Development of Head Space Sorptive Extraction Method for the Determination of Volatile Compounds in Beer and Comparison with Stir Bar Sorptive Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Stardards Preparation
2.3. Beer Samples
2.4. Head Space Sorptive Extraction
2.5. Instrumentation
2.6. Comparative Study against Stir Bar Sorptive Extraction
2.7. Statistic Tools
3. Results and Discussion
3.1. Optimisation of the Extraction Conditions
3.2. Analytical Validation of the Optimised Method
- 𝐿𝑂𝐷 = 3𝑆𝐼/𝑏
- 𝐿𝑂𝑄 = 10𝑆𝐼/𝑏
- SI = standard deviation of the intercept of the regression line
- b = slope from the regression line
3.3. Comparative Study against SBSE
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nelson, M. The Barbarian’s Beverage: A History of Beer in Ancient Europe; Taylor and Francis Inc.: Abingdon, UK, 2004. [Google Scholar]
- Barth, R. The Chemistry of Beer: The Science in the Suds; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The soul of beer’s aroma—A review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep. 1999, 11, 737–747. [Google Scholar] [CrossRef]
- Tienpont, B.; David, F.; Bicchi, C.; Sandra, P. High capacity headspace sorptive extraction. J. Microcolumn Sep. 2000, 12, 577–584. [Google Scholar] [CrossRef]
- Bicchi, C.; Cordero, C.; Iori, C.; Rubiolo, P.; Sandra, P. Headspace Sorptive Extraction (HSSE) in the headspace analysis of aromatic and medicinal plants. HRC J. High Resolut. Chromatogr. 2000, 23, 539–546. [Google Scholar] [CrossRef]
- David, F.; Sandra, P. Stir bar sorptive extraction for trace analysis. J. Chromatogr. A 2007, 1152, 54–69. [Google Scholar] [CrossRef]
- Castro, L.F.; Ross, C.F. Determination of flavour compounds in beer using stir-bar sorptive extraction and solid-phase microextraction. J. Inst. Brew. 2015, 121, 197–203. [Google Scholar] [CrossRef]
- Horák, T.; Čulík, J.; Kellner, V.; Čejka, P.; Hašková, D.; Jurková, M.; Dvořák, J. Determination of selected beer flavours: Comparison of a stir bar sorptive extraction and a steam distillation procedure. J. Inst. Brew. 2011, 117, 617–621. [Google Scholar] [CrossRef]
- Ochiai, N.; Sasamoto, K.; David, F.; Sandra, P. Solvent-assisted stir bar sorptive extraction by using swollen polydimethylsiloxane for enhanced recovery of polar solutes in aqueous samples: Application to aroma compounds in beer and pesticides in wine. J. Chromatogr. A 2016, 1455, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Sharp, D.C.; Qian, Y.; Clawson, J.; Shellhammer, T.H. An exploratory study toward describing hop aroma in beer made with American and European Hop Cultivars. BrewingScience 2016, 69, 112–122. [Google Scholar]
- Stefanuto, P.H.; Perrault, K.A.; Dubois, L.M.; L’Homme, B.; Allen, C.; Loughnane, C.; Ochiai, N.; Focant, J.F. Advanced method optimization for volatile aroma profiling of beer using two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A 2017, 1507, 45–52. [Google Scholar] [CrossRef]
- Ruvalcaba, J.E.; Durán-Guerrero, E.; Barroso, C.G.; Castro, R. Development of a stir bar sorptive extraction method to study different beer styles volatile profiles. Food Res. Int. 2019, 126, 108680. [Google Scholar] [CrossRef] [PubMed]
- Marsili, R.T.; Laskonis, L.C.; Kenaan, C. Evaluation of PDMS-based extraction techniques and GC-TOFMS for the analysis of off-flavor chemicals in beer. J. Am. Soc. Brew. Chem. 2007, 65, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Richter, T.M.; Eyres, G.T.; Silcock, P.; Bremer, P.J. Comparison of four extraction methods for analysis of volatile hop-derived aroma compounds in beer. J. Sep. Sci. 2017, 40, 4366–4376. [Google Scholar] [CrossRef] [PubMed]
- Hevia, K.; Castro, R.; Natera, R.; González-García, J.A.; Barroso, C.G.; Durán-Guerrero, E. Optimization of Head Space Sorptive Extraction to Determine Volatile Compounds from Oak Wood in Fortified Wines. Chromatographia 2016, 79, 763–771. [Google Scholar] [CrossRef]
- Camino-Sánchez, F.J.; Rodríguez-Gómez, R.; Zafra-Gómez, A.; Santos-Fandila, A.; Vílchez, J.L. Stir bar sorptive extraction: Recent applications, limitations and future trends. Talanta 2014, 130, 388–399. [Google Scholar] [CrossRef]
- Guerrero, E.D.; Marín, R.N.; Mejías, R.C.; Barroso, C.G. Optimisation of stir bar sorptive extraction applied to the determination of volatile compounds in vinegars. J. Chromatogr. A 2006, 1104, 47–53. [Google Scholar] [CrossRef]
- Delgado, R.; Durán, E.; Castro, R.; Natera, R.; Barroso, C.G. Development of a stir bar sorptive extraction method coupled to gas chromatography-mass spectrometry for the analysis of volatile compounds in Sherry brandy. Anal. Chim. Acta 2010, 672, 130–136. [Google Scholar] [CrossRef]
- Vasile-Simone, G.; Castro, R.; Natera, R.; Masino, F.; Barroso, C.G.; Durán-Guerrero, E. Application of a stir bar sorptive extraction method for the determination of volatile compounds in different grape varieties. J. Sci. Food Agric. 2017, 97, 939–948. [Google Scholar] [CrossRef]
- Maruti, A.; Durán-Guerrero, E.; Barroso, C.G.; Castro, R. Optimization of a multiple headspace sorptive extraction method coupled to gas chromatography-mass spectrometry for the determination of volatile compounds in macroalgae. J. Chromatogr. A 2018, 1551, 41–51. [Google Scholar] [CrossRef]
- Callejón, R.M.; González, A.G.; Troncoso, A.M.; Morales, M.L. Optimization and validation of headspace sorptive extraction for the analysis of volatile compounds in wine vinegars. J. Chromatogr. A 2008, 1204, 93–103. [Google Scholar] [CrossRef]
- Herrera, C.; Castro, R.; García-Barroso, C.; Durán-Guerrero, E. Development of a stir bar sorptive extraction method for the determination of volatile compounds in orange juices. J. Sep. Sci. 2016, 39, 3586–3593. [Google Scholar] [CrossRef] [PubMed]
- Nešpor, J.; Karabín, M.; Hanko, V.; Dostálek, P. Application of response surface design to optimise the chromatographic analysis of volatile compounds in beer. J. Inst. Brew. 2018, 124, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Nešpor, J.; Andrés-Iglesias, C.; Karabín, M.; Montero, O.; Blanco, C.A.; Dostálek, P. Volatile Compound Profiling in Czech and Spanish Lager Beers in Relation to Used Production Technology. Food Anal. Methods 2019, 12, 2293–2305. [Google Scholar] [CrossRef]
- Giannetti, V.; Boccacci Mariani, M.; Torrelli, P.; Marini, F. Flavour component analysis by HS-SPME/GC–MS and chemometric modeling to characterize Pilsner-style Lager craft beers. Microchem. J. 2019, 149, 103991. [Google Scholar] [CrossRef]
- Ocvirk, M.; Mlinarič, N.K.; Košir, I.J. Comparison of sensory and chemical evaluation of lager beer aroma by gas chromatography and gas chromatography/mass spectrometry. J. Sci. Food Agric. 2018, 98, 3627–3635. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T.; Noba, S.; Yako, N.; Kobayashi, M.; Watanabe, T. Simulation of Pilsner-type beer aroma using 76 odor-active compounds. J. Biosci. Bioeng. 2018, 126, 330–338. [Google Scholar] [CrossRef]
- Coelho, E.; Magalhães, J.; Pereira, F.B.; Macieira, F.; Domingues, L.; Oliveira, J.M. Volatile fingerprinting differentiates diverse-aged craft beers. LWT 2019, 108, 129–136. [Google Scholar] [CrossRef] [Green Version]
Volatile Compound | Retention Time (min) | Internal Standard * | Chemical Family | SIM |
---|---|---|---|---|
isobutyl acetate | 15.16 | A | branched alkyl ester | 43 |
ethyl butyrate | 16.33 | A | ethyl ester (linear chain) | 43 |
ethyl isovalerate | 17.70 | A | branched alkyl ester | 88 |
hexanal | 18.20 | A | aldehyde (linear chain) | 44 |
ethyl pentanoate | 20.11 | B | ethyl ester (linear chain) | 88 |
isopentyl acetate | 20.11 | B | branched alkyl ester | 43 |
3-methyl-1-butanol | 23.38 | A | alcohol (branched chain) | 55 |
ethyl hexanoate | 24.35 | B | ethyl ester (linear chain) | 88 |
hexyl acetate | 25.65 | A | linear alkyl acetate ester | 43 |
octanal | 26.89 | A | aldehyde (linear chain) | 41 |
6-methyl-5-hepten-2-one | 27.85 | A | ketone (linear) | 43 |
ethyl heptanoate | 27.89 | B | ethyl ester (linear chain) | 88 |
1-hexanol | 28.25 | A | alcohol (linear chain) | 56 |
heptyl acetate | 29.28 | B | linear alkyl acetate ester | 43 |
nonanal | 30.07 | B | aldehyde (linear chain) | 57 |
ethyl octanoate | 31.56 | A | ethyl ester (linear chain) | 88 |
heptanol | 31.94 | A | alcohol (linear chain) | 70 |
isopentyl hexanoate | 32.96 | A | branched alkyl ester | 70 |
octyl acetate | 32.99 | B | linear alkyl acetate ester | 43 |
benzaldehyde | 34.49 | A | aldehyde (aromatic) | 77 |
linalool | 35.22 | B | alcohol (alkene chain) | 41 |
isobutyric acid | 35.69 | B | carboxylic acid (branched chain) | 41 |
octanol | 35.69 | B | alcohol (linear chain) | 41 |
2,3-dihydrobenzofurane | 37.42 | A | cyclic ether | 91 |
ethyl decanoate | 39.02 | B | ethyl ester (linear chain) | 88 |
benzenoic acid ethyl ester | 39.83 | A | aromatic alkyl ester | 105 |
1-decanol | 43.16 | B | alcohol (linear chain) | 41 |
phenylethyl acetate | 45.14 | B | aromatic alkyl ester | 104 |
β-damascenone | 45.97 | A | ketone (cyclic) | 69 |
guaiacol | 46.24 | B | cyclic ether | 81 |
ethyl dodecanoate | 46.35 | A | ethyl ester (linear chain) | 88 |
benzopropanoic acid ethyl ester | 47.46 | B | aromatic alkyl ester | 104 |
hexanoic acid 2-phenylethyl ester | 47.46 | B | aromatic alkyl ester | 104 |
isobutyric acid phenethyl ester | 48.21 | A | aromatic alkyl ester | 104 |
nerolidol | 52.94 | B | alcohol (alkene chain) | 41 |
octanoic acid | 52.94 | A | carboxylic acid (linear chain) | 60 |
β-phenylethyl-2-methylbutyrate | 56.78 | A | aromatic alkyl ester | 104 |
Volatile Compound | Slope | Intercept | R2 | LOD (µg/L) | LOQ (µg/L) | Recovery (%) | Inter-tw Precision * (%) | Inter-Day Precision ** (%) |
---|---|---|---|---|---|---|---|---|
isobutyl acetate | 0.0017 | 0.0728 | 0.9998 | 25.48 | 84.95 | 96.22 | 15.53 | 9.12 |
ethyl butyrate | 0.0006 | 0.0150 | 0.9980 | 2.77 | 9.26 | 110.44 | 13.70 | 8.19 |
ethyl isovalerate | 0.0010 | 0.0015 | 0.9999 | 0.30 | 1.02 | 101.89 | 4.65 | 7.45 |
hexanal | 0.00008 | 0.0066 | 0.9902 | 12.76 | 42.54 | 100.39 | 10.52 | 19.43 |
ethyl pentanoate | 0.0030 | 0.0077 | 0.9998 | 0.85 | 2.84 | 104.02 | 4.86 | 13.81 |
isopentyl acetate | 0.0096 | 0.3258 | 0.9970 | 19.63 | 65.45 | - | 9.98 | 5.91 |
3-methyl-1-butanol | 0.00003 | 0.0053 | 0.9961 | 68.16 | 227.20 | - | 16.47 | 9.51 |
ethyl hexanoate | 0.0065 | 0.2460 | 0.9979 | 10.80 | 36.01 | 103.18 | 9.85 | 5.32 |
hexyl acetate | 0.0071 | −0.0148 | 0.9990 | 0.96 | 3.21 | 105.25 | 5.71 | 6.03 |
octanal | 0.0016 | −0.0005 | 0.9991 | 1.38 | 4.60 | 103.00 | 17.35 | 17.54 |
6-methyl-5-hepten-2-one | 0.0014 | 0.0047 | 0.9993 | 1.85 | 6.16 | 132.87 | 12.66 | 8.11 |
ethyl heptanoate | 0.0115 | −0.0018 | 0.9980 | 1.10 | 3.66 | 94.84 | 9.61 | 2.67 |
1-hexanol | 0.0001 | 0.0010 | 0.9997 | 0.93 | 3.12 | 90.88 | 13.05 | 11.30 |
heptyl acetate | 0.0231 | 0.0055 | 0.9994 | 0.25 | 0.85 | 110.07 | 6.14 | 17.38 |
nonanal | 0.0038 | 0.0438 | 0.99905 | 7.68 | 25.62 | 113.91 | 4.73 | 16.39 |
ethyl octanoate | 0.0052 | 0.0222 | 0.9990 | 4.18 | 13.94 | 86.06 | 12.30 | 5.67 |
heptanol | 0.0002 | 0.0016 | 0.9978 | 10.80 | 36.01 | 81.26 | - | - |
isopentyl hexanoate | 0.0050 | 0.0002 | 0.9992 | 0.01 | 0.05 | 93.60 | 12.73 | 12.24 |
octyl acetate | 0.0286 | −0.1174 | 0.9989 | 0.95 | 3.16 | 88.38 | 14.42 | 10.14 |
benzaldehyde | 0.0001 | 0.0050 | 0.9962 | 0.35 | 1.16 | 104.75 | 6.78 | 3.16 |
linalool | 0.0021 | 0.0220 | 0.9990 | 2.64 | 8.80 | 77.16 | 11.73 | 15.30 |
isobutyric acid | 0.0015 | 0.0157 | 0.9997 | 1.59 | 5.30 | 87.10 | 13.78 | 4.33 |
octanol | 0.0015 | 0.0116 | 0.9996 | 0.72 | 2.41 | 86.57 | 6.43 | 16.03 |
2,3-dihydrobenzofurane | 0.0013 | −0.0031 | 0.9708 | 0.16 | 0.54 | 90.13 | - | - |
ethyl decanoate | 0.0060 | 0.0283 | 0.9994 | 0.31 | 1.04 | 98.03 | 8.99 | 9.69 |
benzenoic acid ethyl ester | 0.0026 | −0.0137 | 0.9989 | 0.24 | 0.82 | 81.76 | 11.98 | 10.26 |
1-decanol | 0.0019 | 0.0283 | 0.9994 | 6.42 | 21.41 | <60 | 7.21 | 10.65 |
phenylethyl acetate | 0.0020 | 0.1798 | 0.9914 | 5.95 | 19.85 | 111.73 | 9.30 | 6.23 |
β-damascenone | 0.0020 | −0.0091 | 0.9982 | 1.09 | 3.63 | 77.96 | 11.52 | 7.64 |
guaiacol | 0.00004 | 0.0029 | 0.9907 | 1.69 | 5.65 | - | - | - |
ethyl dodecanoate | 0.0003 | 0.0018 | 0.9987 | 0.62 | 2.07 | 82.29 | 17.59 | 19.34 |
benzopropanoic acid ethyl ester | 0.0016 | 0.0030 | 0.9997 | 1.23 | 4.11 | 96.74 | 16.90 | 18.59 |
hexanoic acid 2-phenylethyl ester | 0.0018 | 0.0001 | 0.9995 | 0.78 | 2.60 | 88.61 | - | - |
isobutyric acid phenethyl ester | 0.0007 | −0.0043 | 0.9953 | 2.56 | 8.53 | <60 | 14.38 | 10.18 |
nerolidol | 0.0003 | 0.0214 | 0.9938 | 15.31 | 51.03 | 96.28 | 14.49 | 17.07 |
octanoic acid | 0.0003 | 0.0134 | 0.9997 | 11.44 | 38.14 | 130.67 | 13.26 | 15.33 |
β-phenylethyl-2-methylbutyrate | 0.0009 | 0.00003 | 0.9993 | 0.36 | 1.21 | <60 | 11.78 | 17.15 |
Beer Sample | Lager (N = 8) | Wheat (N = 4) | Stout (N = 4) | Ale (N = 4) | ||||
---|---|---|---|---|---|---|---|---|
Volatile Compound | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
isobutyl acetate | <LOQ a | - | 128.05 b | 67.07 | <LOQ a | - | <LOQ a | - |
ethyl butyrate | 107.85 a | 25.26 | 88.81 a | 8.32 | 103.94 a | 29.18 | 145.21 a | 44.62 |
ethyl isovalerate | 4.08 a | 4.59 | <LOQ | - | 4.01 a | 2.46 | 2.04 a | 0.96 |
hexanal | ND | - | ND | - | ND | - | ND | - |
ethyl pentanoate | 13.24 a | 7.66 | 40.78 b | 18.46 | 13.74 a | 1.99 | 6.33 a | 4.96 |
isopentyl acetate* | 2.61 b | 0.45 | 4.31 c | 0.87 | 0.75 a | 0.26 | 1.47 a | 0.78 |
3-methyl-1-butanol* | 51.32 a | 12.37 | 39.82 a | 17.15 | 38.94 a | 8.18 | 64.89 a | 24.07 |
ethyl hexanoate | 307.14 a | 259.04 | 64.90 a | 8.01 | 284.65 a | 247.13 | 361.33 a | 97.23 |
hexyl acetate | 7.33 b | 3.07 | 6.86 ab | 1.46 | 3.43 a | 0.75 | 3.74 ab | 0.87 |
octanal | 5.54 a | 3.02 | <LOQ | - | 8.39 a | 6.14 | 5.02 a | 4.07 |
6-methyl-5-hepten-2-one | 6.36 a | 5.12 | <LOQ | - | 26.22 a | 27.64 | 12.72 a | 12.32 |
ethyl heptanoate | <LOQ | - | <LOQ | - | 12.25 a | 12.74 | 6.02 a | 4.80 |
1-hexanol | 11.26 a | 2.97 | 12.45 a | 9.50 | 56.79 a | 57.27 | 33.79 a | 19.39 |
heptyl acetate | <LOQ | - | 1.13 a | 0.06 | 3.41 b | 0.23 | 2.13 ab | 1.79 |
nonanal | ND | - | ND | - | ND | - | ND | - |
ethyl octanoate | 139.08 a | 52.82 | 103.08 a | 20.90 | 529.03 a | 514.51 | 762.58 a | 655.03 |
heptanol* | ND | - | ND | - | 1.25 a | 1.09 | 4.12 b | 0.71 |
isopentyl hexanoate | 0.35 a | 0.21 | 0.53 a | 0.12 | 0.49 a | 0.65 | 1.35 b | 0.26 |
octyl acetate | 5.49 b | 0.62 | 5.25 b | 0.21 | 4.16 a | 0.04 | 4.37 a | 0.21 |
benzaldehyde | 7.87 a | 3.12 | ND | - | ND | - | 5.80 a | 2.32 |
linalool | <LOQ | - | ND | - | 100.13 a | 3.45 | 106.42 a | 26.66 |
isobutyric acid | 6.05 a | 3.28 | 5.66 a | 0.11 | <LOQ | - | 17.81 b | 3.00 |
octanol | 5.47 a | 2.55 | 8.64 a | 0.27 | 6.76 a | 0.41 | 15.83 b | 8.10 |
2,3-dihydrobenzofurane | 3.48 a | 1.66 | 3.23 a | 0.98 | 3.01 a | 0.62 | ND | - |
ethyl decanoate | 50.07 a | 47.31 | 57.11 ab | 5.72 | 66.44 ab | 44.73 | 154.61 b | 87.21 |
benzenoic acid ethyl ester | 5.87 a | 0.49 | 5.95 a | 0.25 | 6.43 ab | 0.53 | 7.17 b | 0.46 |
1-decanol | 47.28 a | 23.98 | <LOQ | - | 64.99 a | 46.59 | <LOQ | - |
phenylethyl acetate | 360.93 b | 98.68 | 378.90 b | 26.03 | 31.31 a | 20.49 | 141.57 a | 76.76 |
β-damascenone | 4.63 a | 0.10 | 4.84 a | 0.12 | 7.37 b | 0.11 | 6.99 b | 1.91 |
guaiacol | 22.92 a | 22.80 | ND | - | 69.46 b | 5.14 | ND | - |
ethyl dodecanoate | 17.38 a | 19.98 | 2.36 a | 0.51 | 19.13 a | 11.48 | 11.99 a | 11.93 |
benzopropanoic acid ethyl ester | 8.51 a | 3.12 | 4.30 a | 2.40 | 5.77 a | 3.39 | 15.17 b | 4.94 |
hexanoic acid 2-phenylethyl ester | <LOQ | - | ND | - | 4.87 a | 5.03 | 3.63 a | 2.13 |
isobutyric acid phenethyl ester | 12.20 ab | 2.73 | 9.09 a | 0.79 | 10.26 a | 2.47 | 15.58 b | 3.57 |
nerolidol | 380.29 ab | 179.77 | 172.73 a | 54.20 | 192.11 a | 119.94 | 621.57 b | 174.28 |
octanoic acid | 199.88 ab | 118.62 | 88.90 a | 10.53 | 95.84 a | 68.18 | 288.87 b | 69.42 |
β-phenylethyl-2-methylbutyrate | 3.83 a | 4.76 | 2.69 a | 1.20 | <LOQ | - | <LOQ | - |
Volatile Compound | Slope | Intercept | R2 |
---|---|---|---|
isobutyl acetate | 0.9069 | 6.2751 | 0.9989 |
ethyl butyrate | 1.2508 | −18.6980 | 0.9473 |
ethyl isovalerate | 1.0774 | -0.1628 | 0.9911 |
hexanal | - | - | - |
ethyl pentanoate | 1.1131 | −0.8687 | 0.9964 |
isopentyl acetate | 1.0094 | −37.4939 | 0.9998 |
3-methyl-1-butanol | 0.9250 | 7651.0458 | 0.8338 |
ethyl hexanoate | 0.9942 | 0.3938 | 0.9954 |
hexyl acetate | 1.9794 | 11.1685 | 0.9593 |
octanal | 0.9057 | 0.7722 | 0.7429 |
6-methyl-5-hepten-2-one | 1.0106 | 0.0371 | 0.9999 |
ethyl heptanoate | 0.9804 | 0.0140 | 0.9994 |
1-hexanol | 1.0336 | −0.3775 | 0.9795 |
heptyl acetate | 0.9967 | 0.0030 | 0.9999 |
nonanal | - | - | - |
ethyl octanoate | 0.9909 | −0.5271 | 0.9864 |
heptanol | - | - | - |
isopentyl hexanoate | 1.6954 | 21.1004 | 0.2844 |
octyl acetate | 0.9503 | 0.1023 | 0.9985 |
benzaldehyde | 0.8895 | 0.6306 | 0.9999 |
linalool | 1.1181 | 1.1259 | 0.9746 |
isobutyric acid | - | - | - |
octanol | 0.9963 | 0.4574 | 0.9221 |
2,3-dihydrobenzofurane | - | - | - |
ethyl decanoate | 1.1743 | −8.3197 | 0.9636 |
benzenoic acid ethyl ester | 1.0740 | −1.6923 | 0.5956 |
1-decanol | 0.9603 | 0.7992 | 0.9963 |
phenylethyl acetate | 1.0524 | 39.9797 | 0.8937 |
β-damascenone | - | - | - |
guaiacol | 1.0057 | 0.3731 | 0.9999 |
ethyl dodecanoate | 1.0780 | −1.1354 | 0.9565 |
benzopropanoic acid ethyl ester | 0.9646 | 0.0722 | 0.9950 |
hexanoic acid 2-phenylethyl ester | 0.9977 | 0.0395 | 0.9976 |
isobutyric acid phenethyl ester | 0.1649 | −0.2036 | 0.5740 |
nerolidol | 1.0683 | 175.1769 | 0.6893 |
octanoic acid | - | - | - |
β-phenylethyl-2-methylbutyrate | 1.0219 | −0.1420 | 0.9898 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruvalcaba, J.E.; Durán-Guerrero, E.; Barroso, C.G.; Castro, R. Development of Head Space Sorptive Extraction Method for the Determination of Volatile Compounds in Beer and Comparison with Stir Bar Sorptive Extraction. Foods 2020, 9, 255. https://doi.org/10.3390/foods9030255
Ruvalcaba JE, Durán-Guerrero E, Barroso CG, Castro R. Development of Head Space Sorptive Extraction Method for the Determination of Volatile Compounds in Beer and Comparison with Stir Bar Sorptive Extraction. Foods. 2020; 9(3):255. https://doi.org/10.3390/foods9030255
Chicago/Turabian StyleRuvalcaba, José E., Enrique Durán-Guerrero, Carmelo G. Barroso, and Remedios Castro. 2020. "Development of Head Space Sorptive Extraction Method for the Determination of Volatile Compounds in Beer and Comparison with Stir Bar Sorptive Extraction" Foods 9, no. 3: 255. https://doi.org/10.3390/foods9030255
APA StyleRuvalcaba, J. E., Durán-Guerrero, E., Barroso, C. G., & Castro, R. (2020). Development of Head Space Sorptive Extraction Method for the Determination of Volatile Compounds in Beer and Comparison with Stir Bar Sorptive Extraction. Foods, 9(3), 255. https://doi.org/10.3390/foods9030255