Energy Consumption, Colour, Texture, Antioxidants, Odours, and Taste Qualities of Litchi Fruit Dried by Intermittent Ohmic Heating
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Procedure
2.3. Proximate Composition Analyses
2.4. Energy Consumption
2.5. Colour Evaluation
2.6. Determination of Texture
2.7. Determination of Density
2.8. Determination of Vitamin C
2.9. Total Phenolic Compounds
2.10. E-Tongue Analysis
2.11. E-Nose Analysis
2.12. Data Analysis
3. Results and Discussion
3.1. Water Dynamics
3.2. Drying Time and Energy Consumption
3.3. Colour Evaluation of Litchi Pulp
3.4. Texture Evaluation of Litchi Pulp
3.5. Vitamin C Evaluation of Litchi Pulp
3.6. Total Phenolic Evaluation of Litchi Pulp
3.7. E-Nose Profile of Litchi Pulp
3.8. E-Tongue Profile of Litchi Pulp
3.9. Based/Compositional Evaluation of Litchi Pulp
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Wang, H.; Hu, Z.; Chen, H.; Hu, G.; Huang, X.; Zhou, Z. Litchi Good for Heath from Skin to Heart: An Overview of Litchi Functional Activities and Compounds. In Proceedings of the III International Symposium on Longan, Lychee, and other Fruit Trees in Sapindaceae Family 863, Fu Zhou, China, 25–28 August 2008; pp. 645–652. [Google Scholar]
- Zhao, M.; Yang, B.; Wang, J.; Liu, Y.; Yu, L.; Jiang, Y. Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn.) pericarp. Int. Immunopharmacol. 2007, 7, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Underhill, S.; Critchley, C. Physiological, biochemical and anatomical changes in lychee (Litchi chinensis Sonn.) pericarp during storage. J. Hortic. Sci. 1993, 68, 327–335. [Google Scholar] [CrossRef]
- Jiang, Y.; Yao, L.; Lichter, A.; Li, J. Postharvest biology and technology of litchi fruit. J. Food Agric. Environ. 2003, 1, 76–81. [Google Scholar]
- Wang, L.; Wu, J.; Chen, J.; Fu, D.; Zhang, C.; Cai, C.; Ou, L. A simple pollen collection, dehydration, and long-term storage method for litchi (Litchi chinensis Sonn.). Sci. Hortic. 2015, 188, 78–83. [Google Scholar] [CrossRef]
- Song, C.F.; Cui, Z.; Jin, G.Y.; Mujumdar, A.S.; Yu, J.F. Effects of four different drying methods on the quality characteristics of peeled litchis (Litchi chinensis Sonn.). Dry. Technol. 2015, 33, 583–590. [Google Scholar] [CrossRef]
- Chua, K.; Chou, S. Low-cost drying methods for developing countries. Trends Food Sci. Technol. 2003, 14, 519–528. [Google Scholar] [CrossRef]
- Adams, G. Freeze-drying of biological materials. Dry. Technol. 1991, 9, 891–925. [Google Scholar] [CrossRef]
- Feng, H.; Yin, Y.; Tang, J. Microwave drying of food and agricultural materials: Basics and heat and mass transfer modeling. Food Eng. Rev. 2012, 4, 89–106. [Google Scholar] [CrossRef]
- Shah, N.S.; Nath, N. Changes in qualities of minimally processed litchis: Effect of antibrowning agents, osmo-vacuum drying and moderate vacuum packaging. LWT-Food Sci. Technol. 2008, 41, 660–668. [Google Scholar] [CrossRef]
- Apinyavisit, K.; Nathakaranakule, A.; Soponronnarit, S.; Mittal, G.S. A comparative study of combined microwave techniques for longan (Dimocarpus longan Lour.) drying with hot air or vacuum. Int. J. Food Eng. 2017, 13. [Google Scholar] [CrossRef]
- Nayak, B.; Liu, R.H.; Tang, J. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–918. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.; Chua, K.; Mujumdar, A.; Hawlader, M.N.A.; Ho, J. On the intermittent drying of an agricultural product. Food Bioprod. Process. 2000, 78, 193–203. [Google Scholar] [CrossRef]
- Zhao, D.; An, K.; Ding, S.; Liu, L.; Xu, Z.; Wang, Z. Two-stage intermittent microwave coupled with hot-air drying of carrot slices: Drying kinetics and physical quality. Food Bioprocess Technol. 2014, 7, 2308–2318. [Google Scholar] [CrossRef]
- Chua, K.; Mujumdar, A.; Chou, S. Intermittent drying of bioproducts––An overview. Bioresour. Technol. 2003, 90, 285–295. [Google Scholar] [CrossRef]
- Duc Pham, N.; Khan, M.I.H.; Joardder, M.; Rahman, M.; Mahiuddin, M.; Abesinghe, A.N.; Karim, M. Quality of plant-based food materials and its prediction during intermittent drying. Crit. Rev. Food Sci. Nutr. 2019, 59, 1197–1211. [Google Scholar] [CrossRef] [Green Version]
- Takougnadi, E.; Boroze, T.-E.T.; Azouma, O.Y. Development of an intermittent drying process of onion. Cogent Food Agric. 2018, 4, 1422225. [Google Scholar] [CrossRef]
- Filippin, A.P.; Molina Filho, L.; Fadel, V.; Mauro, M.A. Thermal intermittent drying of apples and its effects on energy consumption. Dry. Technol. 2018, 36, 1662–1677. [Google Scholar] [CrossRef] [Green Version]
- Zotarelli, M.F.; Porciuncula, B.D.A.; Laurindo, J.B. A convective multi-flash drying process for producing dehydrated crispy fruits. J. Food Eng. 2012, 108, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Nawirska, A.; Figiel, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Biesiada, A. Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. J. Food Eng. 2009, 94, 14–20. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Ah-Hen, K.; Chacana, M.; Vergara, J.; Martínez-Monzó, J.; García-Segovia, P.; Lemus-Mondaca, R.; Di Scala, K. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chem. 2012, 132, 51–59. [Google Scholar]
- Krokida, M.K.; Karathanos, V.; Maroulis, Z.; Marinos-Kouris, D. Drying kinetics of some vegetables. J. Food Eng. 2003, 59, 391–403. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Islam, M.N.; Xu, W.; Zhong, S. Effect of Intermittent Microwave Volumetric Heating on Dehydration, Energy Consumption, Antioxidant Substances, and Sensory Qualities of Litchi Fruit during Vacuum Drying. Molecules 2019, 24, 4291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Islam, M.N.; Zhong, S.; Pan, X.; Song, M.; Shang, F.; Nie, H.; Xu, W.; Duan, Z. Drying kinetics, antioxidants, and physicochemical properties of litchi fruits by ultrasound-assisted hot air-drying. J. Food Biochem. 2019, e13073. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, R.; Burvall, J.; Jirjis, R. Comparison of different methods for the determination of moisture content in biomass. Biomass Bioenergy 2006, 30, 929–934. [Google Scholar] [CrossRef]
- Li, G.; Zheng, Y.; Hu, G.; Zhang, Z. Heat transfer enhancement from a rectangular flat plate with constant heat flux in pulsating flows. Exp. Heat Transf. 2014, 27, 198–211. [Google Scholar] [CrossRef]
- Islam, M.N.; Zhang, M.; Adhikari, B.; Xinfeng, C.; Xu, B.-G. The effect of ultrasound-assisted immersion freezing on selected physicochemical properties of mushrooms. Int. J. Refrig. 2014, 42, 121–133. [Google Scholar] [CrossRef]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. A comparative study on two electronic tongues for pharmaceutical formulation development. J. Pharm. Biomed. Anal. 2011, 55, 272–281. [Google Scholar] [CrossRef]
- Giungato, P.; Renna, M.; Rana, R.; Licen, S.; Barbieri, P. Characterization of dried and freeze-dried sea fennel (Crithmum maritimum L.) samples with headspace gas-chromatography/mass spectrometry and evaluation of an electronic nose discrimination potential. Food Res. Int. 2019, 115, 65–72. [Google Scholar] [CrossRef]
- Benedetti, S.; Buratti, S.; Spinardi, A.; Mannino, S.; Mignani, I. Electronic nose as a non-destructive tool to characterise peach cultivars and to monitor their ripening stage during shelf-life. Postharvest Biol. Technol. 2008, 47, 181–188. [Google Scholar] [CrossRef]
- Raghavan, G. Drying of agricultural products. Handb. Ind. Dry. 1987, 1, 627–642. [Google Scholar]
- Sehrawat, R.; Babar, O.A.; Kumar, A.; Nema, P.K. Recent trends in drying of fruits and vegetables. In Technological Interventions in the Processing of Fruits and Vegetables; Apple Academic Press: Palm Bay, FL, USA, 2018; pp. 155–178. [Google Scholar]
- Karathanos, V.; Belessiotis, V. Sun and artificial air drying kinetics of some agricultural products. J. Food Eng. 1997, 31, 35–46. [Google Scholar] [CrossRef]
- Soysal, Y. Intermittent and continuous microwave-convective air drying of potato (lady rosetta): Drying kinetics, energy consumption and product quality. Tarım Makinaları Bilimi Derg. 2009, 5, 139–148. [Google Scholar]
- Kumar, C.; Karim, M.; Joardder, M.U. Intermittent drying of food products: A critical review. J. Food Eng. 2014, 121, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Baini, R.; Langrish, T. Assessment of colour development in dried bananas–measurements and implications for modelling. J. Food Eng. 2009, 93, 177–182. [Google Scholar] [CrossRef]
- Islam, M.; Flink, J. Dehydration of potato: II. Osmotic concentration and its effect on air drying behaviour. Int. J. Food Sci. Technol. 1982, 17, 387–403. [Google Scholar] [CrossRef]
- Nieto, A.; Salvatori, D.; Castro, M.; Alzamora, S. Air drying behaviour of apples as affected by blanching and glucose impregnation. J. Food Eng. 1998, 36, 63–79. [Google Scholar] [CrossRef]
- Tabtiang, S.; Prachayawarakon, S. Effect of Banana Ripeness and Puffing Temperature on Puffed Banana Qualities and Drying Time. J. Agric. Tech. 2017, 13, 281–292. [Google Scholar]
- Chong, C.H.; Law, C.L.; Figiel, A.; Wojdyło, A.; Oziembłowski, M. Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chem. 2013, 141, 3889–3896. [Google Scholar] [CrossRef]
- Di Scala, K.; Vega-Gálvez, A.; Uribe, E.; Oyanadel, R.; Miranda, M.; Vergara, J.; Quispe, I.; Lemus-Mondaca, R. Changes of quality characteristics of pepino fruit (Solanum muricatum Ait) during convective drying. Int. J. Food Sci. Technol. 2011, 46, 746–753. [Google Scholar] [CrossRef]
- Duan, X.; Huang, L.L.; Wang, M.M.; Qiao, F.; Fang, C.F. Studies on the Effects of Microwave Power and Temperature Control on the Quality of Whole Lychee (L itchi chinensis Sonn.) Fruit during Microwave Vacuum Drying. J. Food Process. Preserv. 2015, 39, 423–431. [Google Scholar] [CrossRef]
- Fraga, C.G. Plant Phenolics and Human Health: Biochemistry, Nutrition, and Pharmacology; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Zhang, D.; Quantick, P.C.; Grigor, J.M. Changes in phenolic compounds in Litchi (Litchi chinensis Sonn.) fruit during postharvest storage. Postharvest Biol. Technol. 2000, 19, 165–172. [Google Scholar] [CrossRef]
- Duan, X.; Wu, G.; Jiang, Y. Evaluation of the antioxidant properties of litchi fruit phenolics in relation to pericarp browning prevention. Molecules 2007, 12, 759–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capelli, L.; Taverna, G.; Bellini, A.; Eusebio, L.; Buffi, N.; Lazzeri, M.; Guazzoni, G.; Bozzini, G.; Seveso, M.; Mandressi, A. Application and uses of electronic noses for clinical diagnosis on urine samples: A review. Sensors 2016, 16, 1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mussinan, C.J.; Keelan, M.E. Sulfur Compounds in Foods: An Overview; ACS Publications: Washington, DC, USA, 1994. [Google Scholar]
- Jiang, Y.; Wang, Y.; Song, L.; Liu, H.; Lichter, A.; Kerdchoechuen, O.; Joyce, D.; Shi, J. Postharvest characteristics and handling of litchi fruit—An overview. Aust. J. Exp. Agric. 2006, 46, 1541–1556. [Google Scholar] [CrossRef]
- Raigond, P.; Singh, B.; Gupta, V.K.; Singh, B.P. Potato flavour: Profiling of umami 5′-nucleotides from Indian potato cultivars. Indian J. Plant Physiol. 2014, 19, 338–344. [Google Scholar] [CrossRef]
Drying/ 70 °C | Cumulative Time/min | On-Drying Time/min | Off-Drying Time/min | Energy Consumption/(kJ∙g−1) |
---|---|---|---|---|
1.8 PR IAD | 450 | 250 | 200 | 341 ± 0.42 a |
1.5 PR IAD | 400 | 260 | 130 | 385 ± 0.51 b |
1.2 PR IAD | 350 | 280 | 70 | 427 ± 0.11 c |
AD | 300 | 300 | 0 | 488 ± 0.22 d |
IAD/70 °C | PR | L * | a * | b * | ΔE |
---|---|---|---|---|---|
Fresh | 62.73 ± 1.44 a | −4.22 ± 0.17 d | 5.45 ± 0.37 e | - | |
On 20 min/off 15 min | 1.8 | 19.45 ± 1.35 c | 9.47 ± 0.13 a | 15.84 ± 0.28 a | 15.11 ± 0.44 a |
On 20 min/off 10 min | 1.5 | 22.70 ± 1.13 b | 5.37 ± 0.25 c | 11.25 ± 0.52 c | 10.53 ± 0.52 c |
On 20 min/5 min | 1.2 | 24.77 ± 1.24 b | 4.85 ± 0.25 c | 9.97 ± 0.35 d | 9.27 ± 1.55 c |
AD | - | 18.60 ± 1.18 c | 7.86 ± 0.35 b | 13.80 ± 0.38 b | 11.29 ± 2.43 b |
Based Properties of Dried Litchi Fruits Using Intermittent Air Drying | |||||
---|---|---|---|---|---|
PR | Protein g/100g | Total Sugar g/100g, d.b. | Moisture Content g/100g, d.b. | Water Activity | Cao Density g/cm 3 |
1.8 | 1.70 ± 0.15 a | 92.15 ± 1.25 a | 16.25 ± 1.34 a | 0.45 ± 0.01 b | 1.32 ± 0.03 a |
1.5 | 1.75 ± 0.17 a | 93.45 ± 1.44 a | 16.22 ± 1.25 a | 0.46 ± 0.01 b | 1.31 ± 0.02 a |
1.2 | 1.45 ± 0.13 a | 93.41 ± 1.15 a | 17.34 ± 1.42 a | 0.47 ± 0.01 a | 1.33 ± 0.02 a |
AD | 1.55 ± 0.11 a | 92.05 ± 1.22 a | 17.65 ± 1.25 a | 0.46 ± 0.01 a | 1.31 ± 0.01 a |
Average value | 1.61 ± 0.15 | 92.76 ± 1.30 | 16.86 ± 1.44 | 0.46 ± 0.01a | 1.32 ± 0.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Islam, M.N.; Xu, W.; Chen, J.; Chitrakar, B.; Jia, X.; Liu, X.; Zhong, S. Energy Consumption, Colour, Texture, Antioxidants, Odours, and Taste Qualities of Litchi Fruit Dried by Intermittent Ohmic Heating. Foods 2020, 9, 425. https://doi.org/10.3390/foods9040425
Cao X, Islam MN, Xu W, Chen J, Chitrakar B, Jia X, Liu X, Zhong S. Energy Consumption, Colour, Texture, Antioxidants, Odours, and Taste Qualities of Litchi Fruit Dried by Intermittent Ohmic Heating. Foods. 2020; 9(4):425. https://doi.org/10.3390/foods9040425
Chicago/Turabian StyleCao, Xiaohuang, Md. Nahidul Islam, Wanxiu Xu, Jianping Chen, Bimal Chitrakar, Xuejing Jia, Xiaofei Liu, and Saiyi Zhong. 2020. "Energy Consumption, Colour, Texture, Antioxidants, Odours, and Taste Qualities of Litchi Fruit Dried by Intermittent Ohmic Heating" Foods 9, no. 4: 425. https://doi.org/10.3390/foods9040425
APA StyleCao, X., Islam, M. N., Xu, W., Chen, J., Chitrakar, B., Jia, X., Liu, X., & Zhong, S. (2020). Energy Consumption, Colour, Texture, Antioxidants, Odours, and Taste Qualities of Litchi Fruit Dried by Intermittent Ohmic Heating. Foods, 9(4), 425. https://doi.org/10.3390/foods9040425