The Effect of Nanocoatings Enriched with Essential Oils on ‘Rocha’ Pear Long Storage
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Lemongrass Essential Oil (LG) Analysis
2.3. Preparation of Coating-Forming Nanoemulsions
2.4. Nanoemulsion Characterization
2.5. Fruit Coating
2.6. Quality Parameters
2.7. Microbial Counts
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Lemongrass Essential Oil (LG) Composition
3.2. Nanoemulsion Characterization
3.2.1. Droplet Size, Polydispersity and Zeta-Potential
3.2.2. Microstructure
3.2.3. Nanoemulsions Cytotoxicity
3.3. Fruit Quality Parameters
3.3.1. Colour
3.3.2. Firmness
3.3.3. SSC and TA
3.3.4. Electrolyte Leakage (EL)
3.3.5. Weight Loss
3.3.6. Aerobic Mesophilic Microorganisms and Yeasts and Moulds
3.3.7. Superficial Scald and Internal Browning
3.3.8. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saquet, A.A.; Almeida, D.P.F. Ripening physiology and biochemistry of ‘Rocha’ pear as affected by ethylene inhibition. Postharvest Biol. Technol. 2017, 125, 161–167. [Google Scholar] [CrossRef]
- Lurie, S.; Watkins, C.B. Superficial scald, its etiology and control. Postharvest Biol. Technol. 2012, 65, 44–60. [Google Scholar] [CrossRef]
- Gago, C.M.; Miguel, M.G.; Cavaco, A.M.; Almeida, D.P.; Antunes, M.D. Combine effect of temperature and controlled atmosphere on storage and shelf-life of ‘Rocha’ pear treated with 1-methylcyclopropene. Food Sci. Technol. Int. 2015, 21, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. fresh fruit storage. Postharvest Biol. Technol. 2015, 100, 226–233. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. The use of polysaccharide-based edible coatings enriched with essential oils to improve shelf-life of strawberries. Postharvest Biol. Technol. 2015, 110, 51–60. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. The effect of edible coatings on the nutritional quality of “Bravo de Esmolfe” fresh-cut apple through shelf-life. LWT—Food Sci. Technol. 2017, 75, 210–219. [Google Scholar] [CrossRef]
- Guerra-Rosas, M.I.; Morales-Castro, J.; Cubero-Márquez, M.A.; Salvia-Trujillo, L.; Martín-Belloso, O. Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control 2017, 77, 131–138. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Camele, I. An overview of the biological effects of some mediterranean essential oils on human health. BioMed Res. Int. 2017. [Google Scholar] [CrossRef]
- Ranade, S.; Thiagarajan, P. Lemon Grass. Int. J. Pharm. Sci. Rev. Res. 2015, 35, 162–167. [Google Scholar]
- Haque, A.N.M.A.; Remadevi, R.; Nache, M. Lemongrass (Cymbopogon): A review on its structure, properties, applications and recent developments. Cellulose 2018, 25, 5455–5477. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Tapia, M.S.; Martín-Belloso, O. Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples. LWT—Food Sci. Technol. 2008, 41, 139–147. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut fuji apples. Postharvest Biol. Technol. 2015, 105, 8–16. [Google Scholar] [CrossRef]
- Otoni, C.G.; Avena-Bustillos, R.J.; Olsen, C.W.; Bilbao-Sáinz, C.; McHugh, T.H. Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocoll. 2016, 57, 72–79. [Google Scholar] [CrossRef]
- Kim, I.H.; Oh, Y.A.; Lee, H.; Song, K.B.; Min, S.C. Grape berry coatings of lemongrass oil-incorporating nanoemulsion. LWT—Food Sci. Technol. 2014, 58, 1–10. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Mendes, M.D.; Lima, A.S.; Barbosa, P.M.; Ascensão, L.; Barroso, J.G.; Pedro, L.G.; Mota, M.M.; Figueiredo, A.C. Pinus halepensis, Pinus pinaster, Pinus pinea and Pinus sylvestris essential oils chemotypes and monoterpene hydrocarbon enantiomers, before and after inoculation with the pinewood nematode Bursaphelenchus xylophilus. Chem. Biodivers. 2017, 4, e1600153. [Google Scholar] [CrossRef]
- Gago, C.M.L.; Artiga-Artigas, M.; Antunes, M.D.C.; Faleiro, M.; Miguel, M.G.; Martín-Belloso, O. Effectiveness of nanoemulsions of clove and lemongrass essential oils and their major components against Escherichia coli and Botrytis cinerea. J. Food Sci. Technol. 2019, 56, 2721. [Google Scholar] [CrossRef]
- Artiga-Artigas, M.; Acevedo-Fani, A.; Martín-Belloso, O. Effect of sodium alginate incorporation procedure on the physicochemical properties of nanoemulsions. Food Hydrocoll. 2017, 70, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Cavaco, A.M.; Pinto, P.; Antunes, M.D.; Marques da Silva, J.; Guerra, R. ‘Rocha’ pear firmness predicted by a Vis/NIR segmented model. Postharvest Biol. Technol. 2009, 51, 311–319. [Google Scholar] [CrossRef]
- Gago, C.M.L.; Guerreiro, A.C.; Miguel, M.G.; Panagopoulos, T.; Sánchez, C.; Antunes, M.D.C. Effect of harvest date and 1-MCP (SmartFreshTM) treatment on ‘Golden Delicious’ apple cold storage physiological disorders. Postharvest Biol. Technol. 2015, 110, 77–85. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Barbosa, P.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Bioactivity against Bursaphelenchus xylophilus: Nematotoxics from essential oils, essential oils fractions and decoction waters. Phytochemistry 2013, 94, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.C.A.; Barreto, S.M.A.G.; Ostrosky, E.A.; Da Rocha-Filho, P.A.; Veríssimo, L.M.; Ferrari, M. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) Mill extract as moisturizing agent. Molecules 2015, 20, 2492–2509. [Google Scholar] [CrossRef] [Green Version]
- Ishaka, A.; Imam, M.U.; Mahamud, R.; Zuki, A.B.Z.; Maznah, I. Characterization of rice bran wax policosanol and its nanoemulsion formulation. Int. J. Nanomed. 2014, 9, 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- Sobhani, H.; Tarighi, P.; Ostad, S.N.; Shafaati, A.; Nafissi-Varcheh, N.; Aboofazeli, R. Formulation development and toxicity assessment of triacetin mediated nanoemulsions as novel delivery systems for rapamycin. Iran. J. Pharm. Res. 2015, 14, 3–21. [Google Scholar]
- Eaton, P.; Quaresma, P.; Soares, C.; Neves, C.; Almeida, M.P.; Pereira, E.; West, P. A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy 2017, 182, 179–190. [Google Scholar] [CrossRef]
- Uluata, S.; Decker, E.A.; McClements, D.J. Optimization of Nanoemulsion Fabrication Using Microfluidization: Role of Surfactant Concentration on Formation and Stability. Food Biophysics 2016, 11, 52–59. [Google Scholar] [CrossRef]
- Medeiros, B.G.S.; Pinheiro, A.C.; Teixeira, J.A.; Vicente, A.A.; Carneiro-da-Cunha, M.G. Polysaccharide/Protein Nanomultilayer Coatings: Construction, Characterization and Evaluation of Their Effect on “Rocha” Pear (Pyrus communis L.) Shelf-Life. Food Bioprocess Technol. 2012, 5, 2435–2445. [Google Scholar] [CrossRef] [Green Version]
- Galvis-Sánchez, A.C.; Fonseca, S.C.; Morais, A.M.; Malcata, F.X. Sensorial and physicochemical quality responses of pears (cv. Rocha) to long-term storage under controlled atmospheres. J. Sci. Food Agric. 2004, 84, 1646–1656. [Google Scholar] [CrossRef]
- Larrigaudière, C.; Vilaplana, R.; Soria, Y.; Recasens, I. Oxidative behaviour of Blanquilla pears treated with 1-methylcyclopropene during cold storage. J. Sci. Food Agric. 2004, 84, 1871–1877. [Google Scholar] [CrossRef]
- Khaliq, G.; Nisa, M.; Ramzan, M.; Koondhar, N. Textural Properties and Enzyme Activity of Mango (Mangifera Indica L.) Fruit Coated with Chitosan during storage. J. Agric. Studies 2017, 5, 32–50. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Lin, H.; Cao, D.; Xu, Q.; Han, W.; Wang, R.; Che, Z.; Li, X. Effect of chitosan coating with cinnamon oil on the quality and physiological attributes of china jujube fruits. BioMed Res. Int. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bierhals, V.S.; Chiumarelli, M.; Hubinger, M.D. Effect of casava starch coating on quality and shelf-life of pineapple (Ananas comorus L. Merril cv. ’Pérola’). J. Food Sci. 2011, 76, 62–76. [Google Scholar] [CrossRef]
- Pesis, E.; Ebeler, S.E.; De Freitas, S.T.; Padda, M.; Mitcham, E.J. Short anaerobiosis period prior to cold storage alleviates bitter pit and superficial scald in Granny Smith apples. J. Sci. Food Agric. 2010, 90, 2114–2123. [Google Scholar] [CrossRef]
- Lima, Á.M.; Cerqueira, M.A.; Souza, B.W.S.; Santos, E.C.M.; Teixeira, J.A.; Moreira, R.A.; Vicente, A.A. New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits—Influence on fruits gas transfer rate. J. Food Eng. 2010, 97, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, K.; Conti, D.S.; Da Rocha, S.R.P.; Zhang, Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol. 2015, 47, 69–73. [Google Scholar] [CrossRef]
Compounds | RI | % |
---|---|---|
Tricyclene | 921 | 0.4 |
α-Fenchene | 938 | t |
Camphene | 938 | 1.7 |
6-Methylhept-5-en-2-one | 960 | 1.0 |
β-Myrcene | 975 | 0.3 |
1,8-Cineole | 1005 | 0.4 |
Limonene | 1009 | 0.4 |
Linalool | 1074 | 1.1 |
Citronellal | 1121 | 0.4 |
α-Terpineol | 1159 | 0.3 |
Neral | 1210 | 34.8 |
Piperitone | 1211 | 0.1 |
Geraniol | 1236 | 16.9 |
Geranial | 1240 | 33.7 |
Geranyl acetate | 1370 | 3.2 |
β-Caryophyllene | 1414 | 1.2 |
trans-α-Bergamotene | 1434 | t |
α-Humulene | 1447 | 0.1 |
δ-Cadinene | 1505 | 0.1 |
Elemol | 1530 | 0.3 |
β-Caryophyllene oxide | 1561 | 0.4 |
% of Identification | 96.8 | |
Grouped compounds | ||
Monoterpene hydrocarbons | 2.8 | |
Oxygen-containing monoterpenes | 90.9 | |
Sesquiterpene hydrocarbons | 1.4 | |
Oxygen-containing sesquiterpenes | 0.7 | |
Others | 1.0 |
Nanoemulsion | Droplet Size (nm) | Polydispersity Index | Zeta-Potential (mV) |
---|---|---|---|
Cit1% | 42.15 ± 11.42 bc | 0.36 ± 0.03 a | −52.84 ± 3.18 c |
Cit2% | 26.04 ± 5.43 c | 0.31 ± 0.04 ab | −37.79 ± 8.53 b |
LG1.25% | 82.81 ± 39.28 a | 0.36 ± 0.04 a | −28.29 ± 10.69 ab |
LG2.5% | 68.28 ± 21.84 ab | 0.26 ± 0.05 b | −23.10 ± 6.53 a |
Quality Parameters | 0 Month | 2 Months | 4 Months | 6 Months | ||||
---|---|---|---|---|---|---|---|---|
Nanoemulsion | 0 d | 7 d | 0 d | 7 d | 0 d | 7 d | 0 d | 7 d |
Lightness (L*) | ||||||||
Cit1% | 71.02 ± 0.52 aD | 71.17 ± 0.49 aD | 74.03 ± 0.49 cC | 74.91 ± 0.45 bBC | 75.45 ± 0.50 cB | 75.56 ± 0.62 bB | 77.31 ± 0.35 aA | 77.87 ± 0.21 abA |
Cit2% | 70.36 ± 0.37 aC | 70.42 ± 0.41 abDC | 73.61 ±.62 cB | 73.76 ± 0.55 bcB | 76.98 ± 0.25 bcA | 77.43 ± 1.21 abA | 78.04 ± 0.27 aA | 77.04 ± 0.31 bA |
LG1.25% | 71.16 ± 0.39 aD | 70.30 ± 0.42 abD | 75.64 ± 0.29 bB | 73.13 ± 0.61 cdC | 76.10 ± 0.55 bcB | 76.01 ± 0.56 abB | 78.04 ± 0.31 aA | 77.71 ± 0.37 abA |
LG2.5% | 70.80 ± 0.45 aCD | 69.41 ± 0.57 bD | 75.06 ± 0.62 bcB | 72.08 ± 0.54 dC | 76.50 ± 0.65 bcA | 76.76 ± 0.34 abA | 77.79 ± 0.32 aA | 77.76 ± 0.37 abA |
Control | 71.39 ± 0.58 aB | 71.45 ± 0.49 aB | 77.30 ± 0.39 aA | 78.20 ± 0.39 aA | 78.02 ± 0.30 aA | 77.90 ± 0.29 aA | 77.62 ± 0.25 aA | 78.02 ± 0.25 aA |
Hue angle (h) | ||||||||
Cit1% | 108.86 ± 0.71 aA | 107.33 ± 0.61 bcA | 105.44 ± 0.53 aB | 103.04 ± 0.80 aC | 100.35 ± 0.62 aD | 95.85 ± 0.73 aE | 93.77 ± 0.53 aF | 94.42 ± 0.31 aEF |
Cit2% | 109.96 ± 0.53 aA | 109.43 ± 0.49 aA | 105.14 ± 0.63 abB | 103.05 ± 0.63 aC | 98.30 ± 0.44 bD | 96.18 ± 0.61 aE | 94.08 ± 0.33 abF | 92.79 ± 0.36 bF |
LG1.25% | 109.59 ± 0.53 aA | 108.87 ± 0.44 abA | 103.54 ± 0.49 bcB | 104.02 ± 0.62 aB | 97.98 ± 0.55 bC | 97.00 ± 0.56 aC | 93.10 ± 0.47 abD | 93.42 ± 0.37 bD |
LG2.5% | 109.83 ± 0.49 aA | 108.91 ± 0.58 abA | 102.73 ± 0.58 cC | 104.31 ± 0.39 aB | 96.37 ± 0.49 cD | 95.79 ± 0.36 aD | 91.66 ± 0.60 cE | 92.52 ± 0.29 bE |
Control | 108.76 ± 0.70 aA | 106.20 ± 0.99 cB | 98.35 ± 0.69 dC | 93.21 ± 0.36 bDE | 94.70 ± 0.28 dD | 91.48 ± 0.31 bE | 92.36 ± 0.36 bcE | 91.59 ± 0.24 cE |
Firmness (N) | ||||||||
Cit1% | 52.01 ± 1.98 aA | 39.83 ± 2.93 abC | 45.98 ± 2.45 bABC | 19.18 ± 3.55 abD | 48.22 ± 1.32 aAB | 14.95 ± 3.34 bcD | 43.74 ± 1.16 abBC | 19.18 ± 2.22 abD |
Cit2% | 51.19 ± 1.88 aA | 45.37 ± 2.25 aB | 51.68 ± 1.39 aA | 15.45 ± 3.18 bcC | 46.35 ± 0.91 abAB | 14.96 ± 2.41 bcC | 44.26 ± 1.35 aB | 14.42 ± 1.45 bcC |
LG1.25% | 47.34 ± 1.32 aA | 40.89 ± 2.56 abA | 46.04 ± 0.97 bA | 22.54 ± 3.31 abB | 45.28 ± 1.64 abA | 23.72 ± 3.20 aB | 40.73 ± 1.05 bcA | 21.01 ± 1.78 aB |
LG2.5% | 48.98 ± 1.77 aA | 37.57 ± 3.53 abC | 45.30 ± 1.65 bAB | 26.94 ± 3.64 aD | 43.69 ± 0.87 bcABC | 21.13 ± 2.22 abD | 39.44 ± 1.15 cBC | 20.41 ± 2.75 aD |
Control | 49.83 ± 2.24 aA | 33.47 ± 4.79 bC | 39.95 ± 2.45 cB | 7.63 ± 0.50 cD | 40.68 ± 1.21 cB | 7.78 ± 0.81 cD | 40.73 ± 0.91 bcB | 9.63 ± 0.53 cD |
SSC (%) | ||||||||
Cit1% | 12.63 ± 0.09 abB | 13.63 ± 0.28 bcA | 13.43 ± 0.19 bAB | 14.10 ± 0.21 aA | 13.93 ± 0.12 aA | 14.07 ± 0.29 aA | 13.87 ± 0.17 aA | 13.97 ± 0.21 aA |
Cit2% | 12.23 ± 0.07 bD | 13.17 ± 0.29 cBC | 13.43 ± 0.09 bBC | 13.83 ± 0.09 aAB | 13.43 ± 0.09 aBC | 13.87 ± 0.24 aAB | 14.43 ± 0.38 aA | 12.97 ± 0.15 bC |
LG1.25% | 12.33 ± 0.19 bB | 13.87 ± 0.18 bcA | 14.07 ± 0. 07 aA | 14.40 ± 0.35 aA | 14.30 ± 0.25 aA | 14.47 ± 0.21 aA | 14.30 ± 0.28 aA | 13.80 ± 0.29 abA |
LG2.5% | 12.63 ± 0.23 abB | 14.17 ± 0.17 abA | 14.30 ± 0.15 aA | 14.10 ± 0.26 aA | 14.10 ± 0.37 aA | 14.40 ± 0.26 aA | 14.40 ± 0.21 aA | 13.63 ± 0.35 abA |
Control | 12.97 ± 0.27 aC | 14.70 ± 0.3 aA | 14.13 ± 0.17 aAB | 13.80 ± 0.10 aABC | 14.20 ± 0.41 aAB | 13.70 ± 0.25 aBC | 14.03 ± 0.32 aAB | 13.27 ± 0.32 abBC |
Titratable acidity (g.mL−1 malic acid) | ||||||||
Cit1% | 0.42 ± 0.03 aA | 0.18 ± 0.01 abB | 0.16 ± 0.00 aB | 0.16 ± 0.00 abB | 0.13 ± 0.01 aC | 0.10 ± 0.00 abC | 0.10 ± 0.01 cC | 0.11 ± 0.00 aC |
Cit2% | 0.43 ± 0.06 aA | 0.20 ± 0.01 aB | 0.15 ± 0.01 abBC | 0.18 ± 0.01 aBC | 0.11 ± 0.01 aC | 0.11 ± 0.00 abC | 0.15 ± 0.01 aBC | 0.12 ± 0.01 aC |
LG1.25% | 0.39 ± 0.00 aA | 0.15 ± 0.01 bBC | 0.14 ± 0.01 bBC | 0.16 ± 0.01 abB | 0.12 ± 0.01 aD | 0.13 ± 0.00 aCD | 0.14 ± 0.01 abBCD | 0.12 ± 0.00 aD |
LG2.5% | 0.45 ± 0.03 aA | 0.19 ± 0.01 aB | 0.15 ± 0.01 abC | 0.14 ± 0.00 bC | 0.12 ± 0.01 aC | 0.12 ± 0.01 aC | 0.12 ± 0.02 abcC | 0.13 ± 0.00 aC |
Control | 0.49 ± 0.02 aA | 0.17 ± 0.01 abcB | 0.14 ± 0.00 bBC | 0.16 ± 0.01 abBC | 0.14 ± 0.01 aBC | 0.09 ± 0.02 bD | 0.11 ± 0.00 bcCD | 0.11 ± 0.00 aCD |
Electrolytic leakage (%) | ||||||||
Cit1% | 54.23 ± 0.79 aC | 58.15 ± 0.80 aC | 42.41 ± 1.39 bE | 69.40 ± 4.02 aB | 46.36 ± 1.95 bDE | 69.59 ± 3.63 bB | 52.72 ± 0.77 bCD | 76.49 ± 0.34 bA |
Cit2% | 49.12 ± 1.41 aC | 59.60 ± 1.77 aB | 41.82 ± 1.02 bC | 69.62 ± 2.65 aA | 45.35 ± 1.21 bC | 68.60 ± 1.58 bA | 48.10 ± 2.67 bcC | 75.37 ± 6.74 bA |
LG1.25% | 49.66 ± 1.24 aCD | 56.07 ± 2.17 aBC | 41.92 ± 1.30 bE | 61.02 ± 3.32 abB | 43.2 ± 1.34 bDE | 54.89 ± 0.82 cBC | 43.51 ± 1.83 cDE | 71.39 ± 3.04 bA |
LG2.5% | 51.44 ± 2.17 aBC | 55.49 ± 0.34 aBC | 40.38 ± 3.02 bE | 58.92 ± 1.21 bB | 42.39 ± 1.07 bDE | 53.85 ± 4.38 cBC | 48.36 ± 2.09 bcCDE | 71.33 ± 2.03 bA |
Control | 50.56 ± 2.62 aC | 60.12 ± 3.76 aB | 49.43 ± 3.25 aC | 62.60 ± 3.04 abB | 55.09 ± 2.10 aBC | 83.04 ± 1.51 aA | 59.83 ± 1.61 aB | 88.26 ± 1.88 aA |
Weight loss (%) | ||||||||
Cit1% | 0.00 ± 0.00 aF | 1.66 ± 0.03 abE | 2.08 ± 0.05 cE | 3.63 ± 0.05 cD | 4.34 ± 0.29 bC | 6.66 ± 0.24 cB | 6.57 ± 0.33 bB | 7.64 ± 0.39 bA |
Cit2% | 0.00 ± 0.00 aH | 1.65 ± 0.03 abG | 2.23 ± 0.03 cF | 3.96 ± 0.03 bE | 4.40 ± 0.06 bD | 6.99 ± 0.18 bcB | 6.63 ± 0.05 bC | 7.84 ± 0.02 abA |
LG1.25% | 0.00 ± 0.00 aG | 1.70 ± 0.05 aF | 2.49 ± 0.06 bE | 4.13 ± 0.06 bD | 5.00 ± 0.17 aB | 7.42 ± 0.20 abB | 7.36 ± 0.25 aB | 8.45 ± 0.28 abA |
LG2.5% | 0.00 ± 0.00 aG | 1.80 ± 0.09 aF | 2.90 ± 0.08 aE | 4.44 ± 0.17 aD | 5.54 ± 0.20 aC | 7.93 ± 0.21 aB | 7.53 ± 0.19 aB | 8.59 ± 0.22 aA |
Control | 0.00 ± 0.00 aG | 1.51 ± 0.04 bF | 2.08 ± 0.03 cE | 3.42 ± 0.02 cD | 4.25 ± 0.07 bC | 6.56 ± 0.07 cB | 6.72 ± 0.08 bB | 7.8 ± 0.11 abA |
Microorganisms | 0 Months | 2 Months | 4 Months | 6 Months | ||||
---|---|---|---|---|---|---|---|---|
Nanoemulsion | 0 d | 7 d | 0 d | 7 d | 0 d | 7 d | 0 d | 7 d |
Yeast and moulds (Log CFU/g) | ||||||||
Cit 1% | 0.67 ± 0.33 aA | 0.33 ± 0.33 aA | 0.67 ± 0.33 aA | 0.67 ± 0.33 abA | 0.93 ± 0.47 abA | 1.00 ± 0.00 aA | 0.41 ± 0.22 aA | 0.33 ± 0.33 aA |
Cit 2% | 0.77 ± 0.39 aA | 0.33 ± 0.33 aA | 0.77 ± 0.39 aA | 0.33 ± 0.33 bA | 0.33 ± 0.33 bA | 0.00 ± 0.00 bA | 0.17 ± 0.17 aAB | 0.00 ± 0.00 aA |
LG 1.25 % | 1.00 ± 0.00 aA | 0.00 ± 0.00 aB | 1.00 ± 0.00 aA | 0.00 ± 0.00 bB | 0.67 ± 0.33 bAB | 0.77 ± 0.39 aAB | 0.38 ± 0.20 aBC | 0.43 ± 0.43 aAB |
LG 2.5 % | 0.93 ± 0.47 aA | 0.00 ± 0.00 aB | 1.10 ± 0.10 aA | 0.00 ± 0.00 bB | 0.00 ± 0.00 bB | 0.00 ± 0.00 bB | 0.33 ± 0.17 aAB | 0.00 ± 0.00 aB |
Control | 1.10 ±0.10 aBC | 0.83 ± 0.44 aBC | 1.20 ± 0.10 aB | 1.10 ± 0.10 aBC | 1.77 ± 0.04 aA | 1.26 ± 0.14 aAB | 0.58 ± 0.08 aD | 0.00 ± 0.00 aD |
Aerobic mesophilic Microorganisms (Log CFU/g) | ||||||||
Cit 1% | 3.72 ± 0.03 aA | 2.67 ± 0.11 bB | 1.32 ± 0.02 cC | 2.54 ± 0.16 aB | 1.72 ± 0.14 bcDE | 3.52 ± 0.09 aA | 2.44 ± 0.61 aB | 3.51 ± 0.04 aA |
Cit 2% | 3.59 ± 0.02 aAB | 3.87 ± 0.02 aA | 2.38 ± 0.52 bCD | 1.19 ± 0.27 bE | 1.59 ± 0.19 cDE | 2.81 ± 0.05 cBC | 3.18 ± 0.60 aABC | 3.30 ± 0.17 aABC |
LG 1.25% | 3.60 ± 0.06 aA | 0.71 ± 0.03 dF | 1.32 ± 0.09 cEF | 2.71 ± 0.07 aBC | 2.30 ± 0.20 abCD | 3.74 ± 0.06 aA | 3.26 ± 0.14 aAB | 1.94 ± 0.51 bDE |
LG 2.5% | 3.44 ± 0.06 bAB | 0.68 ± 0.03 dE | 1.18 ± 0.09 cDE | 2.54 ± 0.02 aBC | 2.04 ± 0.28 abcCD | 3.54 ± 0.02 bA | 2.65 ± 0.51 aABC | 2.70 ± 0.56 abABC |
Control | 2.85 ± 0.05 cC | 2.08 ± 0.06 cE | 3.69 ± 0.05 aA | 2.50 ± 0.02 aD | 2.45 ± 0.11 aD | 3.50 ± 0.02 bB | 3.65 ± 0.00 aAB | 3.00 ± 0.03 abC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gago, C.; Antão, R.; Dores, C.; Guerreiro, A.; Miguel, M.G.; Faleiro, M.L.; Figueiredo, A.C.; Antunes, M.D. The Effect of Nanocoatings Enriched with Essential Oils on ‘Rocha’ Pear Long Storage. Foods 2020, 9, 240. https://doi.org/10.3390/foods9020240
Gago C, Antão R, Dores C, Guerreiro A, Miguel MG, Faleiro ML, Figueiredo AC, Antunes MD. The Effect of Nanocoatings Enriched with Essential Oils on ‘Rocha’ Pear Long Storage. Foods. 2020; 9(2):240. https://doi.org/10.3390/foods9020240
Chicago/Turabian StyleGago, Custódia, Rui Antão, Cristino Dores, Adriana Guerreiro, Maria Graça Miguel, Maria Leonor Faleiro, Ana Cristina Figueiredo, and Maria Dulce Antunes. 2020. "The Effect of Nanocoatings Enriched with Essential Oils on ‘Rocha’ Pear Long Storage" Foods 9, no. 2: 240. https://doi.org/10.3390/foods9020240
APA StyleGago, C., Antão, R., Dores, C., Guerreiro, A., Miguel, M. G., Faleiro, M. L., Figueiredo, A. C., & Antunes, M. D. (2020). The Effect of Nanocoatings Enriched with Essential Oils on ‘Rocha’ Pear Long Storage. Foods, 9(2), 240. https://doi.org/10.3390/foods9020240