Characterization of Phytochemicals in Berry Fruit Wines Analyzed by Liquid Chromatography Coupled to Photodiode-Array Detection and Electrospray Ionization/Ion Trap Mass Spectrometry (LC-DAD-ESI-MSn) and Their Antioxidant and Antimicrobial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Wine Preparation
2.3. Preparation of Dealcoholated Red Wines (DRW)
2.4. Analysis of Organic Acids, Sugars and Alcohols
2.5. Total Phenolic Content (TPC) Assay
2.6. Analysis of Antioxidant Capacity
2.6.1. ABTS Radical-Scavenging System
2.6.2. DPPH Radical-Scavenging System
2.6.3. FRAP Method
2.7. LC–MSn Identification of Wines Compounds
2.8. HPLC Analysis of Polyphenols
2.9. Analysis of Antimicrobial Activity in Dealcoholated Red Wines (DRW)
Antimicrobial Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Sugars, Organic Acids and Alcohols
3.2. Total Content of Polyphenols and Antioxidant Activity of Fruit Wines
3.3. Polyphenols in Wines
3.3.1. Anthocyanins
3.3.2. Phenolic Acids
3.3.3. Flavonols
3.3.4. Other Bioactive Compounds
3.4. Effect of Dealcoholated Fruit Wines on Microbial Growth
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Čakar, U.; Petrović, A.; Pejin, B.; Čakar, M.; Živković, M.; Vajs, V.; Đorđević, B. Fruit as a substrate for a wine: A case study of selected berry and drupe fruit wines. Sci. Hortic. 2019, 244, 42–49. [Google Scholar] [CrossRef]
- Czyżowska, A.; Pogorzelski, E. Changes to polyphenols in the process of production of musts and wines from blackcurrants and cherries. Part I. Total polyphenols and phenolic acids. Eur. Food Res. Technol. 2002, 214, 148–154. [Google Scholar] [CrossRef]
- Czyżowska, A.; Pogorzelski, E. Changes to polyphenols in the process of production of musts and wines from blackcurrants and cherries. Part II. Anthocyanins and flavanols. Eur. Food Res. Technol. 2004, 218, 355–359. [Google Scholar] [CrossRef]
- Czyżowska, A.; Klewicka, E.; Pogorzelski, E.; Nowak, A. Polyphenols, vitamin C and antioxidant activity in wines from Rosa canina L. and Rosa rugosa Thunb. J. Food Compos. Anal. 2015, 39, 62–68. [Google Scholar] [CrossRef]
- Heinonen, M.I.; Lehtonen, P.J.; Hopia, A.I. Antioxidant activity of berry and fruit wines and liquors. J. Agric. Food Chem. 1998, 46, 25–31. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Clegg, S. Total antioxidant capacity, total phenolic content, mineral elements, and histamine concentrations in wines of different fruit sources. J. Food Compos. Anal. 2007, 20, 133–137. [Google Scholar] [CrossRef]
- Schmitzer, V.; Veberic, R.; Slatnar, A.; Stampar, F. Elderberry (Sambucus nigra) wine. A product rich in health promoting compounds. J. Agric. Food Chem. 2010, 58, 10143–10146. [Google Scholar] [CrossRef]
- Vuorinen, H.; Maatta, K.; Torronen, R. Content of flavonols myricetin, quercetin, and kaempferol in Finnish berry wines. J. Agric. Food Chem. 2000, 48, 2675–2680. [Google Scholar] [CrossRef]
- Wilkowska, A.; Czyżowska, A.; Ambroziak, A.; Adamiec, J. Structural, physicochemical and biological properties of spray-dried wine powders. Food Chem. 2017, 228, 77–84. [Google Scholar] [CrossRef]
- Behrends, A.; Weber, F. Influence of different fermentation strategies on the phenolic profile of bilberry wine (Vaccinium myrtillus L.). J. Agric. Food Chem. 2017, 65, 7483−7490. [Google Scholar] [CrossRef]
- Hornedo-Ortega, R.; Álvarez-Fernández, M.A.; Cerezo, A.B.; Garcia-Garcia, I.; Troncoso, A.M.; Garcia-Parrilla, M.C. Influence of fermentation process on the anthocyanin composition of wine and vinegar elaborated from strawberry. J. Food Sci. 2017, 82, 364–372. [Google Scholar] [CrossRef]
- Liu, S.; Marsol-Vall, A.; Laaksonen, O.; Kortesniemi, M.; Yang, B. Characterization and quantification of nonanthocyanin phenolic compounds in white and blue bilberry (Vaccinium myrtillus) juices and wines using UHPLC-DAD−ESI-QTOF-MS and UHPLC-DAD. J. Agric. Food Chem. 2020, 68, 7734–7744. [Google Scholar] [CrossRef]
- Papadopoulou, C.; Soulti, K.; Roussis, I.G. Potential antimicrobial activity of red and white wine. Phenolic Extracts against strains of Staphylococcus aureus, Escherichia coli and Candida albicans. Food Technol. Biotechnol. 2005, 43, 41–46. [Google Scholar]
- Sohn, H.-Y.; Son, K.H.; Kwon, C.-S.; Kwon, G.-S.; Kang, S.S. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 2004, 11, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.T.; Zhu, Q.; Zhang, H.Y. Identifying antibacterial targets of flavonoids by comparative genomics and molecular modeling. Open J. Genom. 2014, 3. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.L.; Cesario, T.; Wang, Y.; Shanbrom, E.; Thrupp, L. Antibacterial activity of vegetables and juices. Nutrition 2003, 19, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Selma, M.V.; Espin, J.C.; Tomas-Barberan, F.A. Interaction between phenolics and gut microbiota: Role in human health. J. Agric. Food Chem. 2009, 57, 6485–6501. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.; Scalbert, A. Review: Ellagitannins nature, occurence and dietary burden. J. Sci. Food Agric. 2000, 80, 1118–1125. [Google Scholar] [CrossRef]
- Cushnie, T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, L.J.; Alakomi, H.L.; Kahkonen, M.P.; Heinonen, M.; Helander, I.M.; Oksman-Caldentey, K.M.; Puupponen-Pimiä, R.H. Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer 2006, 54, 18–32. [Google Scholar] [CrossRef]
- Puupponen-Pimia, R.; Nohynek, L.; Hartmann-Schmidlin, S.; Kahkonen, M.; Heinonen, M.; Maatta-Riihinen, K.; Oksman-Caldentey, K.M. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol. 2005, 98, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Krisch, J.; Galgoczy, L.; Tolgyesi, M.; Papp, T.; Vagvolgyi, C. Effect of fruit juices and pomace extracts on the growth of Gram-positive and Gram-negative bacteria. Acta Biol. Szeged. 2008, 52, 267–270. [Google Scholar]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, P.A.; Hill, T.R. Vitamins: Vitamin C. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier, Academic Press: San Diego, CA, USA, 2011; pp. 667–674. [Google Scholar]
- Czyzowska, A. Vitamin C. In Reference Module in Food Sciences; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Velić, D.; Amidžić Klarić, D.; Velić, N.; Klarić, I.; Petravić Tominac, V.; Mornar, A. Chemical Constituents of Fruit Wines as Descriptors of their Nutritional, Sensorial and Health-Related Properties. In Descriptive Food Science; InTechOpen: London, UK, 2018; Chapter 4. [Google Scholar] [CrossRef] [Green Version]
- Rajkowska, K.; Otlewska, A.; Kunicka-Styczyńska, A.; Krajewska, A. Candida albicans impairments induced by peppermint and clove oils at sub-inhibitory concentrations. Int. J. Mol. Sci. 2017, 18, 1307. [Google Scholar] [CrossRef] [Green Version]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.R.; Yu, W.-H.; Lakshmanan, A.; Wade, W.G. The Human Oral Microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef] [Green Version]
- EHOMD Expanded Human Oral Microbiome Database. Available online: http://www.homd.org/?name=HOMD&taxonomy_level=1 (accessed on 20 November 2020).
- Thiyahuddin, N.M.; Lamping, E.; Rich, A.M.; Cannon, R.D. Yeast Species in the Oral Cavities of Older People: A Comparison between People Living in Their Own Homes and Those in Rest Homes. J. Fungi 2019, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Simões-Silva, L.; Ferreira, S.; Santos-Araujo, C.; Tabaio, M.; Pestana, M.; Soares-Silva, I.; Sampaio-Maia, B. Oral Colonization of Staphylococcus Species in a Peritoneal Dialysis Population: A Possible Reservoir for PD-Related Infections? Can. J. Infect. Dis. Med. Microbiol. 2018, 5789094. [Google Scholar] [CrossRef] [Green Version]
- Bottone, E.J. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef] [Green Version]
- Czyżowska, A.; Kucharska, A.Z.; Nowak, A.; Sokół-Łętowska, A.; Motyl, I.; Piórecki, N. Suitability of the probiotic lactic acid bacteria strains as the starter cultures in unripe cornelian cherry (Cornus mas L.) fermentation. J. Food Sci. Technol. 2017, 54, 2936–2946. [Google Scholar] [CrossRef]
- Rivero-Pérez, M.D.; González-Sanjosé, M.L.; Muńiz, P.; Pérez-Magarińo, S. Antioxidant profile of red-single variety wines microoxygenated before malolactic fermentation. Food Chem. 2008, 111, 1004–1011. [Google Scholar] [CrossRef]
- Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. Method for measuring antioxidant activity and its application to monitoring antioxidant capacity of wines. J. Agric. Food Chem. 1999, 47, 1035–1040. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyżowska, A.; Kucharska, A.Z.; Fecka, I. Composition and Antibacterial Activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles superba Lindl. Leaf Extracts. Molecules 2020, 25, 2011. [Google Scholar] [CrossRef]
- Duarte, W.F.; Dias, D.R.; Oliveira, J.M.; Vilanova, M.; Teixeira, J.A.; Silva, J.B.D.A.E.; Schwan, R.F. Raspberry (Rubus idaeus L.) wine: Yeast selection, sensory evaluation and instrumental analysis of volatile and other compounds. Food Res. Int. 2010, 43, 2303–2314. [Google Scholar] [CrossRef]
- Duarte, W.F.; Dragone, G.; Dias, D.R.; Oliveira, J.M.; Teixeira, J.A.; Silva, J.B.D.A.E.; Schwan, R.F. Fermentative behaviour of Saccharomyces strains during microvinification of raspberry juice (Rubus idaeus L.). Int. J. Food Microbiol. 2010, 143, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Veberic, R.; Jakopic, J.; Stampar, F.; Schmitzer, V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem. 2009, 114, 511–515. [Google Scholar] [CrossRef]
- Johnson, M.H.; Mejia, E.G. Comparison of chemical composition and antioxidant capacity of commercially available blueberry and blackberry wines in Illinois. J. Food Sci. 2012, 77, C141–C148. [Google Scholar] [CrossRef]
- Kalkan Yildirim, H. Evaluation of colour parameters and antioxidant activities of fruit wines. Int. J. Food Sci. Nutr. 2006, 57, 47–63. [Google Scholar] [CrossRef]
- Ortiz, J.; Marin-Arroyo, M.-R.; Noriega-Dominguez, M.-J.; Navarro, M.; Arozarena, I. Color, phenolics, and antioxidant activity of blackberry (Rubus glaucus Benth.), blueberry (Vaccinium floribundum Kunth.), and apple wines from Ecuador. J. Food Sci. 2013, 78, C985–C993. [Google Scholar] [CrossRef]
- Ljevar, A.; Curko, N.; Tomasevic, M.; Radosevic, K.; Gaurina Srcek, V.; Kovacevic Ganic, K. Phenolic composition, antioxidant capacity and in vitro cytotoxicity of fruit wines. Food Technol. Botechnol. 2016, 54, 145–155. [Google Scholar] [CrossRef]
- Mudnic, I.; Budimir, D.; Modun, D.; Gunjaca, G.; Generalic, I.; Skroza, D.; Katalinic, V.; Ljubenkov, I.; Boban, M. Antioxidant and vasodilatory effects of blackberry and grape wines. J. Med. Food 2012, 15, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Mitic, M.N.; Obradovic, M.V.; Mitic, S.S.; Pavlovic, A.N.; Pavlovic, J.L.J.; Stojanovic, B.T. Free radical scavenging activity and phenolic profile of selected Serbian red fruit wines. Rev. Chim. 2013, 64, 68–73. [Google Scholar]
- Arozarena, I.; Ortiz, J.; Hermosín-Gutiérrez, I.; Urretavizcaya, I.; Salvatierra, S.; Córdova, I.; Marín-Arroyo, M.R.; Noriega, M.J.; Navarro, M. Color, ellagitannins, anthocyanins, and antioxidant activity of andean blackberry (Rubus glaucus Benth.) wines. J. Agric. Food Chem. 2012, 60, 7463–7473. [Google Scholar] [CrossRef]
- Gao, X.; Björk, L.; Trajkovski, V.; Uggla, M. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J. Sci. Food Agric. 2000, 80, 2021–2027. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. From grape to wine: Changes in phenolic composition and its influence on antioxidant activity. Food Chem. 2016, 208, 228–238. [Google Scholar] [CrossRef]
- Rupasinghe, H.V.; Joshi, V.; Smith, A.; Parmar, I. Chapter 3-Chemistry of Fruit Wines. In Panesar, Science and Technology of Fruit Wine Production; Maria, R., Kosseva, V.K., Joshi, P.S., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 105–176. ISBN 9780128008508. [Google Scholar] [CrossRef]
- Ginjom, I.; D’Arcy, B.; Caffin, N.; Gidley, M. Phenolic compound profiles in selected Queensland red wines at all stages of wine-making process. Food Chem. 2011, 125, 823–834. [Google Scholar] [CrossRef]
- Cerezo, A.B.; Cuevas, E.; Winterhalter, P.; Garcia-Parrilla, M.C.; Troncoso, A.M. Isolation, identification, and antioxidant activity of anthocyanin compounds in Camarosa strawberry. Food Chem. 2010, 123, 574–582. [Google Scholar] [CrossRef]
- Hornedo-Ortega, R.; Krisa, S.; Garcia-Parrilla, M.C.; Richard, T. Effect of gluconic and alcoholic fermentation on anthocyanin composition and antioxidant activity of beverages made from strawberry. LWT-Food Sci. Technol. 2016, 69, 382–389. [Google Scholar] [CrossRef]
- Olejnik, A.; Olkowicz, M.; Kowalska, K.; Rychlik, J.; Dembczyński, R.; Myszka, K.; Juzwa, W.; Białas, W.; Moyer, M.P. Gastrointestinal digested Sambucus nigra L. fruit extract protects in vitro cultured human colon cells against oxidative stress. Food Chem. 2016, 197, 648–657. [Google Scholar] [CrossRef]
- Sellappan, S.; Akoh, C.C.; Krewer, G. Phenolic compounds and antioxidant capacity of Georgia grown blueberries and blackberries. J. Agric. Food Chem. 2002, 50, 2432–2438. [Google Scholar] [CrossRef]
- Wu, X.; Prior, R.L. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common food in the United States: Fruits and berries. J. Agric. Food Chem. 2005, 53, 2589–2599. [Google Scholar] [CrossRef]
- Fan-Chiang, H.J.; Wrolstad, R.E. Anthocyanin pigment composition of blackberries. J. Food Sci. 2005, 70, C198–C202. [Google Scholar] [CrossRef]
- Bowen-Forbes, C.S.; Zhang, Y.; Nair, M.G. Anthocyanin content, antioxidant, antiinflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Compos. Anal. 2010, 23, 554–560. [Google Scholar] [CrossRef]
- Klopotek, Y.; Otto, K.; Böhm, V. Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity. J. Agric. Food Chem. 2005, 53, 5640–5646. [Google Scholar] [CrossRef]
- Ubeda, C.; Callejón, R.M.; Hidalgo, C.; Torija, M.J.; Troncoso, A.M.; Morales, M.L. Employment of different processes for the production of strawberry vinegars: Effects on antioxidant activity, total phenols and monomeric anthocyanins. LWT-Food Sci. Technol. 2013, 52, 139–145. [Google Scholar] [CrossRef]
- Buchert, J.; Koponen, J.M.; Suutarinen, M.; Mustranta, A.; Lille, M.; Törrönen, R.; Poutanen, K. Effect of enzyme-aided pressing on anthocyanin yield and profiles in bilberry and blackcurrant juices. J. Sci. Food Agric. 2005, 85, 2548–2556. [Google Scholar] [CrossRef]
- Nowicka, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Fecka, I. Comparison of polyphenol content and antioxidant capacity of strawberry fruit from 90 cultivars of Fragaria × ananassa Duch. Food Chem. 2019, 270, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Kylli, P.; Nohynek, L.; Puupponen-Pimia, R.; Westerlund-Wikstrom, B.; Leppanen, T.; Welling, J.; Moilanen, E.; Heinonen, M. Lingonberry (Vaccinium vitis-idaea) and European Cranberry (Vaccinium microcarpon) Proanthocyanidins: Isolation, Identification, and Bioactivities. J. Agric. Food Chem. 2011, 59, 3373–3384. [Google Scholar] [CrossRef]
- Puupponen-Pimia, R.; Nohynek, L.; Meier, C.; Kahkonen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef]
BB | B | C | E | R | S | |
---|---|---|---|---|---|---|
citric acid | 1.17 ± 0.15 a | 4.53 ± 0.35 d | 1.95 ± 0.09 b | 2.45 ± 0.08 c | 8.74 ± 0.65 f | 5.03 ± 0.15 e |
malic acid | 0.65 ± 0.05 b | 2.03 ± 0.09 f | 1.63 ± 0.07 e | 1.15 ± 0.06 d | 0.44 ± 0.02 a | 0.95 ± 0.03 c |
succinic acid | 0.71 ± 0.05 b | 0.99 ± 0.08 c | 0.76 ± 0.05 b | 0.92 ± 0.06 c | 0.62 ± 0.03 a | 0.56 ± 0.03 a |
lactic acid | 0.28 ± 0.02 b | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.54 ± 0.02 c | 0.02 ± 0.00 a | 0.02 ± 0.00 a |
acetic acid | 0.50 ± 0.03 c | 0.24 ± 0.02 b | 0.09 ± 0.01 a | uLOQ | uLOQ | uLOQ |
ascorbic acid | 0.08 ± 0.01 c | 0.04 ± 0.00 b | 0.03 ± 0.00 a | uLOQ | 0.07 ± 0.00 c | uLOQ |
glucose | uLOQ | uLOQ | 43.43 ± 2.01 c | 0.04 ± 0.00 a | 0.10 ± 0.01 b | uLOQ |
fructose | 0.47 ± 0.03 a | 0.68 ± 0.05 b | 29.06 ± 1.98 e | 0.67 ± 0.05 b | 0.85 ± 0.06 c | 1.62 ± 0.08 d |
glycerol | 8.58 ± 0.65 c | 10.81 ± 0.77 d | 4.95 ± 0.32 a | 8.03 ± 0.63 bc | 5.41 ± 0.35 a | 6.96 ± 0.54 b |
ethanol | 12.86 ± 1.01 c | 14.39 ± 1.06 d | 7.22 ± 0.56 a | 14.59 ± 0.99 d | 8.43 ± 0.65 b | 11.32 ± 0.87 c |
BB | B | C | E | R | S | |
---|---|---|---|---|---|---|
TP | 466.82 ± 40.03 a | 759.42 ± 52.30 c | 408.03 ± 38.75 a | 1480.47 ± 103.55 d | 566.75 ± 43.02 b | 525.60 ± 50.74 b |
ABTS | 4.29 ± 0.34 c | 5.84 ± 0.34 d | 3.03 ± 0.19 a | 4.22 ± 0.28 c | 3.49 ± 0.23 b | 3.40 ± 0.18 a |
DPPH | 2.47 ± 0.19 c | 2.55 ± 0.16 d | 1.12 ± 0.07 a | 1.87 ± 0.09 b | 1.75 ± 0.07 b | 1.66 ± 0.12 b |
FRAP | 5.07 ± 0.23 c | 6.45 ± 0.45 d | 3.32 ± 0.25 a | 5.07 ± 0.39 c | 4.42 ± 0.36 b | 3.47 ± 0.22 a |
Compound | [M + H]+ m/z | MS2 m/z | BB | B | C | E | R | S |
---|---|---|---|---|---|---|---|---|
Cy-gal | 449 | 287 | 4.11 ± 0.32 | 1.11 ± 0.08 | 0.65 ± 0.05 | - | - | 0.32 ± 0.03 |
Cy-glc | 449 | 287 | LOQ | 30.26 ± 2.89 | 0.29 ± 0.02 | 6.19 ± 0.57 | 3.29 ± 0.28 | 0.30 ± 0.03 |
Cy-ara | 419 | 287 | - | - | 1.19 ± 0.09 | - | - | - |
Cy-xyl | 419 | 287 | - | 1.34 ± 0.09 | - | - | - | - |
Cy-rut | 595 | 287 | - | LOQ | - | - | LOQ | - |
Cy-soph | 611 | 287 | - | - | - | - | 14.98 ± 1.32 | - |
Cy-3(2glc) rut | 757 | 287 | - | - | - | - | 1.53 ± 0.11 | - |
Cy-3mal-glc | 535 | 287 | - | 1.32 ± 0.12 | - | - | - | - |
Cy-6mal-glc | 535 | 287 | - | 13.19 ± 1.09 | - | - | - | - |
Cy-sam | 579 | 537, 357 | - | - | - | 46.51 ± 4.34 | - | - |
Cy-sam-5-glc | 744 | 287 | - | - | - | 23.07 ± 2.02 | - | - |
Cy-dioxalyl glc * | 593/594 | 581, 287 | - | 6.50 ± 0.56 | - | - | - | - |
∑ Cy-deriv | 4.11 | 53.73 | 2.13 | 75.77 | 19.81 | 0.62 | ||
Dp-gal | 465 | 303 | 5.02 ± 0.42 | - | - | - | - | - |
Dp-glc | 465 | 303 | 0.81 ± 0.06 | - | - | - | - | - |
Dp-ara | 435 | 303 | 0.63 ± 0.05 | - | - | - | - | - |
∑ Dp-der | 6.46 | - | - | - | - | - | ||
Mv-gal | 493 | 331 | 1.01 ± 0.09 | - | - | - | - | - |
Mv-glc | 493 | 331 | 8.81 ± 0.78 | - | - | - | - | - |
Mv-ara | 463 | 331 | 1.02 ± 0.09 | - | - | - | - | - |
∑ Mv deriv | 10.84 | - | - | - | - | - | ||
Pg-glc | 433 | 271 | - | 1.20 ± 0.09 | - | - | - | 1.29 ± 0.09 |
Pg-rut | 579 | 433, 271 | - | - | - | - | - | 0.67 ± 0.06 |
Pg-3-acetyl-glc | 475 | 271 | - | - | - | - | - | 0.49 ± 0.04 |
Pg-3mal-glc | 519 | 271 | - | - | - | - | - | 0.35 ± 0.02 |
Pg-3,5diglc | 595 | 433, 271 | - | - | - | - | - | 0.24 ± 0.02 |
Pg-3glc-rut | 742/739 | - | - | - | - | 0.42 ± 0.03 | - | |
E-(4,8)-Pg-glc | 721 | 559 | - | - | - | - | - | 0.25 ± 0.02 |
(epi)afzelechin-Pg-glc | 705 | 543, 407, 313 | - | - | - | - | - | 0.25 ± 0.02 |
CP Pg-glc | 501 | 339 | - | - | - | - | - | 0.24 ± 0.02 |
∑Pg deriv | - | 1.2 | - | - | 0.42 | 4.05 | ||
Pn-gal | 463 | 301 | 0.65 ± 0.05 | - | 0.71 ± 0.06 | - | - | - |
Pn-glc | 463 | 301 | 0.75 ± 0.06 | 0.82 ± 0.07 | LOQ | - | - | - |
Pn-ara | 433 | 301 | - | - | 0.63 ± 0.05 | - | - | - |
∑ Pn deriv | 1.40 | 0.82 | 1.34 | - | - | - | ||
Pt-gal | 479 | 317 | 0.49 ± 0.03 | - | - | - | - | - |
Pt-glc | 479 | 317 | 8.72 ± 0.72 | - | - | - | - | - |
Pt-ara | 449 | 317 | 1.29 ± 0.09 | - | - | - | - | - |
∑ Pt deriv | 10.50 | - | - | - | - | - | ||
ni | 641 | 623, 505, 477, 605, 337 | - | - | - | 0.56 ± 0.04 | - | - |
total ** | 37.03 | 56.37 | 3.47 | 76.33 | 22.32 | 6.09 |
[M − H]− m/z | MS2 m/z | BB | B | C | E | R | S | |
---|---|---|---|---|---|---|---|---|
malonylo-CQA | 439, 396 | 395, 219, 173, 295, 289 | - | - | - | - | - | 0.74 ± 0.05 |
neoChA | 353 | 191, 179 | - | 6.42 ± 0.56 | - | 24.99 ± 2.08 | - | - |
CAH | 341 | 197, 135, 161, 179 | 10.97 ± 0.93 | LOQ | 10.89 ± 0.87 | 9.98 ± 0.78 | 4.41 ± 0.37 | - |
pCoH | 325 | 163, 145, 187, 265 | - | 54.35 * ± 4.89 | - | - | 12.35 * ± 0.96 | 6.31 ± 0.54 |
ChA | 353 | 191, 179 | LOQ | 2.01 ± 0.17 | 5.59 ± 0.45 | coeluted | - | - |
CA | 179 | 135 | 44.10 ± 3.99 | 8.67 ± 0.78 | 60.04 ± 5.33 | 15.32 ± 1.03 | ||
FA | 193 | 134 | - | - | - | - | - | LOQ |
p-CoA | 163 | 119 | 14.77 ± 1.23 | - | - | 13.44 ± 1.02 | - | 4.60 ± 0.34 |
pCo der | 411 | 2.27 ± 0.19 | - | - | - | - | - | |
pCo der | 525 | - | - | - | 19.86 ± 1.88 | - | - | |
5-hydroxy F hex | 371 | 281, 251, 221, 209 | - | - | - | - | - | 1.78 ± 0.16 |
ni | 207 | - | - | - | 16.20 ± 1.52 | - | - | |
total | 73.48 | 63.95 | 37.06 | 150.79 | 32.18 | 13.43 |
[M − H]− m/z | MS MS2 m/z | BB | B | C | E | R | S | |
---|---|---|---|---|---|---|---|---|
M-glc | 479 | 317 | 0.27 ± 0.02 | - | - | - | - | - |
M-ara | 449 | 317 | - | - | 0.01 ± 0.00 | - | - | - |
M-xyl | 449 | 317 | - | - | 0.02 ± 0.00 | - | - | - |
M-malonylglc | 565 | 317 | - | - | - | - | - | LOQ |
M-dimethoxy-hex | 507 | 344, 387 | - | - | 0.01 ± 0.00 | - | - | - |
M | 317 | 179, 151, 192 | 0.28 ± 0.02 | - | 0.78 ± 0.06 | - | - | - |
∑ M derivatives | 0.55 | - | 0.82 | - | - | LOQ | ||
Q-gal | 463 | 301 | - | 0.36 ± 0.03 | 0.05 ± 0.00 | 0.10 ± 0.01 | 0.11 ± 0.01 | - |
Q-glc | 463 | 301 | 0.17 ± 0.01 | 0.07 ± 0.01 | - | 2.36 ± 0.18 | 0.05 ± 0.00 | 0.19 ± 0.02 |
Q-ara | 433 | 301 | - | - | 0.12 ± 0.01 | - | - | - |
Q-rut | 609 | 301, 343, 463 | LOQ | 0.09 ± 0.00 | - | 5.04 ± 0.42 | 0.10 ± 0.01 | - |
Q-pent | 433 | 301, 179, 151 | - | LOQ | - | - | - | - |
Q-xyl | 433 | 301 | 0.05 ± 0.00 | - | 0.20 ± 0.02 | - | - | - |
Q-rha | 447 | 301 | - | - | 0.25 ± 0.02 | - | - | - |
Q-gluc | 477 | 301 | - | 0.31 ± 0.02 | - | - | 0.09 ± 0.01 | 0.38 ± 0.03 |
Q-diglc | 625 | 283, 255, 463, 301 | LOQ | - | - | - | - | - |
Q-2gal-rha | 609 | 283, 255, 300 | - | - | - | - | 0.09 ± 0.01 | - |
Q-3acetylhex | 505 | 463, 301 | - | 0.39 ± 0.03 | - | - | - | LOQ |
Q-methoxyhex | 493 | 463, 301 | 0.11 ± 0.01 | - | - | - | - | - |
Q3[6″(3hydroxy-3 methyl-glut)] gal | 607 | 463, 301 | - | 0.51 ± 0.04 | - | - | - | - |
Q-malonyl-glc | 549 | 503, 301 | - | - | - | LOQ | - | - |
methoxyQ-xyl | 447 | 300 | - | - | 0.01 ± 0.00 | - | - | - |
Q-benzoyl gal | 567 | 300 | - | - | 0.05 ± 0.00 | - | - | - |
Q | 301 | 179, 151, 257 | 0.28 ± 0.02 | 0.07 ± 0.00 | 1.56 ± 0.14 | 1.35 ± 0.12 | 0.04 ± 0.00 | 0.05 ± 0.00 |
IsoQ | 509 | 463 | - | - | - | LOQ | - | - |
dihydroQ glc | 465 | 285, 151 | - | LOQ | - | - | - | - |
I=3-methylQ | 315 | 631/632, 315 | - | - | - | 0.19 ± 0.02 | - | - |
∑ Q derivatives | 0.63 | 1.80 | 2.24 | 9.04 | 0.48 | 0.62 | ||
K-gal | 447 | 285 | 0.16 ± 0.01 | - | - | - | 0.10 ± 0.01 | - |
K-glc | 447 | 285 | 0.16 ± 0.01 | - | - | - | - | 0.15 ± 0.01 |
K-rut | 593 | 285 | - | - | - | 0.22 ± 0.02 | - | - |
K-pent | 417 | 241, 152, 285 | - | - | - | - | - | LOQ |
K-gluc | 461 | 415, 285 | - | - | - | - | 0.26 ± 0.02 | 0.15 ± 0.02 |
K | 285 | 267 | - | - | - | - | 0.03 ± 0.00 | - |
dihydroK-glc | 449 | 431, 287, 269, 259, 243, 179 | - | LOQ | - | - | - | LOQ |
dihydroK-rha | 433 | 287 | - | LOQ | - | - | - | - |
K3(6″-p-Co)glc | 593 | - | LOQ | - | - | - | - | |
∑ K derivatives | 0.16 | - | - | 0.22 | 0.39 | 0.30 | ||
total | 1.43 | 1.81 | 3.02 | 9.27 | 0.87 | 0.92 |
Tentative Compound | λmax | [M − H]− m/z | MS2 m/z | BB | B | C | E | R | S |
---|---|---|---|---|---|---|---|---|---|
acids | |||||||||
cinnamic acid | 225 | 147 | 129, 85, 87, 103 | + | + | + | + | + | + |
vanillic acid | 271 | 167 | - | - | + | - | - | - | |
ascorbic acid | 253 | 175 | 129, 115, 157, 85 | + | + | + | - | + | - |
shikimic acid | 270 | 173 | 127, 83 | + | + | - | + | + | + |
p-hydroxybenzoic acid | 277 | 137 | 93, 119, 110 | - | - | + | + | + | + |
benzoic acid | 275 | 121 | 77, 121, 92 | - | - | + | - | - | - |
hydroxybenzoyl-glc | 276, 309 | 299 | 137 | - | - | - | - | - | + |
protocatechuic acid | 260, 294 | 153 | 109, 125, 83 | + | + | + | + | - | - |
protocatechuic acid hex | 315 | 152, 108 | - | + | + | - | - | + | |
1-O-protocatechuylhex | 285 | 152, 108 | - | - | + | - | - | + | |
sinapic acid hex | 265, 382 | 385 | 339 | - | - | - | + | - | - |
brevifolin carboxylic acid | 281 | 291 | 248, 247, 203 | - | - | - | - | - | + |
cis-ABA | 263 | 153 | + | + | - | - | - | - | |
trans-ABA | 263 | 204 | + | + | - | - | - | - | |
ABA-GE | 425 | 263 | - | + | - | - | - | - | |
ursolic acid=prunol | 455 | 515 | - | + | - | - | - | - | |
Ellagic acid derivatives | |||||||||
ellagic acid | 245, 278, 382 | 603 [2M] 301 | 467, 439, 179, 273, 257 | + | + | - | + | + | + |
ellagic acid pent | 231 | 433 | 300/301 | - | + | - | - | + | + |
ellagic acid hex | 255, 362 | 463 | 301 | - | + | - | - | - | - |
ellagic acid deoxyhex | 231, 364 | 447 | 300/301, 257 | - | - | - | - | - | + |
dimethyl ellagic acid pent | 461 | 300/301, 145 | - | + | - | - | - | - | |
ellagic acid acetyl-ara | 235, 273 | 475 | 301 | - | - | - | - | + | - |
methylellagic acid gluc | 253, 361 | 491 | 315, 301, 257, 229 | - | + | - | - | - | - |
ellagic acid acetyl-methylpent | 254, 364 | 489 | 301, 257, 229 | - | + | - | - | - | - |
ellagic acid rha | 447 | 301 | - | - | - | - | - | + | |
Ellagitannins | |||||||||
ellagitannin | 232, 270 | 679 | 664 | - | - | - | - | - | + |
HHDP glc | 481 | 301, 275 | - | + | - | - | - | + | |
galloyl-bis-HHDP glc | 935 | 633, 301 | - | + | - | - | - | - | |
galloyl-HHDP glc | 280 | 633, 632.6 | 481, 301, 613, 301, 481, 783 | - | + | - | - | - | + |
bis-HDDP-glc | 280 | 783 | 301, 481, 257, 229 | - | + | - | - | - | + |
tris-galloyl-HHDP hex | 951 | 907, 783, 605, 301 | - | + | - | - | - | + | |
davuriicin M1 (diHHDP-glc-galloyl-ellagic acid) | 617[M-2H]2−, 1236 | 933, 631, 301 | - | + | - | - | - | - | |
Sanguiin H-10 isomer (2) | 232 | [1567]−, [783]2− | 935, 633, 301 | - | + | - | - | + | - |
Sanguiin H-2 | 245 | 1103, [551]2 | 935, 633, 469, 301 | - | - | - | - | + | - |
castalagin/vescalagin | 933 | 301 | - | + | - | - | - | - | |
pedunculagin/sanguin isomer H10 | 268, 377 | 783 | 633, 301, 1266, 934, 1104 | - | + | - | - | + | - |
Sanguin H6 | 340, 352, 366 | 935/934 [M-2H]2− 1870 | 633, 301, 897, 916, 783, 1567, 1235, 633, 301 | - | + | - | - | + | - |
Gallic acid derivatives | |||||||||
gallic acid | 286 | 169 | 125 | + | - | - | - | - | + |
methyl gallate | 183/184 | - | - | + | - | - | - | ||
galloylquinic acid | 343 | 191, 169 | - | - | - | - | - | + | |
gallic acid deriv | 280, 451 | 635 | 483 | + | - | - | - | - | - |
Procyanidins | |||||||||
epigallocatechin | 283 | 611 | - | + | - | - | - | + | |
gallocatechin | 306/305 | - | + | - | - | - | - | ||
catechin | 280 | 289 | 245, 205, 179 | + | + | + | - | - | + |
epicatechin | 285 | 289 | 245, 205, 271, 179 | - | + | - | - | + | - |
Procyanidin dimer | 277 | 575 | 490, 499, 413 | - | - | + | - | + | - |
ni | 277 | 575 | 377, 395, 333, 273, 1007 | - | - | + | - | - | - |
277 | 575 | 863/864, 499, 413, 267, 289, 699, 1025 | - | - | + | - | - | - | |
277 | 575 | 499, 490, 861, 423, 289, 999, 1025 | - | - | + | - | - | - | |
277 | 575 | 395, 351, 371, 289, 1025 | - | - | + | - | - | - | |
277 | 575 | 423, 449, 539, 285, 557, 1025 | - | - | + | - | - | - | |
B type dimer (procyanidin dimer) | 282 | 577 | 425, 407, 451 | + | - | - | - | - | + |
Procyanidin B1 | 278 | 577 | 425, 407 | - | + | + | - | - | + |
577 | 397, 373, 273, 415, 1019 | - | - | + | - | - | - | ||
Procyanidin trimer (Atype) | 280 | 863 | 711, 411, 559, 693 | - | - | + | - | - | - |
Procyanidin trimer (Btype) | 281 | 865 | 695, 577, 407, 847 | - | - | + | - | - | + |
Procyanidin tetramer (Btype) | 276 | 1152/1153 | - | - | + | - | - | - | |
dimer (Cat-Afz) propelargonidin dimer | 279 | 561 | 289, 543, 435 | - | + | - | - | - | + |
trimer A type | 276 | 863 | 711, 693, 411, 459, 559, 289 | - | - | + | - | - | - |
ni | 863 | 575, 711, 693, 559, 285, 1601 | - | - | + | - | - | - | |
Trimer (Cat-Cat-Afz) | 849 | - | - | - | - | - | + | ||
Flavone. | |||||||||
apigenin pent | 401 | 269, 161 | - | + | - | - | - | - | |
apigenin glc | 431 | 370, 269, 311 | - | + | - | - | - | - | |
Biflavonoids | |||||||||
pentahydroxyflavan dimer | 250 | 579 | 271, 289 | - | - | - | - | + | - |
tetrahydroxyflavan–pentahydroxyflavan dimer | 563 | 273, 291, 411, 427 | - | - | - | - | + | - | |
Stilbenoids | |||||||||
trans-resveratrol-glc | 389 | 185, 227 | + | + | - | - | - | - | |
Unknown compounds | |||||||||
ni | 340 | 294, 188, 161 | - | - | - | + | - | - | |
ni | 226, 278, 397 | 405 | 225 | - | - | - | + | - | - |
ni | 259 | 391 | 217, 373, 111, 216, 191 | - | - | - | - | + | - |
ni | 226, 284 | 379 | 241 | - | - | - | + | - | - |
ni | 281 | 333 | 165, 289, 183 | - | - | + | - | - | - |
Escherichia coli | Salmonella Enteritidis | Bacillus cereus | Listeria monocytogenes | Staphylococcus aureus | Candida albicans | |
---|---|---|---|---|---|---|
Bilberry | - | - | 1.73 ± 0.12 A | - | - | - |
Blackberry | - | - | 2.00 ± 0.25 bA | 1.00 ± 0.00 aA | - | - |
Cranberry | - | - | 1.83 ± 0.23 aA | 2.33 ± 0.58 aB | - | - |
Elderberry | - | - | - | - | - | - |
Raspberry | - | - | 4.00 ± 0.71 B | - | - | - |
Strawberry | 2.67 ± 0.58 a | - | 1.83 ± 0.23 aA | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czyżowska, A.; Wilkowska, A.; Staszczak, A.; Nowak, A. Characterization of Phytochemicals in Berry Fruit Wines Analyzed by Liquid Chromatography Coupled to Photodiode-Array Detection and Electrospray Ionization/Ion Trap Mass Spectrometry (LC-DAD-ESI-MSn) and Their Antioxidant and Antimicrobial Activity. Foods 2020, 9, 1783. https://doi.org/10.3390/foods9121783
Czyżowska A, Wilkowska A, Staszczak A, Nowak A. Characterization of Phytochemicals in Berry Fruit Wines Analyzed by Liquid Chromatography Coupled to Photodiode-Array Detection and Electrospray Ionization/Ion Trap Mass Spectrometry (LC-DAD-ESI-MSn) and Their Antioxidant and Antimicrobial Activity. Foods. 2020; 9(12):1783. https://doi.org/10.3390/foods9121783
Chicago/Turabian StyleCzyżowska, Agata, Agnieszka Wilkowska, Agnieszka Staszczak (Mianowska), and Agnieszka Nowak. 2020. "Characterization of Phytochemicals in Berry Fruit Wines Analyzed by Liquid Chromatography Coupled to Photodiode-Array Detection and Electrospray Ionization/Ion Trap Mass Spectrometry (LC-DAD-ESI-MSn) and Their Antioxidant and Antimicrobial Activity" Foods 9, no. 12: 1783. https://doi.org/10.3390/foods9121783
APA StyleCzyżowska, A., Wilkowska, A., Staszczak, A., & Nowak, A. (2020). Characterization of Phytochemicals in Berry Fruit Wines Analyzed by Liquid Chromatography Coupled to Photodiode-Array Detection and Electrospray Ionization/Ion Trap Mass Spectrometry (LC-DAD-ESI-MSn) and Their Antioxidant and Antimicrobial Activity. Foods, 9(12), 1783. https://doi.org/10.3390/foods9121783