Postharvest Fungicide for Avocado Fruits: Antifungal Efficacy and Peel to Pulp Distribution Kinetics
Abstract
:1. Introduction
2. Methods and Materials
2.1. Fungal and Plant Material, Media, and Fungicides
2.2. Effect of Fungicide Application on Avocado Fruit Inoculated with L. Theobromae
2.3. Effect of Postharvest Application on Avocado Fruit Natural Rot
2.4. Reagents for LC-MS/MS
2.5. Residual Distribution Study Design
2.6. Sample Preparation
2.7. Liquid Chromatography Tandem-Mass Spectrometry (LC-MS/MS) Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Postharvest Application of Fungicides on SER Caused by L. Theobromae Inoculation
3.2. Effect of Postharvest Application of Fungicide on Avocado Fruit Natural Rots
3.3. Depletion Kinetics of Prochloraz and its Metabolites in Peel and Pulp
3.4. Dietary Risk Assessment of Prochloraz
3.5. Depletion Kinetics of Fludioxonil in Peel and Pulp
3.6. Dietary Risk Assessment of Fludioxonil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McDonald, B.A.; Stukenbrock, E.H. Rapid emergence of pathogens in agro-ecosystems: Global threats to agricultural sustainability and food security. Phil. Trans. R. Soc. B 2017, 371, 20160026. [Google Scholar] [CrossRef] [Green Version]
- Agronet, Agricultural Professional Portal for Fruits and Vegetables and Field Crops. Israel’s Avocado Industry—Overview. 2016. Available online: https://www.agronet-eng.com/israels-avocado-industry-overview/ (accessed on 21 November 2019).
- Mulderij, R. Overview Global Avocado Market. FreshPlaza. 2018. Available online: https://www.freshplaza.com/article/2200113/overview-global-avocado-market/ (accessed on 21 November 2019).
- Kassim, A.; Workneh, T.S.; Bezuidenhout, C.N. A review on postharvest handling of avocado fruit. Afr. J. Agric. Res. 2013, 8, 2385–2402. [Google Scholar]
- European Commission, EU Pesticide Database. Prochloraz. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.detail&language=EN&selectedID=1753 (accessed on 21 November 2019).
- Israeli Plant Protection Services, Pesticide Database. Available online: http://www.hadbara.moag.gov.il/hadbara/ (accessed on 21 November 2019).
- European Food Safety Authority (EFSA). Conclusion on the peer review of the pesticide risk assessment of the active substance prochloraz. EFSA J. 2011, 9, 1–120. [Google Scholar] [CrossRef]
- Integrated Risk Information System, US-EPA. Available online: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=122 (accessed on 21 November 2019).
- European Commission, EU Pesticide Database. Fludioxonil. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.detail&language=EN&selectedID=1379 (accessed on 21 November 2019).
- European Food Safety Authority (EFSA). Conclusion regarding the peer review of the pesticide risk assessment of the active substance fludioxonil. EFSA Sci. Rep. 2007, 110, 1–85. [Google Scholar]
- Diskin, S.; Sharir, T.; Feygenberg, O.; Maurer, D.; Alkan, N. Fludioxonil—A potential alternative for postharvest disease control in mango fruit. Crop Prot. 2019, 124, 104855. [Google Scholar] [CrossRef]
- Diskin, S.; Feygenberg, O.; Maurer, D.; Droby, S.; Prusky, D.; Alkan, N. Microbiome alterations are correlated with occurrence of postharvest stem-end rot in mango fruit. Phytobiomes 2017, 1, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Valencia, A.L.; Gil, P.M.; Latorre, B.A.; Rosales, I.M. Characterization and pathogenicity of Botryosphaeriaceae species obtained from avocado trees with branch canker and dieback and from avocado fruit with stem end rot in Chile. Plant Dis. 2019, 103, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Galsurker, O.; Diskin, S.; Maurer, D.; Feygenberg, O.; Alkan, N. Fruit Stem-End Rot. Horticulturae 2018, 4, 50. [Google Scholar] [CrossRef] [Green Version]
- Swart, S.H.; Serfontein, J.J.; Swart, C.; Labuschagne, C. Chemical control of post-harvest disease of mango: The effect of fludioxonil and prochloraz on soft brown rot, stem-end rot and anthracnose. Acta Hortic. 2009, 820, 503–509. [Google Scholar] [CrossRef]
- Förster, H.; Driever, G.F.; Thompson, D.C.; Adaskaveg, J.E. Postharvest decay management for stone fruit crops in California using the “reduced-risk” fungicides fludioxonil and fenhexamid. Plant Dis. 2007, 91, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirra, M.; D’Aquino, S.; Cabras, P.; Angioni, A. Control of postharvest diseases of fruit by heat and fungicides: Efficacy, residue levels, and residue persistence. A review. J. Agric. Food Chem. 2011, 59, 8531–8542. [Google Scholar] [CrossRef] [PubMed]
- Versano, R.; Tal, A. Risk Analysis Posed by Pesticide Residues in Food in Israel. Ministry of Health. 2012. Available online: https://www.health.gov.il/PublicationsFiles/21112012_pesticides.pdf (accessed on 21 November 2019).
- European Commission Implementing Regulation (Eu) 2019/29. 2019. Available online: https://eur-lex.europa.eu/eli/reg_impl/2019/291/oj (accessed on 21 November 2019).
Compound | DP 1 (v) | EP 2 (v) | CE 3 (v) | CXP 4 (v) | Q1 5 (g/mol) | Q2 6 (g/mol) | Retention Time (min) | LOD 7 mg/kg | LOQ 8 mg/kg |
---|---|---|---|---|---|---|---|---|---|
Positive ESI 9 | |||||||||
(Internal Standard) Bifenthrin D6 | 37.9 | 10 | 27.1 | 12 | 312.8 | 163.9 | 10.51 | 0.002 | 0.005 |
(Internal Standard) Triphenylphosphat | 37.7 | 10 | 27.1 | 12 | 312.8 | 163.7 | 8.41 | 0.002 | 0.005 |
Prochloraz | 24 | 10 | 17 | 16 | 376.0 | 308.0 | 8.40 | 0.002 | 0.005 |
Prochloraz-desimidazol-amino | 71 | 10 | 23 | 28 | 327.1 | 284.0 | 8.19 | 0.002 | 0.005 |
Prochloraz-desimidazol-formylamino | 66 | 10 | 21 | 18 | 355.0 | 310.1 | 8.22 | 0.002 | 0.005 |
Negative ESI | |||||||||
CAP (Internal Standard) | −65 | −10 | −24 | −11 | 321.0 | 152.1 | 3.50 | 0.002 | 0.005 |
Fludioxonil | −56 | −10 | −44 | −9 | 247.0 | 179.9 | 3.90 | 0.002 | 0.005 |
2,4,6-trichlorophenyl | −45 | −10 | −32 | −7 | 196.0 | 159 | 5.7 | 0.002 | 0.005 |
Time (Days) | Mean Peel Concentration (mg/kg) ± SD a | Mean Pulp Concentration (mg/kg) ± SD | Statistical Analysis |
---|---|---|---|
Prochloraz (300 mg/L) | |||
0 | 1.26 ± 0.4 | 0 | p < 0.001 (t = 6.2) b |
21 | 1.09 ± 0.3 | 0 | p < 0.01 (t = 4.8) b |
28 | 1.05 ± 0.3 | 0 | p < 0.05 (t = 3.1) b |
Prochloraz (150 mg/L) | |||
0 | 0.73 ± 0.24 | 0 | p < 0.001 (t = 6.4) b |
21 | 0.56 ± 0.18 | 0 | p < 0.001 (t = 4.9) b |
28 | 0.44 ± 0.15 | 0 | p < 0.01 (t = 3.9)b |
Prochloraz (75 mg/L) | |||
0 | 0.52 ± 0.17 | 0 | p < 0.001 (t = 7.2) b |
21 | 0.28 ± 0.09 | 0 | p < 0.01 (t = 3.8) b |
28 | 0.27 ± 0.09 | 0 | p < 0.01 (t = 3.7) b |
Prochloraz metabolite BTS44595 (after 300 mg/L prochloraz application) | |||
0 | 0.03 ± 0.01 | 0 | p < 0.001 (t = 9) c |
21 | 0 | 0 | p > 0.05 |
28 | 0 | 0 | p > 0.05 |
Prochloraz metabolite BTS44596 (after 300 mg/L prochloraz application) | |||
0 | 0.046 ± 0.016 | 0 | p < 0.001 (t = 5.9)b |
21 | 0.045 ± 0.015 | 0 | p < 0.001 (t = 5.6) b |
28 | 0.030 ± 0.010 | 0 | p < 0.01 (t = 3.7) b |
Fludioxonil (300 mg/L) | |||
0 | 1.2 ± 0.53 | 0.04 ± 0.01 | p < 0.01 (t = 4.4) b |
21 | 1.1 ± 0.49 | 0 | p < 0.01 (t = 4.2) b |
28 | 0.7 ± 0.31 | 0 | p > 0.05 |
Fludioxonil (150 mg/L) | |||
0 | 0.89 ± 0.39 | 0.008 ± 0.003 | p < 0.01 (t = 4.5) b |
21 | 0.85 ± 0.37 | 0 | p < 0.01 (t = 4.4) b |
28 | 0.47 ± 0.20 | 0 | p > 0.05 |
Fludioxonil (75 mg/L) | |||
0 | 0.78 ± 0.3 | 0 | p < 0.001 (t = 5.9) b |
21 | 0.60 ± 0.2 | 0 | p < 0.001 (t = 4.6) b |
28 | 0.41 ± 0.1 | 0 | p > 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimshoni, J.A.; Bommuraj, V.; Chen, Y.; Sperling, R.; Barel, S.; Feygenberg, O.; Maurer, D.; Alkan, N. Postharvest Fungicide for Avocado Fruits: Antifungal Efficacy and Peel to Pulp Distribution Kinetics. Foods 2020, 9, 124. https://doi.org/10.3390/foods9020124
Shimshoni JA, Bommuraj V, Chen Y, Sperling R, Barel S, Feygenberg O, Maurer D, Alkan N. Postharvest Fungicide for Avocado Fruits: Antifungal Efficacy and Peel to Pulp Distribution Kinetics. Foods. 2020; 9(2):124. https://doi.org/10.3390/foods9020124
Chicago/Turabian StyleShimshoni, Jakob A., Vijayakumar Bommuraj, Yaira Chen, Roy Sperling, Shimon Barel, Oleg Feygenberg, Dalia Maurer, and Noam Alkan. 2020. "Postharvest Fungicide for Avocado Fruits: Antifungal Efficacy and Peel to Pulp Distribution Kinetics" Foods 9, no. 2: 124. https://doi.org/10.3390/foods9020124
APA StyleShimshoni, J. A., Bommuraj, V., Chen, Y., Sperling, R., Barel, S., Feygenberg, O., Maurer, D., & Alkan, N. (2020). Postharvest Fungicide for Avocado Fruits: Antifungal Efficacy and Peel to Pulp Distribution Kinetics. Foods, 9(2), 124. https://doi.org/10.3390/foods9020124