A Highly Sensitive “on-off” Time-Resolved Phosphorescence Sensor Based on Aptamer Functionalized Magnetite Nanoparticles for Cadmium Detection in Food Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. Characterization
2.3. Synthesis of Phosphorescence Nanorods
2.4. Synthesis of Amine-Functionalized Magnetic Beads
2.5. Immobilization of Cd2+-Binding Aptamers onto Magnetic Beads and Complementary DNA Hybridization
2.6. Detection of Cd2+
2.7. Selectivity of Cd2+
2.8. Food Sample Preparation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Zn2GeO4:Mn Nanorods
3.2. Characterization of Magnetic Probes for Cd2+ Detection
3.3. Optimization of Experimental Conditions for the Cd2+ Detection
3.4. Quantification of the Cd2+ Assay
3.5. Selectivity Test and Cd2+ Assay in Real Food Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moulis, J.-M.; Thevenod, F. New perspectives in cadmium toxicity: An introduction. Biometals 2010, 23, 763–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Yuan, Y.; Long, M.F.; Luo, T.W.; Bian, J.C.; Liu, X.Z.; Gu, J.H.; Zou, H.; Song, R.L.; Wang, Y.; et al. Beclin-1-mediated autophagy protects against cadmium-activated apoptosis via the Fas/FasL pathway in primary rat proximal tubular cell culture. Sci. Rep. 2017, 7, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Z.; Wei, L.; Wu, S.; Duan, N.; Li, X.; Wang, Z. A colorimetric aptamer-based method for detection of cadmium using the enhanced peroxidase-like activity of Au-MoS2 nanocomposites. Anal. Biochem. 2020, 608, 113844. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gou, H.L.; Al-Ogaidi, I.; Wu, N.Q. Nanostructured sensors for detection of heavy metals: A review. ACS Sustain. Chem. Eng. 2013, 1, 713–723. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Q.Q.; Hu, X.X.; Liu, H.Y.; Zheng, W.; Chen, X.Y.; Yuan, Q.; Tan, W.H. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 2017, 11, 8010–8017. [Google Scholar] [CrossRef]
- Sharma, A.; Khan, R.; Catanante, G.; Sherazi, T.A.; Bhand, S.; Hayat, A.; Marty, J.L. Designed strategies for fluorescence-based biosensors for the detection of mycotoxins. Toxins 2018, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.K.; Lu, Y.F.; Yan, C.L.; Lu, Y. DNA-functionalization gold nanoparticles based fluorescence sensor for sensitive detection of Hg2+ in aqueous solution. Sens. Actuator B-Chem. 2015, 211, 1–6. [Google Scholar] [CrossRef]
- Wen, Y.Q.; Xing, F.F.; He, S.J.; Song, S.P.; Wang, L.H.; Long, Y.T.; Li, D.; Fan, C.H. A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem. Commun. 2010, 46, 2596–2598. [Google Scholar] [CrossRef]
- Qian, Z.S.; Shan, X.Y.; Chai, L.J.; Chen, J.R.; Peng, H. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens. Bioelectron. 2015, 68, 225–231. [Google Scholar] [CrossRef]
- Zuou, B.; Chen, Y.T.; Yang, X.Y.; Wang, Y.S.; Hu, X.J.; Suo, Q.L. An ultrasensitive colorimetric strategy for detection of cadmium based on the peroxidase-like activity of g-quadruplex-Cd(II) specific aptamer. Anal. Sci. 2019, 35, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.-F.; Wang, Y.-S.; Zhou, B.; Yu, J.-H.; Peng, L.-L.; Huang, Y.-Q.; Li, X.-J.; Chen, S.-H.; Tang, X.; Wang, X.-F. A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium(II). Anal. Bioanal. Chem. 2017, 409, 4951–4958. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Mou, Q.B.; Wang, D.L.; Zhu, X.Y.; Yan, D.Y. Dendritic polymers for theranostics. Theranostics 2016, 6, 930–947. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulou, M.S.; Wark, A.W.; Birch, D.J.S.; Gregory, C.D. Phenotypic analysis of extracellular vesicles: A review on the applications of fluorescence. J. Extracell. Vesicles 2020, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, Q.Q.; Wang, Y.Q.; Shen, H.J.; Yuan, Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale 2017, 9, 6204–6218. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, Q.Q.; Zheng, W.; Liu, H.Y.; Yin, C.Q.; Wang, F.B.; Chen, X.Y.; Yuan, Q.; Tan, W.H. One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 2017, 11, 8185–8191. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.X.; Shao, J.J.; Jing, X.H.; Zheng, W.W.; Liu, H.; Zhao, Y. Autoluminescence-free dual tumor marker biosensing by persistent luminescence nanostructures. ACS Sustain. Chem. Eng. 2020, 8, 686–694. [Google Scholar] [CrossRef]
- Wu, Y.G.; Zhan, S.S.; Wang, L.M.; Zhou, P. Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst 2014, 139, 1550–1561. [Google Scholar] [CrossRef]
- Srivastava, B.B.; Gupta, S.K.; Li, Y.; Mao, Y.B. Bright persistent green emitting water-dispersible Zn2GeO4:Mn nanorods. Dalton Trans. 2020, 49, 7328–7340. [Google Scholar] [CrossRef]
- Lai, B.; Cui, G.; Wang, H.; Song, Y.; Tan, M. Identification of fluorescent nanoparticles from roasted sweet potato (Ipomoea batatas) during normal cooking procedures. LWT 2020, 134, 109989. [Google Scholar] [CrossRef]
- Wang, L.Y.; Bao, J.; Wang, L.; Zhang, F.; Li, Y.D. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem. Eur. J. 2006, 12, 6341–6347. [Google Scholar] [CrossRef]
- Ning, H.; Xie, H.; Zhao, Q.S.; Liu, J.L.; Tian, W.; Wang, Y.X.; Wu, M.B. Electrospinning ZnO/carbon nanofiber as binder-free and selfsupported anode for Li-ion batteries. J. Alloys Compd. 2017, 722, 716–720. [Google Scholar] [CrossRef]
- Kogularasu, S.; Akilarasan, M.; Chen, S.M.; Elaiyappillai, E.; Johnson, P.M.; Chen, T.W.; Al-Hemaid, F.M.A.; Ali, M.A.; Elshikh, M.S. A comparative study on conventionally prepared MnFe2O4 nanospheres and template-synthesized novel MnFe2O4 nano-agglomerates as the electrodes for biosensing of mercury contaminations and supercapacitor applications. Electrochim. Acta 2018, 290, 533–543. [Google Scholar] [CrossRef]
- Zhang, H.H.; Chen, Y.Y.; Zhu, X.Y.; Zhou, H.C.; Yao, Y.; Li, X.D. Mn2+-doped Zn2GeO4 for photocatalysis hydrogen generation. Int. J. Energy Res. 2019, 43, 5013–5019. [Google Scholar] [CrossRef]
- Bruce, I.J.; Taylor, J.; Todd, M.; Davies, M.J.; Borioni, E.; Sangregorio, C.; Sen, T. Synthesis, characterisation and application of silica-magnetite nanocomposites. J. Magn. Magn. Mater. 2004, 284, 145–160. [Google Scholar] [CrossRef]
- Wang, H.; Su, W.; Tan, M. Endogenous fluorescence carbon dots derived from food items. Innovation 2020, 1, 100009. [Google Scholar] [CrossRef]
- Wei, H.; Li, B.L.; Li, J.; Wang, E.K.; Dong, S.J. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem. Commun. 2007, 3735–3737. [Google Scholar] [CrossRef]
- Migliorini, F.L.; Teodoro, K.B.R.; Correa, D.S. Green-synthesized gold nanoparticles supported oncellulose nanowhiskers for easy-to-interpret colorimetric detection of cadmium(II). Cell. Chem. Technol. 2020, 54, 407–413. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, T.; Hu, Q.; Zhong, L.; Wang, X.; Wan, H.; Wang, P. In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system. Talanta 2020, 208. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, X.-Y.; Wang, Y.-S.; Yi, J.-C.; Zeng, Z.; Zhang, H.; Chen, Y.-T.; Hu, X.-J.; Suo, Q.-L. Label-free fluorescent aptasensor of Cd2+ detection based on the conformational switching of aptamer probe and SYBR green I. Microchem. J. 2019, 144, 377–382. [Google Scholar] [CrossRef]
Sample | Added | Detected (Mean n = 3) | Recovery (%) |
---|---|---|---|
Spring water | 1 ng mL−1 | 1.08 ± 0.08 ng mL−1 | 108.46 ± 8.04 |
3 ng mL−1 | 3.36 ± 0.03 ng mL−1 | 112.00 ± 0.98 | |
5 ng mL−1 | 5.45± 0.16 ng mL−1 | 109.00 ± 3.16 | |
surf clam | 0.025 mg kg−1 | 0.027 ± 0.002 mg kg−1 | 108.00 ± 0.08 |
0.087 mg kg−1 | 0.089 ± 0.002 mg kg−1 | 101.41 ± 2.58 | |
0.125 mg kg−1 | 0.135 ± 0.002 mg kg−1 | 108.05 ± 1.22 |
Methods | Materials | LOD | Real Samples | Reference |
---|---|---|---|---|
Colorimetric | Cellulose nano-whiskers, AuNPs | 60 nM | Water | [27] |
Colorimetric | Aptamer, AuNPs | 14.56 nM | Water | [28] |
Colorimetric | Aptamer, AuNP, MoS2 | 9.1 nM | White wine | [3] |
Fluorescence | Aptamer, SYBR® green Ι | 4.42 nM | Water | [29] |
Fluorescence | Aptamer, FAM | 2.15 nM | Water | [11] |
Phosphorescence | Aptamer, Zn2GeO4:Mn, BHQ1 | 0.52 nM | Water, Clams | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, B.; Wang, R.; Yu, X.; Wang, H.; Wang, Z.; Tan, M. A Highly Sensitive “on-off” Time-Resolved Phosphorescence Sensor Based on Aptamer Functionalized Magnetite Nanoparticles for Cadmium Detection in Food Samples. Foods 2020, 9, 1758. https://doi.org/10.3390/foods9121758
Lai B, Wang R, Yu X, Wang H, Wang Z, Tan M. A Highly Sensitive “on-off” Time-Resolved Phosphorescence Sensor Based on Aptamer Functionalized Magnetite Nanoparticles for Cadmium Detection in Food Samples. Foods. 2020; 9(12):1758. https://doi.org/10.3390/foods9121758
Chicago/Turabian StyleLai, Bin, Ruiying Wang, Xiaoting Yu, Haitao Wang, Zhouping Wang, and Mingqian Tan. 2020. "A Highly Sensitive “on-off” Time-Resolved Phosphorescence Sensor Based on Aptamer Functionalized Magnetite Nanoparticles for Cadmium Detection in Food Samples" Foods 9, no. 12: 1758. https://doi.org/10.3390/foods9121758
APA StyleLai, B., Wang, R., Yu, X., Wang, H., Wang, Z., & Tan, M. (2020). A Highly Sensitive “on-off” Time-Resolved Phosphorescence Sensor Based on Aptamer Functionalized Magnetite Nanoparticles for Cadmium Detection in Food Samples. Foods, 9(12), 1758. https://doi.org/10.3390/foods9121758