): 74–78% (for all the samples) | TBA: 0.17 mg MDA/g | - | [41] | ||||
Polyethylene bags | −80 °C | Shelf-life: 12 months. Classified as A—good quality in a scale from E (highest quality) to C (rejectable) | TBA (mg MDA/g) | 1st month: 0.19 | - | ||||||
5th month: 0.72 | |||||||||||
12th month: 0.22 | |||||||||||
−20 °C | Shelf-life: 5 months. Classified as B—fair quality in a scale from E (highest quality) to C (rejectable) | TBA (mg MDA/g) | 1st month: 0.26 | ||||||||
5th month: 0.85 | |||||||||||
12th month: 0.75 | |||||||||||
Unknown (analyzed 10 h after capture) | Frozen at −80 °C and then kept at −20 °C for 0 to 7 months | Chilled on ice (0–2 °C) for 0 and 1 days | Shelf-life: 7 months. Classified with good quality (0–29); in a scale from 0 (no rancidity at all) to 100 (maximum rancidity). | Moisture (difference between fresh and dehydrated mass): 750–790 g/Kg (for all the samples) | TBA: Absence of values, but higher values were obtained after 5–7 months for products previously refrigerated for 3–5 days | - | [42] | ||||
Chilled on ice (0–2 °C) for 3 and 5 days | Shelf-life: 5 months. Classified with fair quality (30–59). | ||||||||||
Seabream (Sparus aurata) | Spain (local farm) | Ice (0 ± 1 °C) in polyspan boxes for 5–18 days and 1 month frozen (−30 °C) in filleted form | Whole | Shelf-life: 11–18 days. Classified with 6.7 and 6.6, respectively, in Torry scheme from 8 (very fresh) to 1 (rotten) | Free amino acids: Whole and gutted fish were similar; filleted have the highest levels | TVBN (mg/100 g): Highest values on filleted fish at day 5, with significant increase over the time and highest values of all (86.2) | PC: Statistical differences between filleted and whole fish, where the last was similar to gutted. Filleted and gutted with the highest values. | [43] | |||
Gutted | Shelf-life: 11–18 days. Classified with 7.8 and 4, respectively, in Torry scheme from 8 (very fresh) to 1 (rotten) | ||||||||||
TBARS (mg MDA/kg): Highest values on filleted fish at day 5, with significant increase over the time and highest values of all (1.5) | |||||||||||
Fillet | Shelf-life: <11 days. Classified with 6.6 and 6.7, respectively, in Torry scheme from 8 (very fresh) to 1 (rotten) | ||||||||||
Rainbow trout (Oncorhynchus mykiss) | Farmed in Slovakia (vacuum packed and cooled at 0–2 °C) | −18 °C | - | pH | Fresh: 6.51 ± 0.03 | TVBN | Fresh: 12.75 ± 0.52 | TVC (log cfu/g) Skin | Fresh: 4.75 ± 0.15 | [44] | |
1 month frozen: 4.75 ± 0.25 | |||||||||||
3 months frozen: 4.8 ± 0.2 | |||||||||||
1 month frozen: 6.79 ± 0.01 | 1 month frozen: 17.03 ± 0.1 | 6 months frozen: 7.05 ± 0.45 | |||||||||
PC (log cfu/g) Skin | Fresh: 4.8 ± 0.1 | ||||||||||
1 month frozen: 4.8 ± 0.1 | |||||||||||
3 months frozen: 6.78 ± 0.05 | 3 months frozen: 17.03 ± 0.21 | 3 months frozen: 4.5 ± 0.6 | |||||||||
6 months frozen: 4.9 ± 0.5 | |||||||||||
Pseudomonas detection (log cfu/g) Skin | Fresh: 1.5 ± 1.06 | ||||||||||
6 months frozen: 6.75 ± 0.02 | 6 months frozen: 18.74 ± 1.71 | 1 month frozen: 2.63 ± 0.08 | |||||||||
3 months frozen: 2.65 ± 0.26 | |||||||||||
6 months frozen: 3.33 ± 0.37 | |||||||||||
Rainbow trout (Oncorhynchus mykiss) | Farmed in Slovakia (vacuum packed and cooled at 0–2 °C) | −18 °C | - | - | - | TVC (log cfu/g) muscle | Fresh: 2.7 ± 0.2 | [44] | |||
1 month frozen: 2.1 ± 0.4 | |||||||||||
3 months frozen: 2.2 ± 0.2 | |||||||||||
6 months frozen: 5.05 ± 0.36 | |||||||||||
PC (log cfu/g) muscle | Fresh: 2.75 ± 0.05 | ||||||||||
1 month frozen: 2.05 ± 0.05 | |||||||||||
3 months frozen: 1.9 ± 1.14 | |||||||||||
6 months frozen: 1.75 ± 0.45 | |||||||||||
Pseudomonas detection (log cfu/g) muscle | Fresh: 1.13 ± 1.41 | ||||||||||
1 month frozen: 0 | |||||||||||
3 months frozen: 0 | |||||||||||
6 months frozen: 0 | |||||||||||
Rainbow trout (Oncorhynchus mykiss) | Farmed in Slovakia (vacuum packed and cooled at 0–2 °C) | −18 °C | - | - | - | TVC (log cfu/g) fillet | Fresh: 4.55 ± 0.35 | [44] | |||
1 month frozen: 3.7 ± 0.3 | |||||||||||
3 months frozen: 4.1 ± 0.3 | |||||||||||
6 months frozen: 6.05 ± 0.55 | |||||||||||
PC (log cfu/g) fillet | Fresh: 4.55 ± 0.45 | ||||||||||
1 month frozen: 3.8 ± 0.2 | |||||||||||
3 months frozen: 4.1 ± 0.4 | |||||||||||
6 months frozen: 3.9 ± 0.1 | |||||||||||
Pseudomonas detection (log cfu/g) fillet | Fresh: 1.28 ± 1.68 | ||||||||||
1 month frozen: 2.53 ± 0.13 | |||||||||||
3 months frozen: 2.73 ± 0.38 | |||||||||||
6 months frozen: 2.85 ± 0.57 | |||||||||||
Herring (Clupea harengus) | Southwest coast of Iceland (filleted on the vessel, −25 °C, 2 months) | Fresh | - | Moisture (%) | Dark muscle: 62.1 ± 0.2 | - | - | [45] | |||
Light muscle: 72.2 ± 0.4 | |||||||||||
−12 °C, 1 month followed by −25 °C (stress condition) | Moisture (%) | No statistical differences in light muscle. | TBARS: Increase rapidly, maximum after 3.5 months of storage. No statistical differences in light muscle. | ||||||||
Total lipids (%) | Higher in dark muscle. No statistical differences in light muscle. | ||||||||||
Phospholipids (%) | Lower values on both muscles | ||||||||||
FFA 2 (%) | Higher values on both muscles | ||||||||||
−25 °C (stable condition) | Moisture (%) | No statistical differences in light muscle. Higher in dark muscle. | TBARS: No statistical differences in light muscle. | ||||||||
Total lipids (%) | Higher in dark muscle (less than stress condition). No statistical differences in light muscle. | ||||||||||
Phospholipids (%) | Higher values on both muscles | ||||||||||
FFA 2 (%) | Lower values on both muscles | ||||||||||
Mackerel (Scomber scombrus) | South-East of Iceland | −12 °C, 1 month followed by −25 °C (stress condition) for 9 months | - | No significant differences in total lipid and water content between both tested groups | TBARS: Maximum value after 3 months | - | [46] | ||||
Free fatty acids: Less prone to lipid hydrolysis | |||||||||||
−25 °C (stable condition) for 9 months | TBARS: Steady increase in the whole storage | ||||||||||
Free fatty acids: More prone to lipid hydrolysis | |||||||||||
Cod (Gadus morhua) | Norwegian sea headed and gutted on the vessel (−40 °C) | −28 °C, 9 weeks, thawed with air diffusion (10 °C, 4 h), filleted, kept at 2.9 ± 0.6 °C | Quality maintenance after 6 days by QIM classified with 1.3 ± 0.4 for texture (from 0—firm to 2—soft), 1.4 ± 0.5 for color (from 0—bright to 4—yellow mucous), 1.7 ± 0.7 for odor (from 0—fresh to 4—ammonia and off flavors) | pH | Day 0: 6.6 ± 0.2 | TVBN (mg/100 g) | Day 0: 12.5 ± 2.3 | TVC (log cfu/g) | Day 0: 2.8 ± 0.2 | [7] | |
Day 6: 6.7 ± 0.1 | |||||||||||
Moisture (%) | Day 0: 82.1 ± 0.1 | Day 6: 4.8 ± 0.4 | |||||||||
Day 6: 81.5 ± 0.2 | |||||||||||
Texture: No statistical differences in shear forces and softness | Day 6: 18.8 ± 12.9 | H2S-producing bacteria (log cfu/g) | Day 0: not detected | ||||||||
Day 6: 2.3 ± 0.6 | |||||||||||
−28 °C, 9 weeks, thawed with air diffusion (10 °C, 2 h followed by −0.5 °C, 26–27 h), filleted, kept at 2.9 ± 0.6 °C | Quality maintenance after 6 days by QIM classified with 1.4 ± 0.4 for texture (from 0—firm to 2—soft), 1.4 ± 0.5 for color (from 0—bright to 4—yellow mucous), 1.9 ± 0.7 for odor (from 0—fresh to 4—ammonia and off flavors) | TVBN (mg/100 g) | Day 0: 12.6 ± 1.8 | TVC (log cfu/g) | Day 0: 1.8 ± 0.4 | ||||||
pH | Day 0: 6.8 ± 0.2 | Day 6: 4.2 ± 0.8 | |||||||||
Day 6: 6.8 ± 0.2 | |||||||||||
Moisture (%) | Day 0: 81.8 ± 0.2 | Day 6: 15.0 ± 5.2 | H2S-producing bacteria (log cfu/g) | Day 0: not detected | |||||||
Day 6: 81.3 ± 0.1 | Day 6: 1 | ||||||||||
Carp (Cyprinus carpio) | Romanian streams (whole fresh live) | Slow thawing at room temperature (20–22 °C), slaughtered, eviscerated and frozen (−29 °C), kept 2 months up to the experiment | - | pH | Time 0: 6.35 ± 0.78 | TMA (mg%) | Time 0: 0.37 ± 0.02 | - | [47] | ||
After 9 h: 1.53 ± 0.11 | |||||||||||
After 9 h: 6.65 ± 0.78 | After 15 h: 4.68 ± 1.05 | ||||||||||
After 30 h: 8.53 ± 0.64 | |||||||||||
After 15 h: 6.83 ± 1.07 | After 42 h: 10.33 ± 1.19 | ||||||||||
After 30 h: 7.35 ± 0.93 | After 48 h: 13.75 ± 0.72 | ||||||||||
After 42 h: 7.58 ± 0.49 | NAA 1 (g%) | Time 0: 0.06 ± 0.008 | |||||||||
After 9 h: 0.09 ± 0.005 | |||||||||||
After 48 h: 7.66 ± 0.92 | After 15 h: 0.18 ± 0.03 | ||||||||||
After 30 h: 0.31 ± 0.04 | |||||||||||
After 42 h: 0.23 ± 0.03 | |||||||||||
After 48 h: 0.17 ± 0.01 | |||||||||||
Catfish (Silurus glanis L.) | - | pH | Time 0: 6.40 ± 0.91 | TMA (mg%) | Time 0: 0.50 ± 0.09 | - | |||||
After 9 h: 2.36 ± 0.07 | |||||||||||
After 9 h: 6.74 ± 0.63 | After 15 h: 7.58 ± 1.37 | ||||||||||
After 30 h: 12.98 ± 1.88 | |||||||||||
After 15 h: 6.90 ± 0.48 | After 42 h: 15.08 ± 1.08 | ||||||||||
After 30 h: 7.46 ± 0.59 | After 48 h: 17.13 ± 1.92 | ||||||||||
After 42 h: 7.64 ± 1.23 | NAA 1 (g%) | Time 0: 0.07 ± 0.005 | |||||||||
After 9 h: 0.15 ± 0.04 | |||||||||||
After 15 h: 0.21 ± 0.09 | |||||||||||
After 30 h: 0.38 ± 0.09 | |||||||||||
After 48 h: 7.85 ± 0.38 | After 42 h: 0.25 ± 0.06 | ||||||||||
After 48 h: 0.19 ± 0.09 | |||||||||||
Mackerel (Scomber japonicus Houttuyn) | Retail (eviscerated frozen) | Slow thawing at room temperature (20–22 °C) | - | pH | Time 0: 6.38 ± 1.04 | TMA (mg%) | Time 0: 0.73 ±0.07 | - | [47] | ||
After 9 h: 0.98 ± 0.05 | |||||||||||
After 9 h: 6.65 ± 0.39 | After 15 h: 3.95 ± 0.74 | ||||||||||
After 15 h: 6.73 ± 0.65 | After 30 h: 8.03 ± 1.08 | ||||||||||
After 30 h: 7.35 ± 0.98 | After 42 h: 9.96 ± 1.08 | ||||||||||
After 48 h: 11.81 ± 0.98 | |||||||||||
After 42 h: 7.49 ± 0.55 | NAA (g%) | Time 0: 0.05 ± 0.006 | |||||||||
After 9 h: 0.10 ± 0.08 | |||||||||||
After 15 h: 0.17 ± 0.03 | |||||||||||
After 30 h: 0.29 ± 0.07 | |||||||||||
After 48 h: 7.58 ± 0.63 | After 42 h: 0.21 ± 0.08 | ||||||||||
After 48 h: 0.19 ± 0.06 | |||||||||||
Hake (Merluccius merluccius L.) | - | pH | Time 0: 6.41 ± 0.37 | TMA (mg%) | Time 0: 0.52 ± 0.03 | - | |||||
After 9 h: 1.19 ± 0.04 | |||||||||||
After 9 h: 6.70 ± 1.12 | After 15 h: 4.87 ± 1.12 | ||||||||||
After 30 h: 9.52 ± 0.89 | |||||||||||
After 15 h: 6.85 ± 0.74 | After 42 h: 11.35 ± 0.88 | ||||||||||
After 48 h: 13.30 ± 1.56 | |||||||||||
After 30 h: 7.41 ± 0.56 | NAA (g%) | Time 0: 0.04 ± 0.007 | |||||||||
After 9 h: 0.14 ± 0.07 | |||||||||||
After 42 h: 7.61 ± 0.38 | After 15 h: 0.27 ± 0.05 | ||||||||||
After 30 h: 0.42 ± 0.08 | |||||||||||
After 48 h: 7.73 ± 1.12 | After 42 h: 0.31 ± 0.04 | ||||||||||
After 48 h: 0.21 ± 0.07 | |||||||||||
Carp (Cyprinus carpio) | Czech Republic (aquaculture) | Filleted, packet on plastic bags and frozen (−20 °C) | Acceptable: 24 weeks. Cooked samples were scored between 0 (worst quality) to 100 (best quality); firmness, odor, color, and overall acceptability of frozen samples were scored between 0 (worst quality) to 5 (best quality). No absolute values are presented by the authors | Moisture (%) | Time 0: 71.8 ± 2.61 | TBARS (µg MDA/kg) | Time 0: 0.03 ± 0.0 | - | [48] | ||
Week 3: 70.9 ± 3.42 | |||||||||||
Week 8: 70.9 ± 2.31 | |||||||||||
Week 24: 69.8 ± 2.83 | |||||||||||
Fat content (%) | Time 0: 8.64 ± 2.36 | Week 3: 0.06 ± 0.01 | |||||||||
Week 3: 9.48 ± 3.23 | |||||||||||
Week 8: 11.8 ± 1.59 | |||||||||||
Week 24: 10.8 ± 3.28 | |||||||||||
Firmness (g): Significant decrease after 1 week of frozen storage | |||||||||||
Week 8: 0.04 ± 0.01 | |||||||||||
Color: Frozen samples tended to be lighter and more yellow than the fresh ones. | |||||||||||
pH | Time 0: 6.7 ± 0.12 | Week 24: 0.04 ± 0.00 | |||||||||
Week 3: 6.65 ± 0.10 | |||||||||||
Week 8: 6.65 ± 0.15 | |||||||||||
Week 24: 6.35 ± 0.24 | |||||||||||
Cobia (Rachycentron canadum) | Vietnam (farmed) | Air blast freezer (−35 °C, 3 h) in polyethylene bags and stored 24 weeks | Not bleed | - | Water content | Day 0: 70.96 ± 0.31 | TBARS: Not bleed samples with higher lipid oxidation products | - | [9] | ||
Day 12: 67.76 ± 0.28 | |||||||||||
Day 24: 61.30 ± 0.40 | |||||||||||
Total lipids | Day 0: 12.08 ± 0.12 | ||||||||||
Day 12: 8.60 ± 0.44 | |||||||||||
Day 24: 7.61 ± 0.74 | |||||||||||
Free fatty acids | Higher than bleed samples | ||||||||||
Color | Lower L*3 and higher a*3 values than bleed samples | ||||||||||
Throat cut and air bleed (15 min) | Water content | Day 0: 71.43 ± 0.33 | |||||||||
Day 12: 67.87 ± 0.76 | |||||||||||
Day 24: 64.82 ± 0.98 | |||||||||||
Total lipids | Day 0: 12.71 ± 0.11 | ||||||||||
Day 12: 9.36 ± 1.53 | |||||||||||
Day 24: 8.03 ± 0.11 | |||||||||||
Throat cut and ice water bleed (4 ± 1 °C, 15 min) | Water content | Day 0: 70.87 ± 0.48 | |||||||||
Day 12: 68.47 ± 0.73 | |||||||||||
Day 24: 68.41 ± 1.08 | |||||||||||
Total lipids | Day 0: 12.94 ± 0.06 | ||||||||||
Day 12: 10.12 ± 0.66 | |||||||||||
Day 24: 9.09 ± 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, A.M.; Silva, F.; Pinto, F.R.; Barroso, S.; Gil, M.M. Quality Assessment of Chilled and Frozen Fish—Mini Review. Foods 2020, 9, 1739. https://doi.org/10.3390/foods9121739
Duarte AM, Silva F, Pinto FR, Barroso S, Gil MM. Quality Assessment of Chilled and Frozen Fish—Mini Review. Foods. 2020; 9(12):1739. https://doi.org/10.3390/foods9121739
Chicago/Turabian StyleDuarte, Ana M., Frederica Silva, Filipa R. Pinto, Sónia Barroso, and Maria Manuel Gil. 2020. "Quality Assessment of Chilled and Frozen Fish—Mini Review" Foods 9, no. 12: 1739. https://doi.org/10.3390/foods9121739
APA StyleDuarte, A. M., Silva, F., Pinto, F. R., Barroso, S., & Gil, M. M. (2020). Quality Assessment of Chilled and Frozen Fish—Mini Review. Foods, 9(12), 1739. https://doi.org/10.3390/foods9121739