Elimination of Aflatoxins B1 and B2 in White and Red Wines by Bentonite Fining. Efficiency and Impact on Wine Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Fining Experiments
2.3. Aflatoxins Analysis in White and Red Wine
2.4. Quantification of Non-Flavonoids, Flavonoids, and Total Phenols
2.5. Color, Total and Colored Anthocyanins, Polymeric and Total Pigments, and Chromatic Characteristics
2.6. High-Performance Liquid Chromatography (HPLC) Analysis of Anthocyanins, Catechin, and Phenolic Acids
2.7. Statistical Analysis
3. Results and Discussion
3.1. Aflatoxins Removal from Wines Using Different Fining Agents
3.2. Effect of Fining Agents on Wines Chromatic Characteristics
3.3. Effect of Fining Agents on Wine Total Phenolic Compounds, Flavonoid, Non-Flavonoid Compounds, and Individual Phenolic Compounds
4. Conclusions
- Aflatoxin B1 and B2, two highly toxic mycotoxins, can be eliminated almost entirely from white and red wines with bentonite at 120 g/hL application dose, an already authorized fining agent and dosage in winemaking by the OIV.
- The impact of bentonite in white wine color was residual, while in red wines, a 13% decrease in the color intensity was observed.
- The gain achieved in wine safety and the low impact on wine color, bentonite can be considered an excellent solution for dealing with the aflatoxin safety problem in wines.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deiner, U.L.; Cole, R.J.; Sanders, T.H.; Payne, G.A.; Lee, L.S.; Kich, M.A. Epidemiology of aflatoxin formation by Aspergillus flavus. Annu. Rev. Phytopathol. 1987, 25, 240–270. [Google Scholar] [CrossRef]
- Kutrzman, C.P.; Horn, B.W.; Hesseltine, C.W. Aspergillus nominus, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Antonie Van Leeuwenhoek 1987, 53, 147–158. [Google Scholar] [CrossRef]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [CrossRef]
- Moss, M. Recent studies of mycotoxins. J. Appl. Microbiol. 1998, 84, 62S. [Google Scholar] [CrossRef]
- JECFA. Evaluation of Certain Food Additives and Contaminants. Forty-Ninth Meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series. 1999, Volume 884. Available online: https://apps.who.int/iris/bitstream/handle/10665/42142 (accessed on 20 October 2020).
- Busby, W.F.; Wogan, G.N. Aflatoxin. In Chemical Carcinogens; ACS Monograph 182 Searle Ed. 2; American Chemical Society: Washington, DC, USA, 1984; Volume 2, pp. 945–1136. [Google Scholar]
- Hamid, A.S.; Tesfamariam, I.G.; Zhang, Y.; Zhang, Z.G. Aflatoxin B1-induced hepatocellular carcinoma in developing countries: Geographical distribution, mechanism of action and prevention. Oncol. Lett. 2013, 5, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, M.J.; Dobson, A.D.W. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int. J. Food Microbiol. 1998, 43, 141–158. [Google Scholar] [CrossRef]
- Kensler, T.W.; Roebuck, B.D.; Wogan, G.N.; Groopman, J.D. Aflatoxin: A 50-year odyssey of mechanistic and translational toxicology. Toxicol. Sci. 2011, 120, S28–S48. [Google Scholar] [CrossRef] [Green Version]
- IARC. IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. Lyon (FR): International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 1993; Volume 56, Food Items and Constituents. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513568/ (accessed on 20 October 2020).
- Pérez-Ortega, P.; Gilbert-López, B.; García-Reyes, J.F.; Ramos-Martos, N.; Molina-Díaz, A. Generic sample treatment method for simultaneous determination of multiclass pesticides and mycotoxins in wines by liquid chromatography–mass spectrometry. J. Chromatogr. A 2012, 1249, 32–40. [Google Scholar] [CrossRef]
- Di Stefano, V.; Pitonzo, R.; Avellone, G.; Di Fiore, A.; Monte, L.; Zofia, A.; Ogorka, T. Determination of aflatoxins and ochratoxins in Sicilian sweet wines by High-Performance Liquid Chromatography with fluorometric detection and immunoaffinity. Food Anal. Methods 2015, 8, 569–577. [Google Scholar] [CrossRef]
- Di Stefano, V.; Avellone, G.; Pitonzo, R.; Capocchiano, V.G.; Mazza, A.; Cicero, N.; Dugo, G. Natural co-occurrence of ochratoxin A, ochratoxin B and aflatoxins in Sicilian red wines. Food Addit. Contam. Part A 2015, 32, 1343–1351. [Google Scholar] [CrossRef]
- Nistor, A.-M.; Cotan, S.-D.; Cotea, V.V.; Niculaua, N. Analysis of aflotoxins in rustically wines from eastern Romania using the direct real time method (DART). In Proceedings of the 41st World Congress of Vine and Wine. BIO Web of Conferences, Punta del Este, Uruguay, 19–23 November 2019; Volume 12. [Google Scholar] [CrossRef]
- El Khoury, A.; Rizk, T.; Lteif, R.; Azouri, H.; Delia, M.-L.; Lebrihi, A. Fungal contamination and Aflatoxin B1 and Ochratoxin A in Lebanese wine–grapes and musts. Food Chem. Toxicol. 2008, 46, 2244–2250. [Google Scholar] [CrossRef]
- Fredj, S.M.B.; Chebil, S.; Mliki, A. Isolation and characterization of ochratoxin A and aflatoxin B1 producing fungi infecting grapevines cultivated in Tunisia. Afr. J. Microbiol. Res. 2009, 3, 523–527. [Google Scholar]
- Paterson, R.R.M.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Paterson, R.R.M.; Lima, N. Thermophilic fungi to dominate aflatoxigenic/mycotoxigenic fungi on food under global warming. Int. J. Environ. Res. 2017, 14, 199. [Google Scholar] [CrossRef] [Green Version]
- ICMSF International Commission on Microbiological Specifications for Foods. Toxigenic fungi: Aspergillus. In Microorganisms in Foods 5: Characteristics of Microbial Pathogens; Kluwer Academic: London, UK, 1996; pp. 347–381. [Google Scholar]
- OIV. 2019 Statistical Report on World Vitiviniculture. International Organisation of Vine and Wine Intergovernmental Organisation. Available online: http://oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 20 September 2020).
- Fernandez-Mar, M.I.; Mateos, R.; García-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review. Food Chem. 2012, 130, 797–813. [Google Scholar] [CrossRef]
- European Union. Commission Regulation (EC) No. 1881/2006, of 19 December setting maximum levels for certain contaminants in food stuffs. Off. J. Eur. Union 2006, L364, 0005. [Google Scholar]
- European Union. Commission Regulation (EU) 165/2010 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Off. J. Eur. Union 2010, L50, 0008. [Google Scholar]
- OIV International Code of Oenological Practices. International Organisation of Vine and Wine. 2019. Available online: http://www.oiv.int/fr/normes-et-documents-techniques (accessed on 20 September 2020).
- Kramling, T.; Singleton, V.L. An estimate of the nonflavonoid phenols in wines. Am. J. Enol. Vitic 1969, 20, 86–92. [Google Scholar]
- Ribéreau-Gayon, P.; Peynaud, E.; Sudraud, P. Traité d’Œnologie. Science et Techniques du Vin; Tome 4; Dunod: Paris, France, 1982; p. 643. [Google Scholar]
- OIV. Organisation International de la Vigne et du Vin Récueil de Méthodes Internationales d’Analyse des Vins et des Moûts. Edition Officielle. Paris. 2015. Available online: http://www.oiv.org/fr/normes-et-documents-techniques/methodes-danalyse (accessed on 20 September 2020).
- Ribéreau-Gayon, P.; Stronestreet, E. Le dosage des anthocyanes dans le vin rouge. Bull. Soc. Chim. Fr. 1965, 9, 2649–2652. [Google Scholar]
- Somers, T.C.; Evans, M.E. Spectral evaluation of young red wines: Anthocyanin equilibria, total phenolics, free and molecular O2, “Chemical age”. J. Sci. Food Agric. 1977, 28, 279–287. [Google Scholar] [CrossRef]
- Filipe-Ribeiro, L.; Milheiro, J.; Matos, C.C.; Cosme, F.; Nunes, F.M. Reduction of 4-ethylphenol and 4-ethylguaiacol in red wine by activated carbons with different physicochemical characteristics: Impact on wine quality. Food Chem. 2017, 229, 242–251. [Google Scholar] [CrossRef]
- Filipe-Ribeiro, L.; Milheiro, J.; Matos, C.C.; Cosme, F.; Nunes, F.M. Data on changes in red wine phenolic compounds, headspace aroma compounds and sensory profile after treatment of red wines with activated carbons with different physicochemical characteristics. Data Brief 2017, 12, 188–202. [Google Scholar] [CrossRef]
- Guise, R.; Filipe-Ribeiro, L.; Nascimento, D.; Bessa, O.; Nunes, F.M.; Cosme, F. Comparison between different types of carboxylmethylcellulose and other oenological additives used for white wine tartaric stabilization. Food Chem. 2014, 156, 250–257. [Google Scholar] [CrossRef]
- Phillips, T.; Sarr, A.; Grant, P. Selective chemisorption and detoxification of aflatoxins by phyllosilicate clay. Nat. Toxins 1995, 3, 204–213. [Google Scholar] [CrossRef]
- Moreno-Castilla, C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 2004, 42, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Spagna, G.; Barbagallo, R.N.; Pifferi, P.G. Fining treatments of white wines by means of polymeric adjuvants for their stabilization against browning. J. Sci. Food Agric. 2000, 48, 4619–4627. [Google Scholar] [CrossRef]
- Gonnet, J.F. Colour effects of co-pigmention of anthocyanins revisited-1. A colorimetric definition using the CIElab scale. Food Chem. 1998, 63, 409–415. [Google Scholar] [CrossRef]
- Trouillas, P.; Sancho-García, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Chem. Rev. 2016, 116, 4937–4982. [Google Scholar] [CrossRef] [Green Version]
Parameters | White Wine | Red Wine |
---|---|---|
Alcohol content (% v/v) | 10.0 | 13.0 |
Specific gravity at 20 °C (g/mL) | 0.9915 | 0.9918 |
Titratable acidity (g/L tartaric acid) | 6.7 | 5.2 |
pH | 3.00 | 3.47 |
Volatile acidity (g/L acetic acid) | 0.14 | 0.40 |
Parameters | Control | AC | PC | CHT | B |
---|---|---|---|---|---|
Total phenols (mg/L GA) | 154 ± 0 a | 143 ± 2 c | 152 ± 1 b | 154 ± 0 a | 150 ± 1 b |
Flavonoid phenols (mg/L GA) | 106 ± 1 a | 102 ± 2 c | 106 ± 1 b | 105 ± 2 a | 103 ± 2 a |
Non-flavonoid phenols (mg/L GA) | 48 ± 1 ab | 41 ± 0 b | 45 ± 1 b | 48 ± 2 a | 47 ± 3 a |
Color (Abs420 nm) | 0.081 ± 0.002 a | 0.077 ± 0.001 b | 0.067 ± 0.000 c | 0.081 ± 0.000 a | 0.068 ± 0.001 c |
L* | 97.3 ± 0.1 a | 92.6 ± 1.0 b | 98.2 ± 0.1 a | 97.4 ± 0.0 a | 97.9 ± 0.5 a |
a* | −0.18 ± 0.01 ab | −0.24 ± 0.01 ab | −0.30 ± 0.01 a | −0.20 ± 0.01 ab | −0.14 ± 0.07 b |
b* | 5.21 ± 0.01 a | 4.56 ± 0.01 ab | 4.30 ± 0.03 ab | 5.19 ± 0.11 a | 4.07 ± 0.58 b |
ΔE* | - | 4.76 ± 0.89 b | 1.25 ± 0.01 a | 0.14 ± 0.08 a | 1.35 ± 0.32 a |
Parameters | Control | AC | PC | CHT | B |
---|---|---|---|---|---|
Total phenols (mg/L GA) | 1691 ± 7 a | 1669 ± 6 b | 1639± 6 c | 1691 ±7 a | 1585 ±0 d |
Flavonoid phenols (mg/L GA) | 1421 ± 10 a | 1403 ± 8 b | 1389 ± 7 c | 1428 ± 5 a | 1328 ± 3 d |
Non-flavonoid phenols (mg/L GA) | 270 ± 3 a | 266 ± 4 a | 249 ± 3 c | 262 ± 3 b | 256 ± 3 b |
Total anthocyanins (mg/L) | 343 ± 2 a | 336 ± 1 b | 318 ± 3 c | 333 ± 2 b | 296 ± 2 d |
Colored anthocyanins (a.u) | 4.80 ± 0.11 a | 4.44 ± 0.45 ab | 4.16 ± 0.04 bc | 4.74 ± 0.08 a | 3.85 ± 0.05 c |
Polymeric pigments (a.u.) | 6.05 ± 0.10 a | 5.73 ± 0.41 a | 5.28 ± 0.04 b | 6.02 ± 0.09 a | 5.09 ± 0.04 b |
Total pigments (a.u.) | 16.36 ± 0.71 a | 16.11 ± 0.17 a | 14.97 ± 0.22 b | 16.31 ± 0.06 a | 13.91 ± 0.15 c |
Color intensity (a.u.) | 11.57 ± 0.11 a | 11.12 ± 0.21 b | 10.18 ± 0.08 c | 11.49 ± 0.09 ab | 10.02 ± 0.05 c |
Hue | 0.68 ± 0.01 a | 0.71 ± 0.05 ab | 0.69 ± 0.01 a | 0.68 ± 0.01 a | 0.73 ± 0.01 b |
L* | 76.0 ± 0.1 a | 76.4 ± 0.1 a | 78.5 ± 0.2 b | 76.0 ± 0.1 a | 78.4 ± 0.0 b |
a* | 31.80 ± 0.53 a | 31.47 ± 0.01 a | 28.53 ± 0.40 b | 31.65 ± 0.37 a | 27.69 ± 0.39 b |
b* | 4.10 ± 0.16 a | 4.23 ± 0.08 a | 3.78 ± 0.03 a | 3.88 ± 0.05 a | 3.72 ± 0.56 a |
ΔE* | - | 0.45 ± 0.03 a | 4.17 ± 0.02 b | 0.30 ± 0.00 a | 4.80 ± 0.18 c |
Phenolic Acids and Flavonoids | Control | AC | PC | CHT | B |
---|---|---|---|---|---|
Gallic acid | 3.00 ± 0.86 a | 2.57 ± 0.83 a | 1.93 ± 0.11 a | 2.22 ± 0.07 a | 2.61 ± 0.05 a |
Catechin | 2.86 ± 0.11 a | 2.21 ± 0.61 a | 2.39 ± 0.10 a | 2.25 ± 0.00 a | 2.49 ± 0.02 a |
trans-Caftaric acid | 7.19 ± 0.96 a | 5.99± 1.43 a | 5.88 ± 1.87 a | 7.20 ± 0.95 a | 5.55 ± 0.58 a |
Coutaric acid | 6.22 ± 0.52 a | 4.62 ± 0.11 b | 5.49 ± 0.57 ab | 6.07 ± 0.50 a | 4.99 ± 0.39 b |
Caffeic acid | 0.65 ± 0.02 a | 0.56 ± 0.22 a | 0.65 ± 0.13 a | 0.62 ± 0.01 a | 0.48 ± 0.01 a |
p-Coumaric acid | 1.24 ± 0.09 a | 0.47 ± 0.31 b | 1.25 ± 0.18 a | 0.99 ± 0.28 ab | 1.21 ± 0.25 a |
Ferulic acid | 0.55 ± 0.16 a | 0.15 ± 0.03 b | 0.53 ± 0.09 a | 0.56 ± 0.06 a | 0.40 ± 0.02 ab |
Ethyl ester of caffeic acid | 0.94 ± 0.03 a | 0.11 ± 0.02 d | 0.81 ± 0.02 b | 0.89 ± 0.03 ab | 0.70 ± 0.03 c |
Ethyl ester of coumaric acid | 0.36 ± 0.04 a | 0.01 ± 0.02 b | 0.23 ± 0.13 ab | 0.33 ± 0.00 a | 0.22 ± 0.00 ab |
Phenolic Acids and Flavonoids | Control | AC | PC | CHT | B |
---|---|---|---|---|---|
Gallic acid | 18.99 ± 1.59 a | 17.62 ± 1.77 a | 16.72 ± 0.11 a | 16.16 ± 1.77 a | 14.11 ± 3.66 a |
Catechin | 18.35 ± 4.04 a | 15.33 ± 3.77 a | 13.32 ± 0.22 a | 15.95 ± 4.49 a | 13.88 ± 0.59 a |
trans-Caftaric acid | 29.39 ± 1.33 a | 25.27 ± 0.64 b | 29.72 ± 0.24 a | 29.08 ± 0.43 a | 29.37 ± 0.75 a |
Coutaric acid isomer | 0.48 ± 0.00 a | 0.35 ± 0.05 b | 0.48 ± 0.00 a | 0.42 ± 0.09 a | 0.49 ± 0.01 a |
Coutaric acid | 10.54 ± 0.36 ab | 10.03 ± 0.04 b | 10.53 ± 0.09 ab | 10.82 ± 0.54 a | 10.57 ± 0.03 ab |
Caffeic acid | 2.84 ± 0.04 a | 1.07 ± 0.81 b | 2.72 ± 0.03 a | 2.83 ± 0.00 a | 2.85 ± 0.00 a |
p-Coumaric acid | 2.26 ± 0.31 ab | 2.11 ± 0.08 b | 2.36 ± 0.09 ab | 2.59 ± 0.12 b | 2.46 ± 0.04 ab |
Ferulic acid | 0.90 ± 0.01 a | 0.60 ± 0.13 ab | 0.36 ± 0.00 b | 0.51 ± 0.10 b | 0.49 ± 0.15 b |
Ethyl ester of caffeic acid | 0.55 ± 0.01 a | 0.25 ± 0.21 b | 0.50 ± 0.01 a | 0.55 ± 0.02 a | 0.53 ± 0.01 a |
Ethyl ester of coumaric acid | 2.70 ± 0.52 a | 1.74 ± 0.03 b | 1.70 ± 0.07 b | 2.17 ± 0.02 ab | 1.43 ± 0.00 b |
Anthocyanins | Control | AC | PC | CHT | B |
---|---|---|---|---|---|
D-3-G | 2.54 ± 0.04 a | 2.26 ± 0.25 a | 2.65 ± 0.10 a | 2.30 ± 0.25 a | 2.56 ± 0.12 a |
C-3-G | 10.82 ± 0.48 a | 4.35 ± 0.09 d | 8.81 ± 0.08 b | 10.39 ± 0.02 a | 5.83 ± 0.06 c |
Pet-3-G | 16.63 ± 0.37 a | 12.61 ± 0.55 c | 14.13 ± 0.19 b | 16.54 ± 0.35 a | 10.11 ± 0.09 d |
Peo-3-G | 19.03 ± 0.52 a | 7.89 ± 1.11 c | 17.10 ± 0.22 a | 18.64 ± 0.42 a | 12.93 ± 0.79 b |
M-3-G | 90.40 ± 2.57 a | 78.89 ± 1.43 b | 78.64 ± 0.69 b | 90.93 ± 0.71 a | 56.78 ± 1.49 v |
D-3-A | 5.90 ± 0.05 a | 5.14 ± 0.14 b | 4.92 ± 0.07 b | 6.08 ± 0.02 a | 3.13 ± 0.05 c |
C-3-A | 0.74 ± 0.03 a | 0.66 ± 0.05 ab | 0.59 ± 0.01 ab | 0.70 ± 0.19 a | 0.47 ± 0.03 b |
Pet-3-A | 1.66 ± 0.23 a | n.d. | 0.36 ± 0.13 c | 1.61 ± 0.07 a | 1.00 ± 0.05 b |
Peo-3-A | 2.04 ± 0.16 a | 1.30 ± 0.14 b | 1.57 ± 0.46 ab | 1.99 ± 0.28 a | 1.19 ± 0.14 b |
M-3-A | 12.42 ± 3.77 a | 10.32 ± 2.05 ab | 8.65 ± 0.15 ab | 9.66 ± 0.22 ab | 6.13 ± 0.02 b |
D-3-C | 0.78 ± 0.18 a | 0.25 ± 0.01 b | 0.40 ± 0.03 b | 0.57 ± 0.05 ab | 0.48 ± 0.04 ab |
C-3-C | 0.71 ± 0.02 a | 0.58 ± 0.45 a | 0.74 ± 0.01 a | 0.35 ± 0.08 a | 0.42 ± 0.01 a |
Pet-3-C | 1.76 ± 0.16 ab | 1.95 ± 0.01 a | 1.50 ± 0.13 b | 1.80 ± 0.06 ab | 0.98 ± 0.04 c |
M-3-C | 15.28 ± 0.61 a | 11.11 ± 0.12 b | 11.53 ± 0.29 b | 14.48 ± 0.40 a | 9.31 ± 0.07 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosme, F.; Inês, A.; Ferreira, B.; Silva, D.; Filipe-Ribeiro, L.; Abrunhosa, L.; Nunes, F.M. Elimination of Aflatoxins B1 and B2 in White and Red Wines by Bentonite Fining. Efficiency and Impact on Wine Quality. Foods 2020, 9, 1789. https://doi.org/10.3390/foods9121789
Cosme F, Inês A, Ferreira B, Silva D, Filipe-Ribeiro L, Abrunhosa L, Nunes FM. Elimination of Aflatoxins B1 and B2 in White and Red Wines by Bentonite Fining. Efficiency and Impact on Wine Quality. Foods. 2020; 9(12):1789. https://doi.org/10.3390/foods9121789
Chicago/Turabian StyleCosme, Fernanda, António Inês, Beatriz Ferreira, Davide Silva, Luís Filipe-Ribeiro, Luís Abrunhosa, and Fernando M. Nunes. 2020. "Elimination of Aflatoxins B1 and B2 in White and Red Wines by Bentonite Fining. Efficiency and Impact on Wine Quality" Foods 9, no. 12: 1789. https://doi.org/10.3390/foods9121789
APA StyleCosme, F., Inês, A., Ferreira, B., Silva, D., Filipe-Ribeiro, L., Abrunhosa, L., & Nunes, F. M. (2020). Elimination of Aflatoxins B1 and B2 in White and Red Wines by Bentonite Fining. Efficiency and Impact on Wine Quality. Foods, 9(12), 1789. https://doi.org/10.3390/foods9121789