Color Stability of Fermented Mare’s Milk and a Fermented Beverage from Cow’s Milk Adapted to Mare’s Milk Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mare’s and Cow’s Raw Milk Samples
2.2. Cow’s Milk Modification
2.3. Compositional and Physicochemical Analysis of Milk
2.4. Milk Fermentation Process
2.5. Fermentation Parameters
2.6. Color Analysis
2.7. Lactic Acid Bacteria
2.8. Determination of Water Holding Capacity
2.9. Gel Firmness
2.10. Acceptability of Color and Appearance
2.11. Statistical Evaluation
3. Results
3.1. Characteristics of Beverages from Mare’s Milk and Cow’s Milk Adapted to Mare’s Milk Composition
3.2. Color of Mare’s and Other Milks
3.3. Fermentation Parameters and Selected Physicochemical and Microbiological Attributes of Fermented Mare’s and Other Milks
3.4. Color of Fermented Mare’s and Others’ Milk
3.5. Overall Acceptability of Color
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Čagalj, M.; Brezovečki, A.; Mikulec, N.; Antunac, N. Composition and properties of mare’s milk of Croatian Coldblood horse breed. Mljekarstvo 2014, 64, 3–11. [Google Scholar]
- Pieszka, M.; Łuszczyński, J.; Zamachowska, M.; Augustyn, R.; Długosz, B.; Hędrzak, M. Is mare milk an appropriate food for people?—A review. Ann. Anim. Sci. 2016, 16, 33–51. [Google Scholar] [CrossRef] [Green Version]
- Kücükcetin, A.; Yaygin, H.; Hinrichs, J.; Kulozik, U. Adaptation of bovine milk towards mare’s milk composition by means of membrane technology for koumiss manufacture. Int. Dairy J. 2003, 13, 945–951. [Google Scholar] [CrossRef]
- Cais-Sokolińska, D.; Wójtowski, J.; Pikul, J. Rheological, texture and sensory properties of kefir from mare’s milk and its mixtures with goat and sheep milk. Mljekarstvo 2016, 66, 272–281. [Google Scholar] [CrossRef] [Green Version]
- El-Hatmi, H.; Jrad, Z.; Salhi, I.; Aguibi, A.; Nadri, A.; Khorchani, T. Comparison of composition and whey protein fractions of human, camel, donkey, goat and cow milk. Mljekarstvo 2015, 65, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Chiofalo, B.; Drogoul, C.; Salimei, E. Other utilization of mare’s and ass’s milk. In Nutrition and Feeding of the Broodmare; Miraglia, N., Martin-Rosset, N., EAAP Publication, Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 133–147. [Google Scholar]
- Uniacke-Lowe, T.; Huppertz, T.; Fox, P.F. Equine milk proteins: Chemistry, structure and nutritional significance. Int. Dairy J. 2010, 20, 609–629. [Google Scholar] [CrossRef]
- Salimei, E.; Fantuz, F. Equid milk for human consumption. Int. Dairy J. 2012, 24, 130–142. [Google Scholar] [CrossRef]
- Hill, D.; Sugrue, I.; Arendt, E.; Hill, C.; Stanton, C.; Ross, R.P. Recent advances in microbial fermentation for dairy and health. F1000Research 2017, 6, 751. [Google Scholar] [CrossRef]
- Marsh, A.J.; Hill, C.; Ross, R.P.; Cotter, P.D. Fermented beverages with health-promoting potential: Past and future perspectives. Trends Food Sci. Technol. 2014, 38, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Francis, F.J. Quality as influenced by color. Food Qual. Prefer. 1995, 6, 149–155. [Google Scholar] [CrossRef]
- Bierzuńska, P.; Cais-Sokolińska, D.; Yiğit, A. Storage Stability of texture and sensory properties of yogurt with the addition of polymerized whey proteins. Foods 2019, 8, 548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Organization for Standardization. Milk and Milk Products—Guidance on Sampling. IDF Bulletin N° 42; ISO 707; International Dairy Federation: Brussels, Belgium, 2008. [Google Scholar]
- International Organization for Standardization. Milk—Determination of Freezing Point—Thermistor Cryoscope Method (Reference method); ISO 5764; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- Cais-Sokolińska, D.; Danków, R.; Bierzuńska, P.; Kaczyński, Ł.K.; Chudy, S.; Teichert, J.; Dobek, A.; Skotarczak, E.; Pikul, J. Freezing point and other technological properties of milk of the Polish Coldblood horse breed. J. Dairy Sci. 2018, 101, 9637–9646. [Google Scholar] [CrossRef] [PubMed]
- Kristo, E.; Biliaderis, C.G.; Tzanetakis, N. Modelling of rheological, microbiological and acidification properties of a fermented milk product containing a probiotic strain of Lactobacillus paracasei. Int. Dairy J. 2003, 13, 517–528. [Google Scholar] [CrossRef]
- Gaiani, C.; Boyanova, P.; Hussain, R.; Murrieta Pazos, I.; Karam, M.C.; Burgain, J.; Scher, J. Morphological descriptors and colour as a tool to better understand rehydration properties of dairy powders. Int. Dairy J. 2011, 7, 462–469. [Google Scholar] [CrossRef]
- Mainville, I.; Montpetit, D.; Durand, N.; Farnworth, E.R. Deactivating the bacteria and yeast in kefir using heat treatment, irradiation and high pressure. Int. Dairy J. 2001, 11, 45–49. [Google Scholar] [CrossRef]
- Gustaw, W.; Kozioł, J.; Radzki, W.; Skrzypczak, K.; Michalak-Majewska, M.; Sołowiej, B.; Jabłońska-Ryś, E. The effect of addition of selected milk protein preparations on the growth of Lactobacillus acidophilus and physicochemical properties of fermented milk. Acta Sci. Pol. Technol. Aliment. 2016, 15, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, W.; Chen, X.; Feng, M.; Rui, X.; Jiang, M.; Dong, M. Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. LWT Food Sci. Technol. 2014, 57, 477–485. [Google Scholar] [CrossRef]
- Puerari, C.; Magalhães, K.T.; Schwan, R.F. New cocoa pulp-based kefir beverages: Microbiological, chemical composition and sensory analysis. Food Res. Int. 2012, 48, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Malacarne, M.; Martuzzi, F.; Summer, A.; Mariani, P. Protein and fat composition of mare’s milk: some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 2002, 12, 869–877. [Google Scholar] [CrossRef]
- Caroprese, M.; Albenzio, M.; Marino, R.; Muscio, A.; Zezza, T.; Sevi, A. Behavior, milk yield, and milk composition of machine-and hand-milked Murgese mare’s. J. Dairy Sci. 2007, 90, 2773–2777. [Google Scholar] [CrossRef] [Green Version]
- Potočnik, K.; Gantner, V.; Kuterovac, K.; Cividini, A. Mare’s milk: Composition and protein fraction in comparison with different milk species. Mljekarstvo 2011, 61, 107–113. [Google Scholar]
- Bornaz, S.; Guizani, N.; Sammari, J.; Allouch, W.; Sahli, A.; Attia, H. Physicochemical properties of fermented Arabian mares’ milk. Int. Dairy J. 2010, 20, 500–505. [Google Scholar] [CrossRef]
- Barreto, Í.M.L.G.; Rangel, A.H.D.N.; Urbano, S.A.; Bezerra, J.D.S.; Oliveira, C.A.D.A. Equine milk and its potential use in the human diet. Food Sci. Technol. 2019, 39, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chandan, R.C. Milk composition, physical and processing characteristics. In Manufacturing Yogurt and Fermented Milks; Chandan, R.C., White, C.H., Kilara, A., Hui, Y.H., Eds.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 17–41. [Google Scholar]
- Cheng, N.; Barbano, D.M.; Drake, M.A. Hunter versus CIE color measurement systems for analysis of milk-based beverages. J. Dairy Sci. 2018, 6, 4891–4905. [Google Scholar] [CrossRef] [Green Version]
- Cais-Sokolińska, D.; Pikul, J. Use of colour measurement to evaluate yoghurt quality during storage. Ital. J. Food Sci. 2006, 18, 63–71. [Google Scholar]
- Remeuf, F.; Mohammed, S.; Sodini, I.; Tissier, J.P. Preliminary observations on the effects of milk fortification and heating on microstructure and physical properties of stirred yogurt. Int. Dairy J. 2003, 13, 773–782. [Google Scholar] [CrossRef]
- Sodini, I.; Remeuf, F.; Haddad, S.; Corrieu, G. The relative effect of milk base, starter, and process on yogurt texture: A review. Crit. Rev. Food Sci. Nutr. 2004, 44, 113–137. [Google Scholar] [CrossRef]
- Akalin, A.S.; Unal, G.; Dinkci, N.; Hayaloglu, A.A. Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate. J. Dairy Sci. 2012, 95, 3617–3628. [Google Scholar] [CrossRef]
- Berber, M.; González-Quijano, G.K.; Alvarez, V.B. Whey protein concentrate as a substitute for non-fat dry milk in yogurt. J. Food Process. Technol. 2015, 6, 1000530. [Google Scholar] [CrossRef] [Green Version]
- Miloradovic, Z.; Miocinovic, J.; Kljajevic, N.; Tomasevic, I.; Pudja, P. The influence of milk heat treatment on composition, texture, colour and sensory characteristics of cow’s and goat’s Quark-type cheeses. Small Rumin. Res. 2018, 169, 154–159. [Google Scholar] [CrossRef]
- Delikanli, B.; Ozcan, T. Effects of various whey proteins on the physicochemical and textural properties of set type nonfat yoghurt. Int. J. Dairy Technol. 2014, 4, 495–503. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, C.; Becerra, M.; Chafer, M.; Albors, A.; Carot, J.M.; Chiralt, A. Influence of substituting milk for whey powder on yoghurt quality. Trends Food Sci. Technol. 2002, 13, 334–340. [Google Scholar] [CrossRef]
- Supavititpatana, P.; Wirjantoro, T.I.; Raviyan, P. Effect of sodium caseinate and whey protein isolate fortification on the physical properties and microstructure of corn milk yogurt. CMU. J. Nat. Sci. 2009, 8, 247–263. [Google Scholar]
Parameters | Mare’s Milk | Adapted Cow’s Milk | Cow’s Milk |
---|---|---|---|
Solid non-fat (g/kg) | 84.1 ± 0.7 a | 86.6 ± 0.3 b | 91.2 ± 0.9 c |
Fat (g/kg) | 13.2 ± 1.1 a | 14.0 ± 0.9 a | 41.2 ± 0.6 b |
Protein (g/kg) | 22.9 ± 0.8 a | 22.7 ± 2.4 a | 34.4 ± 0.8 b |
Casein (g/kg) | 12.9 ± 0.7 a | 12.8 ± 1.8 a | 27.6 ± 0.9 b |
Whey protein (g/kg) | 9.8 ± 0.4 b | 9.8 ± 1.2 b | 6.7 ± 0.6 a |
Lactose (g/kg) | 65.0 ± 1.0 c | 63.3 ± 1 b | 48.8 ± 0.2 a |
pH | 6.92 ± 0.03 c | 6.56 ± 0.04 a | 6.64 ± 0.03 b |
Freezing point (°C) | −0.551 ± 0.002 a | −0.535 ± 0.017 a | −0.541 ± 0.034 a |
Viscosity (mPas) | 3.05 ± 0.02 a | 3.12 ± 0.06 a | 4.31 ± 0.26 b |
Density (in 20°C, kg/m3) | 1.037 ± 1 b | 1.036 ± 2 b | 1.028 ± 2 a |
Parameters | Mare’s Milk | Adapted Cow’s Milk | Cow’s Milk |
---|---|---|---|
WI | 21.49 ± 1.03 c | 17.82 ± 1.41 b | 8.92 ± 1.04 a |
C* | 4.17 ± 0.19 c | 3.17 ± 0.24 b | 2.54 ± 0.16 a |
YI | 6.60 ± 0.40 c | 4.33 ± 0.47 b | 3.41 ± 0.16 a |
L* | 78.92 ± 1.04 a | 82.47 ± 1.46 b | 91.46 ± 1.10 c |
Parameters | Fermented Milk Beverage | |||||
---|---|---|---|---|---|---|
Mare’s | Adapted Cow’s | Cow’s | Mare’s | Adapted Cow’s | Cow’s | |
0 Weeks | 3 Weeks | |||||
pH | 4.51 ± 0.06 b | 4.50 ± 0.04 b | 4.50 ± 0.05 b | 4.33 ± 0.06 a | 4.34 ± 0.02 a | 4.38 ± 0.04 a |
Vm (unit pH/min) | 0.0131 | 0.0084 | 0.0080 | |||
Tm (min) | 105 | 150 | 210 | |||
Te (min) | 255 | 285 | 300 | |||
Titratable acidity (%) | 0.76 ± 0.04 a | 0.84 ± 0.03 b | 0.86 ± 0.04 b | 1.05 ± 0.15 c | 0.86 ± 0.03 b | 0.87 ± 0.05 b |
WHC (%) | 95.6 ± 1.9 c | 96.0 ± 1.3 c | 96.7 ± 0.8 c | 91.5 ± 1.5 b | 80.0 ± 2.9 a | 78.6 ± 1.7 a |
Firmness |(g∙s)| | 145.6 ± 26.5 a | 279.2 ± 55.2 b | 410.0 ± 37.6 c | 149.9 ± 41.6 a | 275.3 ± 61.1 b | 399.0 ± 30.4 c |
Lactobacillus (log CFU/mL) | 7.71 ± 0.37 a | 7.83 ± 0.36 a | 7.89 ± 0.48 a | 7.28 ± 0.44 a | 7.18 ± 0.94 a | 6.76 ± 0.69 a |
Streptococcus (log CFU/mL) | 7.20 ± 0.75 a | 7.27 ± 0.83 a | 7.20 ± 0.74 a | 7.33 ± 0.61 a | 7.55 ± 0.67 a | 7.01 ± 0.61 a |
Fermented Product | Storage (w) | WI | C* | YI | L* |
---|---|---|---|---|---|
Mare’s milk | 0 | 45.16 ± 0.35 f | 5.54 ± 0.24 bc | 13.28 ± 0.68 d | 55.18 ± 0.34 a |
3 | 42.16 ± 0.56 e | 5.11 ± 0.49 b | 10.98 ± 1.21 c | 58.15 ± 0.57 a | |
Adapted cow’s milk | 0 | 25.95 ± 0.58 d | 6.07 ± 0.41 d | 10.46 ± 0.75 c | 74.78 ± 0.65 b |
3 | 23.19 ± 0.76 c | 5.75 ± 0.36 cd | 9.25 ± 0.79 b | 77.54 ± 0.80 b | |
Cow’s milk | 0 | 14.04 ± 0.92 b | 5.65 ± 0.37 cd | 8.57 ± 0.62 b | 87.16 ± 1.04 c |
3 | 14.92 ± 0.62 a | 4.14 ± 0.30 a | 5.96 ± 0.59 a | 85.67 ± 0.63 c |
Hedonic Scale (1–9) | Fermented Beverage from Milk | ||||||
---|---|---|---|---|---|---|---|
Mare’s | Adapted Cow’s | Cow’s | Mare’s | Adapted Cow’s | Cow’s | ||
0 Weeks | 3 Weeks | ||||||
9 | Like extremely | 3 | 11 | 39 | 0 | 11 | |
8 | Like very much | 5 | 18 | 19 | 3 | 25 | |
7 | Like moderately | 2 | 25 | 21 | 19 | 28 | |
6 | Like slightly | 22 | 22 | 7 | 39 | 18 | |
5 | Neither like nor dislike | 33 | 9 | 5 | 9 | 12 | 9 |
4 | Dislike slightly | 27 | 4 | 1 | 10 | 19 | 1 |
3 | Dislike moderately | 0 | 3 | 0 | 23 | 0 | |
2 | Dislike very much | 0 | 0 | 0 | 36 | 0 | |
1 | Dislike extremely | 0 | 0 | 0 | 14 | 0 | |
Skewness | 0.97 | 0.49 | 1.41 | 1.22 | 1.35 | 0.62 | |
p-value | 0.01 | 0.27 | 0.02 | 0.05 | 0.02 | 0.08 | |
SD | 13.23 | 9.48 | 13.50 | 12.56 | 13.49 | 11.16 | |
CV | 129.39 | 92.78 | 132.05 | 122.85 | 131.95 | 109.13 | |
Dislike responses (%) | 29.35 | 7.61 | 1.09 | 90.22 | 20.65 | 1.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teichert, J.; Cais-Sokolińska, D.; Danków, R.; Pikul, J.; Chudy, S.; Bierzuńska, P.; Kaczyński, Ł.K. Color Stability of Fermented Mare’s Milk and a Fermented Beverage from Cow’s Milk Adapted to Mare’s Milk Composition. Foods 2020, 9, 217. https://doi.org/10.3390/foods9020217
Teichert J, Cais-Sokolińska D, Danków R, Pikul J, Chudy S, Bierzuńska P, Kaczyński ŁK. Color Stability of Fermented Mare’s Milk and a Fermented Beverage from Cow’s Milk Adapted to Mare’s Milk Composition. Foods. 2020; 9(2):217. https://doi.org/10.3390/foods9020217
Chicago/Turabian StyleTeichert, Joanna, Dorota Cais-Sokolińska, Romualda Danków, Jan Pikul, Sylwia Chudy, Paulina Bierzuńska, and Łukasz K. Kaczyński. 2020. "Color Stability of Fermented Mare’s Milk and a Fermented Beverage from Cow’s Milk Adapted to Mare’s Milk Composition" Foods 9, no. 2: 217. https://doi.org/10.3390/foods9020217
APA StyleTeichert, J., Cais-Sokolińska, D., Danków, R., Pikul, J., Chudy, S., Bierzuńska, P., & Kaczyński, Ł. K. (2020). Color Stability of Fermented Mare’s Milk and a Fermented Beverage from Cow’s Milk Adapted to Mare’s Milk Composition. Foods, 9(2), 217. https://doi.org/10.3390/foods9020217