Isolation of Exopolysaccharide-Producing Yeast and Lactic Acid Bacteria from Quinoa (Chenopodium Quinoa) Sourdough Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quinoa Grains
2.2. Spontaneous Quinoa Flour Fermentation
2.2.1. Chemical Analysis of the Quinoa Dough Fermentation Samples
2.2.2. Identification and Characterization of the Fermented Quinoa Sourdough Microbiota
2.2.3. Preparation and Sequencing of the Quinoa Dough Fermentation 16S rDNA Library
2.2.4. Processing of the 16S rDNA Amplicon Sequences Data Corresponding to Quinoa Dough Fermentation Samples
2.2.5. Processing of the ITS Amplicon Sequences Data Corresponding to Quinoa Dough Fermentation Samples
2.2.6. Identification and Characterization of Exopolysaccharide (EPS)-Producing Microorganisms
2.3. Selection of Isolates with Potential as Starter Cultures for Quinoa Flour Sourdough Fermentation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Spontaneous Quinoa Sourdough: Chemical Characterization
3.2. Carbohydrate Use during Spontaneous Quinoa Sourdough
3.3. Bacteria in Spontaneous Quinoa Sourdough
3.4. EPS-Producer Isolated Bacteria
3.5. Fermentative Potential of Selected EPS-Producer Isolates
3.6. Yeast in Spontaneous Quinoa Sourdough
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vilcacundo, R.; Hernández-Ledesma, B. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Curr. Opin. Food Sci. 2017, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. J. Sci. Food Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Katina, K.; Arendt, E.; Liukkonen, K.H.; Autio, K.; Flander, L.; Poutanen, K. Potential of sourdough for healthier cereal products. Trends Food Sci. Technol. 2005, 16, 104–112. [Google Scholar] [CrossRef]
- Saturni, L.; Ferretti, G.; Bacchetti, T. The gluten-free diet: Safety and nutritional quality. Nutrients 2010, 2, 16–34. [Google Scholar] [CrossRef] [Green Version]
- Theethira, T.G.; Dennis, M. Celiac disease and the gluten-free diet: Consequences and recommendations for improvement. Dig. Dis. 2015, 33, 175–182. [Google Scholar] [CrossRef]
- Montemurro, M.; Pontonio, E.; Rizzello, C.G. Quinoa Flour as an Ingredient to Enhance the Nutritional and Functional Features of Cereal-Based Foods. In Flour and Breads and Their Fortification in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2019; pp. 453–464. [Google Scholar] [CrossRef]
- Gallagher, E.; Gormley, T.R.; Arendt, E.K. Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci. Technol. 2004, 15, 143–152. [Google Scholar] [CrossRef]
- Coda, R.; Rizzello, C.G.; Gobbetti, M. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of gamma-aminobutyric acid (GABA). Int. J. Food Microbiol. 2010, 137, 236–245. [Google Scholar] [CrossRef]
- Ruiz Rodríguez, L.; Vera Pingitore, E.; Rollan, G.; Martos, G.; Saavedra, L.; Fontana, C.; Hebert, E.M.; Vignolo, G. Biodiversity and technological potential of lactic acid bacteria isolated from spontaneously fermented amaranth sourdough. Lett. Appl. Microbiol. 2016, 63, 147–154. [Google Scholar] [CrossRef]
- Graf, B.L.; Rojas-Silva, P.; Rojo, L.E.; Delatorre-Herrera, J.; Baldeón, M.E.; Raskin, I. Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Compr. Rev. Food Sci. Food Saf. 2015, 14, 431–445. [Google Scholar] [CrossRef] [Green Version]
- Schoenlechner, R.; Drausinger, J.; Ottenschlaeger, V.; Jurackova, K.; Berghofer, E. Functional Properties of Gluten-Free Pasta Produced from Amaranth, Quinoa and Buckwheat. Plant Foods Hum. Nutr. 2010, 65, 339–349. [Google Scholar] [CrossRef]
- de Angelis, M.; Damiano, N.; Rizzello, C.G.; Cassone, A.; Di Cagno, R.; Gobbetti, M. Sourdough fermentation as a tool for the manufacture of low-glycemic index white wheat bread enriched in dietary fibre. Eur. Food Res. Technol. 2009, 229, 593–601. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Lorusso, A.; Montemurro, M.; Gobbetti, M. Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread. Food Microbiol. 2016, 56, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cerning, J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Lett. 1990, 87, 113–130. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Degeest, B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 1999, 23, 153–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vuyst, L.; Vrancken, G.; Ravyts, F.; Rimaux, T.; Weckx, S. Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol. 2009, 26, 666–675. [Google Scholar] [CrossRef]
- Korakli, M.; Pavlovic, M.; Ganzle, M.; Vogel, R. Exopolysaccharide and kestose production by Lactobacillus sanfranciscensis LTH2590. Appl. Environ. Microbiol. 2003, 69, 2073–2079. [Google Scholar] [CrossRef] [Green Version]
- Di Monaco, R.; Torrieri, E.; Pepe, O.; Masi, P.; Cavella, S. Effect of Sourdough with Exopolysaccharide (EPS)-Producing Lactic Acid Bacteria (LAB) on Sensory Quality of Bread during Shelf Life. Food Bioprocess Technol. 2015, 8, 691–701. [Google Scholar] [CrossRef]
- Chavan, R.S.; Chavan, S.R. Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiol. 2010, 78, 1–11. [Google Scholar]
- Brandt, M.; Bode, R. Gluten-free sourdough strater and products. Baking Biscuit Int. 2009, 1, 34–36. [Google Scholar]
- Arendt, E.; Morrisey, A.; Moor, M.; Dal Bello, F. Impact of sourdough on the texture of bread. Food Microbiol. 2007, 24, 165–174. [Google Scholar] [CrossRef]
- Tieking, M.; Gänzle, M.G. Exopolisaccharides from cereal-associated lactobacilli. Trends Food Sci. Technol. 2005, 16, 79–84. [Google Scholar] [CrossRef]
- Schober, T.; Bean, S.; Boyle, D.L. Gluten-free sorghum bread improved by sourdough fermentation: Biochemical, rheologycal, and microestructural background. J. Agric. Food Chem. 2007, 55, 5137–5146. [Google Scholar] [CrossRef]
- Moore, M.; Dal Bello, F.; Arendt, E. Sourdough fermented by Lactobacillus plantarum FST1.7 improves the quality and shelf life of gluten-free gread. Eur. Food Res. Technol. 2008, 6, 1309–1316. [Google Scholar] [CrossRef]
- Hüttner, E.K.; Dal Bello, F.; Arendt, E.K. Identification of lactic acid bacteria isolated from oat sourdoughs and investigation into their potential for the improvement of oat bread quality. Eur. Food Res. Technol. 2010, 230, 849–857. [Google Scholar] [CrossRef]
- Moroni, A.V.; Arendt, E.K.; Dal Bello, F. Biodiversity of lactic acid bacteria and yeasts in pontaneous-fermented buckwheat and teff sourdoughs. Food Microbiol. 2011, 28, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Sterr, Y.; Weiss, A.; Scmidt, H. Evaluation of lactic acid bacteria sourdough fermentation of amaranth. Int. J. Microbiol. 2009, 136, 75–82. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC InternationalAssociation of Official Analysis Chemists International; Association official analytical chemist (AOAC): Washington, DC, USA, 2012. [Google Scholar]
- Meroth, C.B.; Hammes, W.P.; Hertel, C. Identification and Population Dynamics of Yeasts in Sourdough Fermentation Processes by PCR-Denaturing Gradient Gel Electrophoresis. Appl. Environ. Microbiol. 2003, 69, 7453–7461. [Google Scholar] [CrossRef] [Green Version]
- McFeeters, R.F.; Barish, A.O. Sulfite analysis of fruits and vegetables by high-performance liquid chromatography (HPLC) with ultraviolet spectrophotometric detection. J. Agric. Food Chem. 2003, 51, 1513–1517. [Google Scholar] [CrossRef]
- Omar, N.; Ampe, F. Microbial Community Dynamics during Production of the Mexican Fermented Maize Dough Pozol Microbial Community Dynamics during Production of the Mexican Fermented Maize Dough Pozol. Appl. Environ. Microbiol. 2000, 66, 3664–3673. [Google Scholar] [CrossRef] [Green Version]
- Lattanzi, A.; Minervini, F.; Di Cagno, R.; Diviccaro, A.; Antonielli, L.; Cardinali, G.; Cappelle, S.; De Angelis, M.; Gobbetti, M. The lactic acid bacteria and yeast microbiota of eighteen sourdoughs used for the manufacture of traditional Italian sweet leavened baked goods. Int. J. Food Microbiol. 2013, 163, 71–79. [Google Scholar] [CrossRef]
- Wilson, K.H.; Blitchington, R.B.; Greene, R.C. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J. Clin. Microbiol. 1990, 28, 1942–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtzman, C.P.; Robnett, C.J. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5’ end of the large-subunit. J. Clin. Microbiol. 1997, 35, 1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J.; Korf, I.; Yandell, M.; Bedell, J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2013, 41, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, L.; Osman, O.A.; Bertilsson, S.; Eiler, A. Microbial community composition and diversity via 16S rRNA gene amplicons: Evaluating the illumina platform. PLoS ONE 2015, 10, e0116955. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, G.J.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, K.R. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Aronesty, E. Ea-utils: “Command-Line Tools for Processing Biological Sequencing Data”; Expression Anaylysis: Durham, NC, USA, 2011. [Google Scholar]
- Rognes, T.; Flouri, T.; Nochols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ Prepr. 2016, 1, e2409. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucl. Acids 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl. Acids 2014, 42, D643–D648. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Bittinger, K.; Bushman, F.D.; DeSantis, T.Z.; Andersen, G.L.; Knight, R. PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics 2010, 26, 266–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfonzo, A.; Ventimiglia, G.; Corona, O.; Di Gerlando, R.; Gaglio, R.; Francesca, N.; Moschetti, G.; Settanni, L. Diversity and technological potential of lactic acid bacteria of wheat flours. Food Microbiol. 2013, 36, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Meroth, C.B.; Walter, J.; Hertel, C.; Brandt, M.J.; Hammes, W.P. Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 2003, 69, 475–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vuyst, L.; Van Kerrebroeck, S.; Harth, H.; Daniel, H.-M.; Weckx, S. Microbial ecology of sourdough fermentations: Diverse or uniform? Food Microbiol. 2014, 37, 11–29. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhu, F. Physicochemical properties of quinoa flour as affected by starch interactions. Food Chem. 2017, 221, 1560–1568. [Google Scholar] [CrossRef]
- Vogelmann, S.A.; Seitter, M.; Brandt, M.J.; Hertel, C. Adaptability of lactic acid bacyeria and yeast to sourdoughs prepared from cereals, pseudocereals and cassavaa and use of competitive strains as starters. Int. J. Microbiol. 2009, 130, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Settanni, L.; Ventimiglia, G.; Alfonzo, A.; Corona, O.; Miceli, A.; Moschetti, G. An integrated technological approach to the selection of lactic acid bacteria of flour origin for sourdough production. Food Res. Int. 2013, 54, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Van Kerrebroeck, S.; Maes, D.; De Vuyst, L. Sourdoughs as a function of their species diversity and process conditions, a meta-analysis. Trends Food Sci. Technol. 2017, 68, 152–159. [Google Scholar] [CrossRef]
- DeVuyst, L.; Neysens, P. The sourdough microflora: Biodiversity and metabolic interactions. Trends Food Sci. Technol. 2005, 16, 43–56. [Google Scholar] [CrossRef]
- Chavan, R.S.; Chavan, S.R. Sourdough Technology-A Traditional Way for Wholesome Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2011, 10, 169–182. [Google Scholar] [CrossRef]
- Smitinont, T.; Tansakul, C.; Keeratipibul, S.; Nacarini, L.; Bosco, M.; Cescutti, P. Exopolysaccharide-producing lactic acid bacteria strains from traditional fermented food: Isolation, identification and exopolysaccharide characterization. Int. J. Food Microbiol. 1999, 15, 105–111. [Google Scholar] [CrossRef]
- Lorusso, A.; Coda, R.; Montemurro, M.; Rizzello, C.G. Use of selected lactic acid bacteria and quinoa flour for manufacturing novel yogurt-like beverages. Foods 2018, 7, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spicher, G. Baked goods. In Biotecnology; Rehm, H.J., Reed, G., Eds.; Verlag Chemie: Weinhem, Germany, 1983; pp. 1–80. [Google Scholar]
- Hammes, W.P.; Gänzle, M.G. The genus Lactobacillus. In Microbiology of Fermented Foods; Woods, B.J.B., Ed.; Blackie Academic&Professional: London, UK, 1998; pp. 199–216. [Google Scholar]
- Minervini, F.; Di Cagno, R.; Lattanzi, A.; De Angelis, M.; Antonielli, L.; Cardinali, G.; Cappelle, S.; Gobbetti, M. Lactic acid bacterium and yeast microbiotas of 19 sourdoughs used for traditional/typical Italian breads: Interactions between ingredients and microbial species diversity. Appl. Environ. Microbiol. 2012, 78, 1251–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Flour Type | Humidity | Ash | Carbohydrates | Fermentable Sugars | Starch | Lipids | Proteins | Crude Fiber |
---|---|---|---|---|---|---|---|---|
% * | ||||||||
Red | 11.2 ± 0.07 a | 2.19 ± 0.05 a | 70.1 ± 0.1 a | 1.40 ± 0.10 a | 37.9 ± 0.52 a | 5.47 ± 0.05 a | 14.5 ± 0.03 a | 6.77 ± 0.17 a |
Real | 11.9 ± 0.08 a | 1.64 ± 0.04 b | 68.9 ± 0.4 a | 1.37 ± 1.45 a | 37.8 ± 0.75 a | 3.19 ± 0.03 b | 13.7 ± 0.02 b | 4.81 ± 0.50 b |
Black | 11.5 ± 0.38 a | 2.17 ± 0.13 a | 69.7 ± 0.4 a | 1.67 ± 0.99 b | 36.5 ± 1.00 b | 3.94 ± 0.19 c | 14.1 ± 0.12 a | 7.03 ± 0.13 a |
Quinoa Flour Type Fermented | Dough Yield (%) | MRS | YMA | Fermentable Sugars % | Starch % | Lactic Acid Produced (mM/Kg) | Acetic Acid Produced (mM) | pH | TTA |
---|---|---|---|---|---|---|---|---|---|
(Log of CFU/g) | (Log of CFU/g) | ||||||||
Real | 203.0 ± 7.9 a | 8.40 ± 0.0 a | BDL | BDL | 27.9 | 7.75 ± 0.15 a | 4.40 ± 0.13 a | 4.11 ± 0.03 a | 17.0 ± 1.41 a |
Black | 203.7 ± 6.0 a | 8.37 ± 0.1 a | 7.03 ± 0.2 a | BDL | 20.8 | 5.92 ± 0.17 b | 5.84 ± 0.11 a | 4.12 ± 0.07 a | 15.6 ± 0.92 b |
Red | 201.9 ± 6.3 a | 8.35 ± 0.1 a | 5.34 ± 0.1 b | BDL | 18.25 | 6.13 ± 0.13 b | 4.57 ± 0.15 a | 3.93 ± 0.04 b | 19.2 ± 1.20 a |
Flour Type (Total No. of Colonies Isolated) | Bacterial Identification (No. of Colonies) | Theoretical Fermentation Type | 16S rRNA Sequence Accession Number | Yeast Identification (No. of Colonies) | 26S rRNA Sequence Accession Number |
---|---|---|---|---|---|
Red (8 from MRS5 and 3 from YMA) | P. pentosaceous (2) | Heterofermentor | MH544761 MH544797 | Saccharomyces servazzii (3) | MH544759 MH544834 MH544832 |
Lb. sakei subsp. Sakei (1) | Facultative Heterofermentor | MH544783 | |||
E. faecium (1) | Homofermentor | MH544790 | |||
W. cibaria (1) | Obligate Heterofermentor | MH544791 | |||
E. mundtii (2) | Homofermentor | MH544779 MH544802 | |||
Le. mesenteroides (1) | Obligate Heterofermentor | MH544759 | |||
Black (9 from MRS5 and 2 from YMA) | Le. citreum (1) | Obligate Heterofermentor | MH544770 | Saccharomyces servazzii (2) | MH544828 MH544829 |
Lb. plantarum (3) | Facultative Heterofermentor | MH544771 MH544781 MH544792 | |||
P. pentosaceous (3) | Facultative Heterofermentor | MH544762 MH544770 MH544778 | |||
Lb. paraplantarum (1) | Facultative Heterofermentor | MH544777 | |||
Lb. sakei (1) | Facultative Heterofermentor | MH544786 | |||
Real (6 from MRS5) | P. pentosaceous (2) | Facultative Heterofermentor | MH544765 MH544774 | Not Detected | |
E. mundtii (1) | Homofermentor | MH544788 | |||
Lb. plantarum (1) | Facultative Heterofermentor | MH544785 | |||
E. faecium (2) | Homofermentor | MH544776 MH544796 | |||
Mixed (5 from MRS5) | P. pentosaceous (2) | Facultative Heterofermentor | MH544768 MH544787 | Not Detected | |
Lb. graminis (2) | Facultative Heterofermentor | MH544758 MH544784 | |||
Lb. lactis (1) | Homofermentor | MH544782 | |||
Commercial (5 from MRS5) | Lb. graminis (1) | Facultative Heterofermentor | MH544767 | Not Detected | |
P. pentosaceous (3) | Facultative Heterofermentor | MH544769 MH544772 MH544789 | |||
E. mundtii (1) | Homofermentor | MH544803 | |||
Gluten free (14 from MRS5 and 7 from YMA) | Lb. graminis (1) | Facultative Heterofermentor | MH544784 | Wickerhamomyces anomalus (2) | MH544826 MH544830 |
Lb. plantarum (3) | Facultative Heterofermentor | MH544777 MH544799 MH544804 | |||
P. pentosaceous (5) | Facultative Heterofermentor | MH544764 MH544766 MH544780 MH544793 MH544798 | Pichia kudriavzevii (3) | MH544827 MH544828 MH544831 | |
L. kimchi (4) | Facultative Heterofermentor | MH544775 MH544805 MH544773 MH544763 | |||
Lb. paraplantarum (1) | Facultative Heterofermentor | MH544794 | Saccharomyces cerevisiae (2) | MH544835 MH544833 |
Microorganism | Quinoa Flour | Carbohydrate Source/Yield | |||
---|---|---|---|---|---|
Sucrose | Fructose | Lactose | Starch | ||
P. pentosaceus | Red | +/2% | +/2% | +/0.5% | +/2% |
P. pentosaceus | Real | +/2% | +/2% | +/0.5% | +/2% |
P. pentosaceus | Black | +/2% | +/2% | +/0.5% | +/2% |
Lb. graminis | Black | - | - | - | - |
Lb. paraplantarum | Black | - | - | - | - |
Lb. plantarum | Black | +/1.5% | +/1.5% | - | - |
Lb. plantarum | Red | + | + | - | - |
Lb. sakei | Black | - | - | - | - |
Lb. sakei | Red | - | - | - | - |
L. lactis | Black | +/1.8% | +/1.9% | +/2% | - |
E. faecium | Red | +/1% | - | - | - |
E. faceium | Real | +/1% | - | - | - |
Le. citreum | Black | +/1% | - | - | +/1% |
Le. mesenteroides | Red | +/1% | - | - | - |
W. cibaria | Red | +/1% | - | +/1% | +/1% |
Yeasts | |||||
S. servazzii | Red | +/<1% | +/<1% | - | +/<1% |
S. servazzii | Black | +/<1% | +/<1% | +/<1% | +/<1% |
Microorganism | Source | 8 h | 18 h | ||||
---|---|---|---|---|---|---|---|
log CFU/mL | pH | %TTA | log CFU/mL | pH | %TTA | ||
Control | BDL | 5.95 ± 0.02 | 1.50 ± 0.01 | BDL | 5.75 ± 0.01 | 1.80 ± 0.02 | |
E. faecium | Real | 8.13 ± 0.02 | 4.83 ± 0.01 | 2.21 ± 0.02 | 9.14 ± 0.01 | 3.33 ± 0.02 | 4.98 ± 0.05 |
E. faecium | Red | 8.33 ± 0.01 | 5.01 ± 0.01 | 2.15 ± 0.03 | 9.25 ± 0.03 | 3.33 ± 0.01 | 5475 ± 0.01 |
L. lactis | Black | 3.20 ± 0.03 | 5.62 ± 0.03 | 1.53 ± 0.04 | BDL | 5.35 ± 0.04 | 2.55 ± 0.03 |
Lb. graminis | Black | 3.30 ± 0.02 | 5.31 ± 0.02 | 1.65 ± 0.03 | BDL | 5.02 ± 0.05 | 2.52 ± 0.03 |
Lb. paraplantarum | Black | 4.24 ± 0.01 | 5.95 ± 0.04 | 1.56 ± 0.01 | 1.21 ± 0.04 | 4.99 ± 0.02 | 2.71 ± 0.02 |
Lb. plantarum | Red | 5.38 ± 0.02 | 5.26 ± 0.02 | 1.61 ± 0.02 | 4.32 ± 0.03 | 4.26 ± 0.01 | 2.74 ± 0.03 |
Lb. plantarum | Black | 5.38 ± 0.01 | 5.26 ± 0.01 | 1.75 ± 0.01 | 4.2 ± 0.01 | 4.26 ± 0.03 | 2.61 ± 0.03 |
Lb. sakei | Black | 3.30 ± 0.01 | 5.31 ± 0.01 | 1.57 ± 0.02 | BDL | 5.04 ± 0.02 | 2.51± 0.04 |
Lb. sakei | Red | 3.10 ± 0.02 | 5.24 ± 0.04 | 1.56 ± 0.01 | BDL | 5.03 ± 0.04 | 2.52 ± 0.03 |
Le. citreum | Black | 7.40 ± 0.02 | 4.50 ± 0.05 | 2.51 ± 0.02 | 8.40 ± 0.02 | 3.40 ± 0.01 | 5.01 ± 0.02 |
Le. mesenteroides | Red | 8.14 ± 0.03 | 4.99 ± 0.01 | 2.27 ± 0.01 | 8.92 ± 0.02 | 3.99 ± 0.01 | 4.87 ± 0.01 |
P. pentosaceus | Red | 8.07 ± 0.01 | 4.99 ± 0.03 | 2.25 ± 0.02 | 8.92 ± 0.03 | 3.60 ± 0.02 | 4.85 ± 0.01 |
P. pentosaceus | Black | 8.67 ± 0.01 | 4.57 ± 0.01 | 2.39 ± 0.01 | 8.67 ± 0.01 | 3.12 ± 0.03 | 4.89 ± 0.03 |
P. pentosaceus | Real | 7.94 ± 0.01 | 4.38 ± 0.02 | 2.74 ± 0.01 | 7.94 ± 0.01 | 3.57 ± 0.04 | 5.02 ± 0.01 |
W. cibaria | Red | 7.35 ± 0.02 | 4.50 ± 0.01 | 2.43 ± 0.03 | 8.35 ± 0.01 | 3.41 ± 0.03 | 5.01 ± 0.01 |
Microorganism | Quinoa | Lactic Acid (mg/g) | Acetic Acid (mg/g) | FQ |
---|---|---|---|---|
Control | BDL | BDL | − | |
E. faecium | Real | 6.47 ± 0.02 | 0.67 ± 0.03 | 9.66 |
E. faecium | Red | 6.34 ± 0.02 | 0.82 ± 0.01 | 7.73 |
L. lactis | Black | 1.36 ± 0.01 | BDL | − |
Lb. graminis | Black | 1.45 ± 0.01 | BDL | − |
Lb. paraplantarum | Black | 3.37 ± 0.01 | 0.34 ± 0.01 | 9.91 |
Lb. plantarum | Red | 1.88 ± 0.03 | 0.37 ± 0.01 | 5.08 |
Lb. plantarum | Black | 1.32 ± 0.01 | 0.39 ± 0.01 | 3.38 |
Lb. sakei | Black | 1.35 ± 0.02 | 0.25 ± 0.02 | 5.40 |
Lb. sakei | Red | 1.44 ± 0.02 | 0.28 ± 0.02 | 5.14 |
Le. citreum | Black | 3.21 ± 0.01 | 0.87 ±0.01 | 3.69 |
Le. mesenteroides | Red | 5.63 ± 0.01 | 0.70 ± 0.02 | 8.04 |
P. pentosaceus | Red | 2.75 ± 0.01 | 0.68 ± 0.03 | 4.04 |
P. pentosaceus | Black | 2.66 ± 0.01 | 0.65 ± 0.01 | 4.09 |
P. pentosaceus | Real | 2.34 ± 0.02 | 0.71 ± 0.04 | 3.30 |
W. cibaria | Red | 2.01 ± 0.02 | 0.61 ± 0.05 | 3.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, W.; Pérez-Díaz, I.M.; Connelly, L.; Diaz, J.T. Isolation of Exopolysaccharide-Producing Yeast and Lactic Acid Bacteria from Quinoa (Chenopodium Quinoa) Sourdough Fermentation. Foods 2020, 9, 337. https://doi.org/10.3390/foods9030337
Franco W, Pérez-Díaz IM, Connelly L, Diaz JT. Isolation of Exopolysaccharide-Producing Yeast and Lactic Acid Bacteria from Quinoa (Chenopodium Quinoa) Sourdough Fermentation. Foods. 2020; 9(3):337. https://doi.org/10.3390/foods9030337
Chicago/Turabian StyleFranco, Wendy, Ilenys M. Pérez-Díaz, Lauren Connelly, and Joscelin T. Diaz. 2020. "Isolation of Exopolysaccharide-Producing Yeast and Lactic Acid Bacteria from Quinoa (Chenopodium Quinoa) Sourdough Fermentation" Foods 9, no. 3: 337. https://doi.org/10.3390/foods9030337
APA StyleFranco, W., Pérez-Díaz, I. M., Connelly, L., & Diaz, J. T. (2020). Isolation of Exopolysaccharide-Producing Yeast and Lactic Acid Bacteria from Quinoa (Chenopodium Quinoa) Sourdough Fermentation. Foods, 9(3), 337. https://doi.org/10.3390/foods9030337