Nutrient and Mineral Compositions of Wild Leafy Vegetables of the Karen and Lawa Communities in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Wild Leafy Vegetable Species
2.2. Study Sites
2.3. Preparation of Samples
2.4. Chemical Analyses
2.5. Data Analysis
3. Results
3.1. Cultural Food Significance Index (CFSI)
3.2. Nutritional Properties
3.3. Minerals Content
4. Discussion
4.1. Cultural Food Significance Index
4.2. Proximate Composition
4.3. Mineral Content
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuhnlein, H.V.; Erasmus, B.; Spigelski, D. Indigenous Peoples’ Food Systems: The Many Dimensions of Culture, Diversity and Environment for Nutrition and Health; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- FAO. The State of the World’s Biodiversity for Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019.
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2018 Building Climate Resilience for Food Security and Nutrition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018.
- RBG Kew. State of the World’s Plants 2016; Royal Botanic Gardens, Kew: Richmond, UK, 2016. [Google Scholar]
- Willis, K.J. State of the World’s Plants 2017; Royal Botanic Gardens, Kew: Richmond, UK, 2017. [Google Scholar]
- Jones, A.M.P.; Ragone, D.; Aiona, K.; Lane, W.A.; Murch, S.J. Nutritional and morphological diversity of breadfruit (Artocarpus, Moraceae): Identification of elite cultivars for food security. J. Food Compos. Anal. 2011, 24, 1091–1102. [Google Scholar] [CrossRef]
- Nkafamiya, I.; Osemeahon, S.; Modibbo, U.; Aminu, A. Nutritional status of non-conventional leafy vegetables, Ficus asperifolia and Ficus sycomorus. Afr. J. Food Sci. 2010, 4, 104–108. [Google Scholar]
- Salehi, M.; Kuhnlein, H.V.; Shahbazi, M.; Kimiagar, M.S.; Kolahi, A.A.; Mehrabi, Y. Effect of traditional food on nutrition improvement of Iranian tribeswomen. Ecol. Food Nutr. 2005, 44, 81–95. [Google Scholar] [CrossRef]
- Seal, T. Evaluation of nutritional potential of wild edible plants, traditionally used by the tribal people of Meghalaya state in India. Am. J. Plant Nutr Fertil. Technol. 2012, 2, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Dubey, P.K.; Chaurasiya, R.; Mathur, N.; Kumar, G.; Bharati, S.; Abhilash, P.C. Indian spinach: An underutilized perennial leafy vegetable for nutritional security in developing world. Energy Ecol. Environ. 2018, 3, 195–205. [Google Scholar] [CrossRef]
- Alam, M.K.; Rana, Z.H.; Islam, S.N.; Akhtaruzzaman, M. Comparative assessment of nutritional composition, polyphenol profile, antidiabetic and antioxidative properties of selected edible wild plant species of Bangladesh. Food Chem. 2020, 320, 126646. [Google Scholar] [CrossRef]
- Kongkachuichai, R.; Charoensiri, R.; Yakoh, K.; Kringkasemsee, A.; Insung, P. Nutrients value and antioxidant content of indigenous vegetables from Southern Thailand. Food Chem. 2015, 173, 838–846. [Google Scholar] [CrossRef]
- Ntuli, N.R. Nutrient content of scarcely known wild leafy vegetables from northern KwaZulu-Natal, South Africa. S. Afr. J. Bot. 2019, 127, 19–24. [Google Scholar] [CrossRef]
- García-Herrera, P.; Sánchez-Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Díez-Marqués, C.; Molina, M.; Tardío, J. Nutrient composition of six wild edible Mediterranean Asteraceae plants of dietary interest. J. Food Compos. Anal. 2014, 34, 163–170. [Google Scholar] [CrossRef]
- Baliga, M.S.; Shivashankara, A.R.; Haniadka, R.; Dsouza, J.; Bhat, H.P. Phytochemistry, nutritional and pharmacological properties of Artocarpus heterophyllus Lam. (jackfruit): A review. Food Res. Int. 2011, 44, 1800–1811. [Google Scholar] [CrossRef]
- Patel, J.J.; Acharya, S.R.; Acharya, N.S. Clerodendrum serratum (L.) Moon—A review on traditional uses, phytochemistry and pharmacological activities. J. Ethnopharmacol. 2014, 154, 268–285. [Google Scholar] [CrossRef] [PubMed]
- Pranskuniene, Z.; Dauliute, R.; Pranskunas, A.; Bernatoniene, J. Ethnopharmaceutical knowledge in Samogitia region of Lithuania: Where old traditions overlap with modern medicine. J. Ethnobiol. and Ethnomed. 2018, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Department of Social Development and Welfare. Highland Communities Within 20 Provinces of Thailand; Ministry of Social Development and Human Security: Bangkok, Thailand, 2016.
- Young, G. The Hill Tribes in Northern Thailand; Siam Society: Bangkok, Thailand, 1962. [Google Scholar]
- Schmidt-Vogt, D. Secondary forests in swidden agriculture in the highlands of Thailand. J. Trop. For. Sci. 2001, 13, 748–767. [Google Scholar]
- Schmidt-Vogt, D. Defining Degradation: The impacts of swidden on forests in Northern Thailand. Mt. Res. Dev. 1998, 18, 135–149. [Google Scholar] [CrossRef]
- Inta, A.; Shengji, P.; Balslev, H.; Wangpakapattanawong, P.; Trisonthi, C. A comparative study on medicinal plants used in Akha’s traditional medicine in China and Thailand, cultural coherence or ecological divergence? J. Ethnopharmacol. 2008, 116, 508–517. [Google Scholar] [CrossRef]
- Inta, A.; Trisonthi, P.; Trisonthi, C. Analysis of traditional knowledge in medicinal plants used by Yuan in Thailand. J. Ethnopharmacol. 2013, 149, 344–351. [Google Scholar] [CrossRef]
- Junsongduang, A.; Balslev, H.; Inta, A.; Jampeetong, A.; Wangpakapattanawong, P. Medicinal plants from swidden fallows and sacred forest of the Karen and the Lawa in Thailand. J. Ethnobiol. Ethnomedicine 2013, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Junsongduang, A.; Balslev, H.; Jampeetong, A.; Inta, A.; Wangpakapattanawong, P. Woody plant diversity in sacred forests and fallows in Chiang Mai, Thailand. Chiang Mai J. Sci. 2014, 41, 1132–1149. [Google Scholar]
- Khuankaew, S.; Srithi, K.; Tiansawat, P.; Jampeetong, A.; Inta, A.; Wangpakapattanawong, P. Ethnobotanical study of medicinal plants used by Tai Yai in Northern Thailand. J. Ethnopharmacol. 2014, 151, 829–838. [Google Scholar] [CrossRef]
- Panyadee, P.; Balslev, H.; Wangpakapattanawong, P.; Inta, A. Woody plant diversity in urban homegardens in Northern Thailand. Econ. Bot. 2016, 70, 285–302. [Google Scholar] [CrossRef]
- Phumthum, M.; Srithi, K.; Inta, A.; Junsongduang, A.; Tangjitman, K.; Pongamornkul, W.; Trisonthi, C.; Balslev, H. Ethnomedicinal plant diversity in Thailand. J. Ethnopharmacol. 2018, 214, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Punchay, K.; Inta, A.; Tiansawat, P.; Balslev, H.; Wangpakapattanawong, P. Traditional knowledge of wild food plants of Thai Karen and Lawa (Thailand). Genet. Res. Crop. Evol. 2020, 67, 1277–1299. [Google Scholar] [CrossRef]
- Kantasrila, R.; Pandith, H.; Balslev, H.; Wangpakapattanawong, P.; Panyadee, P.; Inta, A. Medicinal plants for treating musculoskeletal disorders among Karen in Thailand. Plants 2020, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- Srithi, K.; Balslev, H.; Wangpakapattanawong, P.; Srisanga, P.; Trisonthi, C. Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thailand. J. Ethnopharmacol. 2009, 123, 335–342. [Google Scholar] [CrossRef]
- Srithi, K.; Trisonthi, C.; Wangpakapattanawong, P.; Balslev, H. Medicinal plants used in Hmong women’s healthcare in northern Thailand. J. Ethnopharmacol. 2012, 139, 119–135. [Google Scholar] [CrossRef]
- Srithi, K.; Trisonthi, C.; Wangpakapattanawong, P.; Srisanga, P.; Balslev, H. Plant diversity in Hmong and Mien homegardens in northern Thailand. Econ. Bot. 2012, 66, 192–206. [Google Scholar] [CrossRef]
- Tangjitman, K.; Wongsawad, C.; Kamwong, K.; Sukkho, T.; Trisonthi, C. Ethnomedicinal plants used for digestive system disorders by the Karen of northern Thailand. J. Ethnobiol. Ethnomed. 2015, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Tangjitman, K.; Wongsawad, C.; Winijchaiyanan, P.; Sukkho, T.; Kamwong, K.; Pongamornkul, W.; Trisonthi, C. Traditional knowledge on medicinal plant of the Karen in northern Thailand: A comparative study. J. Ethnopharmacol. 2013, 150, 232–243. [Google Scholar] [CrossRef]
- Trisonthi, C.; Trisonthi, P. Ethnobotanical study in Thailand: A case study in Khun Yuam district, Mae Hong Son province. Thai J. Bot. 2009, 1, 1–23. [Google Scholar]
- Trisonthi, C.; Trisonthi, P. Ethnobotany of Lua and H’tin on Doi Phukha, Nan Province. Thai J. Bot. 2011, 3, 163–185. [Google Scholar]
- Turreira-García, N.; Vilkamaa, A.M.; Byg, A.; Theilade, I. Diversity, knowledge, and use of leafy vegetables in northern Thailand—Maintenance and transmission of ethnobotanical knowledge during urbanisation. Nat. Hist. Bull. Siam Soc. 2017, 62, 85–105. [Google Scholar]
- Pongamornkul, W.; Trisonthi, C.; Trisonthi, P.; Inta, A. Northern Thailand Ethnobotanical Index; The Botanical Garden Organization, Ministry of Natural Resource and Environment: Chiang Mai, Thailand, 2017. [Google Scholar]
- Tienboon, P. Macronutrient status of Karen hill tribe children aged 1–6 years in Northern Thailand. Thai J. Clin. Nutr. 2010, 4, 83–87. [Google Scholar]
- Tienboon, P.; Wangpakapattanawong, P. Nutritional status, body composition and health conditions of the Karen hill tribe children aged 1–6 years in Northern Thailand. Asia Pac. J. Clin. Nutr. 2007, 16, 279–285. [Google Scholar] [PubMed]
- Tienboon, P.; Wangpakapattanawong, P. Vitamin A status of the minority ethnic group of Karen hill tribe children aged 1–6 years in Northern Thailand. Asia Pac. J. Clin. Nutr. 2007, 16, 158–162. [Google Scholar] [PubMed]
- Tienboon, P.; Wangpakapattanawong, P.; Thomas, D.E.; Kimmins, J.P. Vitamins and minerals status of Karen hill tribe children aged 1–6 years in Northern Thailand. Thai J. Clin.Nutr. 2008, 2, 34–38. [Google Scholar]
- Phillips, K.M.; Pehrsson, P.R.; Agnew, W.W.; Scheett, A.J.; Follett, J.R.; Lukaski, H.C.; Patterson, K.Y. Nutrient composition of selected traditional United States Northern Plains Native American plant foods. J. Food Compos. Anal. 2014, 34, 136–152. [Google Scholar] [CrossRef] [Green Version]
- Sotelo, A.; López-García, S.; Basurto-Peña, F. Content of nutrient and antinutrient in edible flowers of wild plants in Mexico. Plant. Food Hum. Nutr. 2007, 62, 133–138. [Google Scholar] [CrossRef]
- Pawera, L.; Khomsan, A.; Zuhud, E.A.M.; Hunter, D.; Ickowitz, A.; Polesny, Z. Wild food plants and trends in their use: From knowledge and perceptions to drivers of change in West Sumatra, Indonesia. Foods 2020, 9, 1240. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020 Transforming Food Systems for Affordable Healthy Diets; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020.
- Wessells, K.R.; Brown, K.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef] [Green Version]
- Rojroongwasinkul, N.; Kijboonchoo, K.; Wimonpeerapattana, W.; Purttiponthanee, S.; Yamborisut, U.; Boonpraderm, A.; Kunapan, P.; Thasanasuwan, W.; Khouw, I. SEANUTS: The nutritional status and dietary intakes of 0.5–12-year-old Thai children. Brit. J. Nutr. 2013, 110, S36–S44. [Google Scholar] [CrossRef] [Green Version]
- Roesler, A.L.; Smithers, L.G.; Wangpakapattanawong, P.; Moore, V. Stunting, dietary diversity and household food insecurity among children under 5 years in ethnic communities of Northern Thailand. J. Public Health 2018, 41, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Sang-ngoen, D.; Hutchinson, C.; Satheannoppakao, W.; Tipayamongkholgul, M. Dietary iron intake and availability in hill tribe and urban women, Chiang Rai province, Northern Thailand. Ecol. Food Nutr. 2020, 59, 399–419. [Google Scholar] [CrossRef] [PubMed]
- Pieroni, A. Evaluation of the cultural significance of wild food botanicals traditionally consumed in Northwestern Tuscany, Italy. J. Ethnobiol. 2001, 21, 89–104. [Google Scholar]
- Sujarwo, W.; Caneva, G. Using quantitative indices to evaluate the cultural importance of food and nutraceutical plants: Comparative data from the Island of Bali (Indonesia). J. Cult. Herit. 2016, 18, 342–348. [Google Scholar] [CrossRef]
- International Society of Ethnobiology. International Society of Ethnobiology Code of Ethics (with 2008 additions). Available online: http://ethnobiology.net/code-of-ethics/ (accessed on 14 November 2020).
- World Flora Online. Available online: http://www.worldfloraonline.org (accessed on 3 August 2020).
- Horwitz, W.; Latimer, G.W. Official Methods of Aanalysis of AOAC International, 18th ed.; Association of Official Agricultural Chemists International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Kalra, Y. Handbook of Reference Methods for Plant. Analysis; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Alam, M.K.; Rana, Z.H.; Islam, S.N. Comparison of the proximate composition, total carotenoids and total polyphenol content of nine orange-fleshed sweet potato varieties grown in Bangladesh. Foods 2016, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Medicine, I.; Meyers, L.D.; Hellwig, J.P.; Otten, J.J. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Committees of Dietary Reference Intake for Thais. Dietary Reference Intake for Thais 2020; Bureau of Nutrition, Department of Health, Ministry of Public Health: Bangkok, Thailand, 2020.
- Garibay-Orijel, R.; Caballero, J.; Estrada-Torres, A.; Cifuentes, J. Understanding cultural significance, the edible mushrooms case. J. Ethnobiol. Ethnomed. 2007, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso-Aguilar, L.E.; Montoya, A.; Kong, A.; Estrada-Torres, A.; Garibay-Orijel, R. The cultural significance of wild mushrooms in San Mateo Huexoyucan, Tlaxcala, Mexico. J. Ethnobiol. Ethnomed. 2014, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Thakur, D.; Sharma, A.; Uniyal, S.K. Why they eat, what they eat: Patterns of wild edible plants consumption in a tribal area of western Himalaya. J. Ethnobiol. Ethnomed. 2017, 13, 70. [Google Scholar] [CrossRef] [Green Version]
- Sõukand, R. Perceived reasons for changes in the use of wild food plants in Saaremaa, Estonia. Appetite 2016, 107, 231–241. [Google Scholar] [CrossRef]
- Schönfeldt, H.C.; Pretorius, B. The nutrient content of five traditional South African dark green leafy vegetables—A preliminary study. J. Food Compos. Anal. 2011, 24, 1141–1146. [Google Scholar] [CrossRef]
- Patricia, O.; Zoue, L.; Mégnanou, R.-M.; Doue, R.; Niamke, S. Proximate composition and nutritive value of leafy vegetables consumed in Northern Cote d’Ivoire. Eur. Sci. J. 2014, 10, 212–227. [Google Scholar]
- Rachkeeree, A.; Kantadoung, K.; Suksathan, R.; Puangpradab, R.; Page, P.A.; Sommano, S.R. Nutritional compositions and phytochemical properties of the edible flowers from selected Zingiberaceae found in Thailand. Front. Nutr. 2018, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Jyothi Lakshmi, A.; Manjunath, M.N.; Prakash, J. Analysis of nutrient and antinutrient content of underutilized green leafy vegetables. LWT-Food Sci. Technol 2005, 38, 339–345. [Google Scholar] [CrossRef]
- Kwenin, W.; Wolli, M.; Dzomeku, B.J.J.o.A.; Sciences, P. Assessing the nutritional value of some African indigenous green leafy vegetables in Ghana. J. Anim. Plant. Sci. 2011, 10, 1300–1305. [Google Scholar]
- Abbasi, A.M.; Shah, M.H.; Khan, M.A. Wild Edible Vegetables of Lesser Himalayas: Ethnobotanical and Nutraceutical Aspects; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Aberoumand, A. Preliminary assessment of nutritional value of plant-based diets in relation to human nutrients. Int. J. Food Sci. Nutr. 2009, 60, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Sinha, B.K.; Bhattacharjee, S.; Seal, T. Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water soluble vitamins and phenolics by RP-HPLC in some lesser used wild edible plants. Heliyon 2019, 5, e01431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for Standard Reference, Release 28 (Slightly Revised). Nutrient Data Laboratory. Available online: http://www.ars.usda.gov/nea/bhnrc/mafcl (accessed on 25 November 2020).
- EFSA Panel on Dietetic Products Nutrition, and Allergies. Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. EFSA J. 2010, 8, 1462. [Google Scholar]
- Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [Green Version]
- Ekwumemgbo, P.A.; Sallau, M.S.; Omoniyi, K.I.; Zubairu, S.Y. Proximate and anti-nutritional constituents of Abelmoschus esculentus grown in Fadaman Kubanni, Zaria, Kaduna State. Niger. J. Sci. Res. Rep. 2014, 3, 2015–2027. [Google Scholar]
- Sarker, U.; Oba, S. Nutrients, minerals, pigments, phytochemicals, and radical scavenging activity in Amaranthus blitum leafy vegetables. Sci. Rep.-UK 2020, 10, 3868. [Google Scholar] [CrossRef] [Green Version]
- Puwastien, P.; Burlingame, B.; Raroengwichit, M.; Sungpuag, P. ASEAN Food Composition Tables. Available online: http://www.inmu.mahidol.ac.th/aseanfoods/doc/OnlineASEAN_FCD_V1_2014.pdf (accessed on 22 September 2020).
- Sritalahareuthai, V.; Aursalung, A.; On-nom, N.; Temviriyanukul, P.; Charoenkiatkul, S.; Suttisansanee, U. Nutritional composition of conserved Kadsura spp. plants in Northern Thailand. Heliyon 2020, 6, e04451. [Google Scholar] [CrossRef] [PubMed]
- Rana, Z.H.; Alam, M.K.; Akhtaruzzaman, M. Nutritional composition, total phenolic content, antioxidant and α-amylase inhibitory activities of different fractions of selected wild edible plants. Antioxidants 2019, 8, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Manganese; United States Department of Health and Human Services: Washington, DC, USA, 2012.
- Buchman, A.L. Manganese. In Modern nutrition in health and disease; Ross, C.A., Caballero, B., Cousins, R.J., Tucker, K.L., Ziegler, T.R., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; pp. 238–244. [Google Scholar]
- Pintawong., C.; Nontaso, A.; Kawinate, S. Guidelines for Management of Manganese Mineral Resources. Available online: http://www.dmr.go.th/download/law_minerals/Manganese.pdf (accessed on 3 October 2020).
Scientific Name (Family); Voucher Number (Punchay # Deposited at CMUB) | Folk Name [29] | Traditional Use by the Karen (K) and the Lawa (L) [29] | Distribution | Collection Period | CFSI Score |
---|---|---|---|---|---|
Oroxylum indicum (L.) Kurz (Bignoniaceae) 566 | Do ka (K) Dak ra wi (L) | Young shoots or fruits eaten raw or cooked. Inner bark grated and added to food for bitter taste (K, L). | Asia | All year | 813 |
Centella asiatica (L.) Urb. (Apiaceae) 546 | Sui po na do (K) Phak nhok (L) | Aerial parts eaten raw as a side dish for treating bruises (K, L). | Africa, Asia, North- and South America, and Oceania | All year | 629 |
Senegalia rugata (Lam.) Britton and Rose (Leguminosae) 605 | Pa chi (K) Kad ka ha (L) | Young shoots eaten raw or cooked with fish (K, L). | Asia and Oceania | All year | 437 |
Ficus auriculata Lour. (Moraceae) 542 | Ta kue po (K) Mae (L) | Shoots boiled as a side dish or cooked (K, L). | Asia | May–Oct | 432 |
Clerodendrum glandulosum Lindl. (Lamiaceae) 304 | Ko ko do (K) Tung lam (L) | Young leaves boiled and pressed to reduce bitter taste, then fried with eggs or cooked as soup (K, L). | Asia | Dec–Apr | 392 |
Spondias pinnata (L. f.) Kurz (Anacardiaceae) 443 | Pi sae (K) Kok (L) | Young leaves eaten raw as a side dish (K, L). Stems decocted for treating diarrhea (K). | Asia | Jun–Jan | 379 |
Lygodium flexuosum (L.) Sw. (Lygodiaceae) 457 | Ki ko do (K) Wu wia (L) | Shoots boiled as a side dish or cooked (K, L). Roots boiled as a beverage (tea) (K). | Asia and Oceania | May–Feb | 378 |
Oenanthe javanica (Blume) DC. (Apiaceae) 564 | Po a do (K) Tu klae (L) | Aerial parts eaten raw as a side dish (K, L). | Asia | Jun–Dec | 365 |
Acmella paniculata (Wall. ex DC.) R.K.Jansen (Asteraceae) 594 | Hor te mi (K) Tu plei (L) | Aerial parts eaten raw with chili paste or cooked (K, L). Roots chewed to treat toothache (K). | Asia | Jun–Jan | 353 |
Acmella uliginosa (Sw.) Cass. (Asteraceae) 522 | Hor te mi (K) Tu plei (L) | Aerial parts eaten raw with chili paste or cooked. Roots chewed to treat toothache (K, L). | Native pantropical | Jun–Jan | 353 |
Monochoria vaginalis (Burm.f.) C.Presl (Pontederiaceae) 690 | No do (K) Seuk lek (L) | Young shoots and petioles eaten raw or cooked (K, L). | Asia and North America (introduced) | May–Sep | 336 |
Musa acuminata Colla (Musaceae) 536 | Ya pa la (K) Lha wong pia (L) | Pseudostems chopped and cooked as soup/or used as fodder; inflorescences were eaten raw or cooked (K, L). | Throughout tropics in Africa, America, and Asia | All year | 308 |
Species | Moisture Content | Ash | Protein | Fat | Fiber | Carbohydrate |
---|---|---|---|---|---|---|
Acmella paniculata | 87.4 ± 1.6 c | 1.7 ± 0.2 bc | 2.92 ± 0.4 de | 0.55 ± 0.07 f | 2.17 ± 0.2 bc | 5.24 ± 0.8 c |
Acmella uliginosa | 88.9 ± 1.5 c | 1.4 ± 0.2 abc | 3.58 ± 0.1 e | 0.34 ± 0.03 cd | 1.46 ± 0.3 ab | 4.17 ± 0.6 bc |
Centella asiatica | 87.6 ± 1.7 c | 1.8 ± 0.2 bc | 2.71 ± 0.4 a | 0.32 ± 0.04 cd | 1.84 ± 0.3 abc | 5.69 ± 0.8 c |
Clerodendum glandulosum | 76.3 ± 1.8 b | 1.8 ± 0.1 bc | 5.33 ± 0.4 f | 0.48 ± 0.04 ef | 3.01 ± 0.3 cd | 13.08 ± 1.0 e |
Ficus auriculata | 86.6 ± 1.1 c | 1.9 ± 0.1 c | 2.89 ± 0.3 de | 0.34 ± 0.03 cd | 3.77 ± 0.3 e | 4.47 ± 0.4 bc |
Lygodium flexuosum | 62.9 ± 2.6 a | 2.8 ± 0.2 d | 3.78 ± 0.3 e | 0.78 ± 0.07 g | 11.82 ± 0.7 e | 17.94 ± 1.3 f |
Monochoria vaginalis | 94.8 ± 1.2 d | 1.1 ± 0.2 ab | 0.56 ± 0.1 ab | 0.11 ± 0.03 a | 0.79 ± 0.2 a | 2.63 ± 0.6 ab |
Musa acuminata | 95.3 ± 1.0 d | 1.2 ± 0.2 ab | 0.48 ± 0.1 a | 0.10 ± 0.02 a | 1.36 ± 0.3 ab | 1.54 ± 0.4 a |
Oenanthe javanica | 88.7 ± 3.0 c | 2.1 ± 0.5 cd | 1.85 ± 0.4 cd | 0.17 ± 0.05 ab | 2.87 ± 0.7 cd | 4.26 ± 1.3 bc |
Oroxylum indicum | 86.8 ± 1.0 c | 0.8 ± 0.1 a | 1.46 ± 0.1 bc | 0.26 ± 0.02 bc | 2.03 ± 0.2 bc | 8.65 ± 0.7 d |
Senegalia rugata | 85.7 ± 1.7 c | 0.8 ± 0.1 a | 4.77 ± 0.6 f | 0.41 ± 0.05 de | 3.98 ± 0.5 e | 4.32 ± 0.5 bc |
Spondias pinnata | 75.6 ± 0.8 b | 4.0 ± 0.3 e | 3.61 ± 0.1 e | 0.74 ± 0.03 g | 3.84 ± 0.4 e | 11.93 ± 0.4 e |
Species | Plant part | P | K | Ca | Mg | Na | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|---|
Acmella paniculata | Aerial parts | 40.5 ± 0.5 de | 356.2 ± 1.1 ab | 183.4 ± 4.5 c | 55.3 ± 2.0 ef | 1.8 ± 0.1 abc | 11.1 ± 1.2 e | 1.8 ± 1.1 ab | 6.7 ± 1.10 de | 0.04 ± 0.00 d |
Acmella uliginosa | Aerial parts | 44.2 ± 0.6 f | 549.7 ± 9.9 cde | 147.8 ± 1.8 b | 56.5 ± 1.1 f | 0.7 ± 0.1 a | 10.7 ± 0.3 e | 7.1 ± 1.0 c | 1.9 ± 0.19 ab | 0.09 ± 0.00 f |
Centella asiatica | Leaves | 32.2 ± 1.4 c | 377.0 ± 42.0 abc | 176.7 ± 10.5 bc | 104.4 ± 2.8 h | 21.2 ± 1.6 e | 4.1 ± 0.2 bc | 12.0 ± 0.7 de | 10.9 ± 1.86 f | 0.02 ± 0.00 b |
Clerodendum glandulosum | Young leaves | 71.1 ± 2.9 h | 693.7 ± 11.9 e | 24.7 ± 3.1 a | 69.8 ± 3.2 g | 1.5 ± 0.1 abc | 2.2 ± 0.1 ab | 10.9 ± 1.5 d | 19.4 ± 2.63 h | 0.34 ± 0.01 g |
Ficus auriculata | Young leaves | 48.6 ± 1.1 g | 447.2 ± 7.7 bcd | 338.1 ± 15.2 d | 50.1 ± 3.2 de | 4.8 ± 1.1 d | 5.5 ± 0.1 bc | 3.3 ± 0.3 b | 5.7 ± 0.34 cd | 0.05 ± 0.00 e |
Lygodium flexuosum | Young leaves | 44.2 ± 1.9 f | 668.3 ± 21.8 e | 15.4 ± 0.8 a | 57.4 ± 3.6 f | 2.4 ± 0.4 c | 6.3 ± 4.3 cd | 14.0 ± 1.3 ef | 7.0 ± 0.68 de | 0.03 ± 0.00 cd |
Monochoria vaginalis | Leaves | 16.4 ± 0.4 b | 253.4 ± 10.9 a | 28.5 ± 1.6 a | 12.4 ± 0.6 bc | 0.8 ± 0.1 ab | 9.3 ± 0.2 de | 15.7 ± 0.3 f | 3.0 ± 0.42 abc | <0.01 a |
Musa acuminata | Psuedostem | 9.3 ± 1.0 a | 591.0 ± 25.5 de | 2.6 ± 0.1 a | 8.0 ± 0.8 ab | 0.4 ± 0.1 a | 0.4 ± 0.1 a | 6.3 ± 0.9 c | 4.6 ± 0.5 bcd | <0.01 a |
Oenanthe javanica | Aerial parts | 43.5 ± 1.5 ef | 1291.3 ± 254 f | 170.2 ± 12.0 bc | 46.4 ± 0.8 d | 2.2 ± 0.1 bc | 7.0 ± 0.6 cd | 8.4 ± 0.5 c | 14.0 ± 0.5 g | 0.06 ± 0.00 e |
Oroxylum indicum | Fruits | 31.0 ± 1.0 c | 235.3 ± 9.2 a | 3.0 ± 0.4 a | 14.2 ± 2.1 c | 0.5 ± 0.0 a | 0.3 ± 0.0 a | 0.2 ± 0.0 a | 6.4 ± 0.9 de | 0.41 ± 0.01 h |
Senegalia rugata | Young leaves | 77.7 ± 1.5 i | 221.7 ± 11.2 a | 1.0 ± 0.1 a | 13.4 ± 1.0 bc | 0.9 ± 0.1 ab | 0.7 ± 0.0 a | 0.4 ± 0.0 a | 9.0 ± 1.1 ef | 0.01 ± 0.00 ab |
Spondias pinnata | Young leaves | 37.8 ± 1.4 d | 244.8 ± 35.5 a | 982.9 ± 37.2 e | 6.0 ± 0.2 a | 1.2 ± 0.4 abc | 2.4 ± 0.4 ab | 8.1 ± 1.1 c | 1.4 ± 0.2 a | 0.02 ± 0.00 bc |
RDA 1 and UL 2 | ||||||||||
Male | 700‒(4000) | 4700 * | 1000‒(2500) | 330‒(350) ** | 1500‒(2300) | 8‒(45) | 2.3‒(11) | 11‒(40) | 0.9‒(10) | |
Female | 700‒(4000) | 4700 * | 1000‒(2500) | 255‒(350) ** | 1500‒(2300) | 18‒(45) | 1.8‒(11) | 8‒(40) | 0.9‒(10) | |
Pregnancy | 700‒(3500) | 4700 * | 1000‒(2500) | 290‒(350) ** | 1500‒(2300) | 27‒(45) | 2.0‒(11) | 11‒(40) | 1‒(8) | |
Lactation | 700‒(4000) | 5100 * | 1000‒(2500) | 255‒(350) ** | 1500‒(2300) | 9‒(45) | 2.6‒(11) | 12‒(40) | 1.3‒(8) |
Scientific Name | % of RDA (Male/Female) | ||||
P | K | Ca | Mg | Na | |
Acmella paniculata | 5 | 7 | 18 | 16/21 | 0.12 |
Acmella uliginosa | 6 | 11 | 14 | 17/22 | 0.04 |
Centella asiatica | 4 | 8 | 17 | 31/41 | 1.41 |
Clerodendum glandulosum | 10 | 14 | 2 | 21/27 | 0.10 |
Ficus auriculata | 7 | 9 | 33 | 15/19 | 0.32 |
Lygodium flexuosum | 6 | 14 | 1 | 17/22 | 0.16 |
Monochoria vaginalis | 2 | 5 | 2 | 3/4 | 0.05 |
Musa acuminata | 1 | 12 | 0.2 | 2/3 | 0.02 |
Oenanthe javanica | 6 | 27 | 17 | 14/18 | 0.14 |
Oroxylum indicum | 4 | 5 | 0.3 | 4/5 | 0.03 |
Senegalia rugata | 11 | 4 | 0.1 | 4/5 | 0.06 |
Spondias pinnata | 5 | 5 | 98 | 1/2 | 0.08 |
Scientific Name | % of RDA (Male/Female) | ||||
Fe | Mn | Zn | Cu | ||
Acmella paniculata | 138/61 | 78/100 | 60/83 | 4 | |
Acmella uliginosa | 133/59 | 308/394 | 17/23 | 10 | |
Centella asiatica | 51/22 | 521/666 | 99/136 | 2.2 | |
Clerodendum glandulosum | 27/12 | 389/605 | 176/242 | 37 | |
Ficus auriculata | 68/30 | 143/183 | 51/71 | 5 | |
Lygodium flexuosum | 78/35 | 608/777 | 63/87 | 3 | |
Monochoria vaginalis | 116/51 | 682/872 | 27/37 | <1 | |
Musa acuminata | 5/2 | 273/350 | 41/57 | <1 | |
Oenanthe javanica | 87/38 | 365/466 | 127/175 | 6 | |
Oroxylum indicum | 3/1 | 8/11 | 58/80 | 45 | |
Senegalia rugata | 8./3 | 17/22 | 81/112 | 1 | |
Spondias pinnata | 30/13 | 352/450 | 12/17 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punchay, K.; Inta, A.; Tiansawat, P.; Balslev, H.; Wangpakapattanawong, P. Nutrient and Mineral Compositions of Wild Leafy Vegetables of the Karen and Lawa Communities in Thailand. Foods 2020, 9, 1748. https://doi.org/10.3390/foods9121748
Punchay K, Inta A, Tiansawat P, Balslev H, Wangpakapattanawong P. Nutrient and Mineral Compositions of Wild Leafy Vegetables of the Karen and Lawa Communities in Thailand. Foods. 2020; 9(12):1748. https://doi.org/10.3390/foods9121748
Chicago/Turabian StylePunchay, Kittiyut, Angkhana Inta, Pimonrat Tiansawat, Henrik Balslev, and Prasit Wangpakapattanawong. 2020. "Nutrient and Mineral Compositions of Wild Leafy Vegetables of the Karen and Lawa Communities in Thailand" Foods 9, no. 12: 1748. https://doi.org/10.3390/foods9121748
APA StylePunchay, K., Inta, A., Tiansawat, P., Balslev, H., & Wangpakapattanawong, P. (2020). Nutrient and Mineral Compositions of Wild Leafy Vegetables of the Karen and Lawa Communities in Thailand. Foods, 9(12), 1748. https://doi.org/10.3390/foods9121748