Bioaccessibility of Antioxidants and Fatty Acids from Fucus Spiralis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Fucus Spiralis
2.2. In Vitro Digestion Model
2.3. Calculation of Bioaccessible Lipids, Fatty Acids, Polyphenols and Antioxidant Activity
2.4. Crude Protein
2.5. Total Lipids
2.6. Fatty Acids
2.7. Total Phenolic Content and Antioxidant Capacity
2.7.1. Preparation of Seaweed Extract and Bioaccessible Factions
2.7.2. Analysis of Total Phenolic Content (TPC)
2.7.3. DPPH (1,1-Diphenyl-2-Picryl-Hydrazyl) Radical Scavenging Activity
2.7.4. Oxygen Radical Absorbance Capacity (ORAC)
2.7.5. Ferric Reducing Antioxidant Power (FRAP) Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Protein Content
3.2. Lipid and Fatty Acids Content
3.3. Antioxidant Activity
3.4. Bioaccessibility
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- García-Sartal, C.; Barciela-Alonso, M.; del, C.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. Study of cooking on the bioavailability of As, Co, Cr, Cu, Fe, Ni, Se and Zn from edible seaweed. Microchem. J. 2013, 108, 92–99. [Google Scholar] [CrossRef]
- Mabeau, S.; Fleurence, J. Seaweed in food products: Biochemical and nutritional aspects. Trends Food Sci. Technol. 1993, 4, 103–107. [Google Scholar] [CrossRef]
- McHugh, D.J. A Guide to the Seaweed Industry; FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS: Rome, Italy, 2003. [Google Scholar]
- Cian, R.E.; Caballero, M.S.; Sabbag, N.; González, R.J.; Drago, S.R. Bio-accessibility of bioactive compounds (ACE inhibitors and antioxidants) from extruded maize products added with a red seaweed Porphyra columbina. LWT Food Sci. Technol. 2014, 55, 51–58. [Google Scholar] [CrossRef]
- Besada, V.; Andrade, J.M.; Schultze, F.; González, J.J. Heavy metals in edible seaweeds commercialised for human consumption. J. Mar. Syst. 2009, 75, 305–313. [Google Scholar] [CrossRef]
- Balboa, E.M.; Conde, E.; Moure, A.; Falqué, E.; Domínguez, H. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem. 2013, 138, 1764–1785. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.; Hashim, S.N.; Rahman, H.A. Seaweeds: A sustainable functional food for complementary and alternative therapy. Trends Food Sci. Technol. 2012, 23, 83–96. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Queguineur, B.; Hanniffy, D.; Troy, D.J.; Kerry, J.P.; O’Brien, N.M. In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chem. 2011, 126, 1064–1070. [Google Scholar] [CrossRef]
- Wijeratne, S.S.K.; Cuppett, S.L.; Schlegel, V. Hydrogen peroxide induced oxidative stress damage and antioxidant enzyme response in Caco-2 human colon cells. J. Agric. Food Chem. 2005, 53, 8768–8774. [Google Scholar] [CrossRef]
- Pinteus, S.; Silva, J.; Alves, C.; Horta, A.; Fino, N.; Rodrigues, A.; Mendes, S.; Pedrosa, R. Cytoprotective effect of seaweeds with high antioxidant activity from the Peniche coast (Portugal). Food Chem. 2016. [Google Scholar] [CrossRef]
- Kang, K.; Park, Y.; Hwang, H.J.; Kim, S.H.; Lee, J.G.; Shin, H.-C. Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agents against vascular risk factors. Arch. Pharm. Res. 2003, 26, 286–293. [Google Scholar] [CrossRef]
- Miyashita, K.; Mikami, N.; Hosokawa, M. Chemical and nutritional characteristics of brown seaweed lipids: A review. J. Funct. Foods 2013, 5, 1507–1517. [Google Scholar] [CrossRef]
- Aeda, H.A.M.; Osokawa, M.A.H.; Ashima, T.O.S.; Iyashita, K.A.M. Dietary Combination of Fucoxanthin and Fish Oil Attenuates the Weight Gain of White Adipose Tissue and Decreases Blood Glucose in Obese/Diabetic KK-A Mice. J. Agric. Food Chem. 2007, 1, 7701–7706. [Google Scholar] [CrossRef]
- Parada, J.; Aguilera, J.M. Food Microstructure Affects the Bioavailability of Several Nutrients. J. Food Sci. 2007, 72, R21–R32. [Google Scholar] [CrossRef] [PubMed]
- Moreda-Piñeiro, J.; Moreda-Piñeiro, A.; Romarís-Hortas, V.; Moscoso-Pérez, C.; López-Mahía, P.; Muniategui-Lorenzo, S.; Bermejo-Barrera, P.; Prada-Rodríguez, D. In-vivo and in-vitro testing to assess the bioaccessibility and the bioavailability of arsenic, selenium and mercury species in food samples. TrAC Trends Anal. Chem. 2011, 30, 324–345. [Google Scholar] [CrossRef]
- Intawongse, M.; Dean, J.R. In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. TrAC Trends Anal. Chem. 2006, 25, 876–886. [Google Scholar] [CrossRef]
- Afonso, C.; Costa, S.; Cardoso, C.; Oliveira, R.; Lourenço, H.M.; Viula, A.; Batista, I.; Coelho, I.; Nunes, M.L. Benefits and risks associated with consumption of raw, cooked, and canned tuna (Thunnus spp.) based on the bioaccessibility of selenium and methylmercury. Environ. Res. 2015, 1–8. [Google Scholar] [CrossRef]
- Saint-Denis, T.; Goupy, J. Optimization of a nitrogen analyser based on the Dumas method. Anal. Chim. Acta 2004, 515, 191–198. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Bandarra, N.M.; Batista, I.; Nunes, M.L.; Empis, J.M.; Christie, W.W. Seasonal Changes in Lipid Composition of Sardine (Sardina pilchardus). J. Food Sci. 1997, 62, 40–42. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zar, J. Biostatistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
- Fleurence, J. Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends Food Sci. Technol. 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Paiva, L.; Lima, E.; Patarra, R.F.; Neto, A.I.; Baptista, J. Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chem. 2014, 164, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Paiva, L.; Lima, E.; Neto, A.I.; Baptista, J. Seasonal variability of the biochemical composition and antioxidant properties of Fucus spiralis at two Azorean Islands. Mar. Drugs 2018, 16, 248. [Google Scholar] [CrossRef] [Green Version]
- Morales de Leon, J.; Babinsky, V.; Bourges, R.H.; Camacho, P.M. Tablas de composicion de alimentos mexicanos. Inst. Nac. Ciencias Medicas y Nutr. Salvador Zubairan 2000, 22, 45–49. [Google Scholar]
- Francisco, J.; Cardoso, C.; Bandarra, N.; Brito, P.; Horta, A.; Pedrosa, R.; Gil, M.M.; Delgado, I.M.; Castanheira, I.; Afonso, C. Bioaccessibility of target essential elements and contaminants from Fucus spiralis. J. Food Compos. Anal. 2018, 74, 10–17. [Google Scholar] [CrossRef]
- Spijkerman, E.; Wacker, A.; Weithoff, G.; Leya, T. Elemental and fatty acid composition of snow algae in Arctic habitats. Front. Microbiol. 2012, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-K.; Chojnacka, K. Marine Algae Extracts: Processes, Products, and Applications, 2 Volume Set; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Bhaskar, N.; Kazuo, M.; Masashi, H. Comparative Evaluation of Fatty Acid Composition of Different Sargassum (Fucales, Phaeophyta ) Species Harvested from Temperate and Tropical Waters. J. Aquat. Food Prod. Technol. 2004, 13, 53–70. [Google Scholar] [CrossRef]
- Kayama, M.; Iijima, N.; Kuwahara, M.; Sado, T.; Araki, S.; Sakurai, T. Effect of Water Temperature on the Fatty Acid Composition of Porphyra. Bull. Jpn. Soc. Sci. Fish. 1985, 51. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Rozentsvet, O.A.; Pechenkina, E.E. Glycolipids, phospholipids and fatty acids of brown algae species. Phytochemistry 1990, 29, 3417–3421. [Google Scholar] [CrossRef]
- Jamieson, G.R.; Reid, E.H. The component fatty acids of some marine algal lipids. Phytochemistry 1972, 11, 1423–1432. [Google Scholar] [CrossRef]
- Jones, A.L.; Harwood, J.L. Lipid composition of the brown algae Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry 1992, 31, 3397–3403. [Google Scholar] [CrossRef]
- Smith, K.L.; Harwood, J.L. Lipids and lipid metabolism in the brown alga, Fucus serratus. Phytochemistry 1984, 23, 2469–2473. [Google Scholar] [CrossRef]
- Terasaki, M.; Hirose, A.; Narayan, B.; Baba, Y.; Kawagoe, C.; Yasui, H.; Saga, N.; Hosokawa, M.; Miyashita, K. Evaluation of recoverable functional lipid components of several brown seaweeds (Phaeophyta) from Japan with special reference to fucoxanthin and fucosterol contents. J. Phycol. 2009, 45, 974–980. [Google Scholar] [CrossRef]
- Campos, A.M.; Matos, J.; Afonso, C.; Gomes, R.; Bandarra, N.M.; Cardoso, C. Azorean macroalgae (Petalonia binghamiae, Halopteris scoparia and Osmundea pinnatifida) bioprospection: A study of fatty acid profiles and bioactivity. Int. J. Food Sci. Technol. 2018, 1–11. [Google Scholar] [CrossRef]
- Valentão, P.; Trindade, P.; Gomes, D.; Guedes de Pinho, P.; Mouga, T.; Andrade, P.B. Codium tomentosum and Plocamium cartilagineum: Chemistry and antioxidant potential. Food Chem. 2010, 119, 1359–1368. [Google Scholar] [CrossRef]
- Soubra, L.; Sarkis, D.; Hilan, C.; Verger, P. Dietary exposure of children and teenagers to benzoates, sulphites, butylhydroxyanisol (BHA) and butylhydroxytoluen (BHT) in Beirut (Lebanon). Regul. Toxicol. Pharmacol. 2007, 47, 68–77. [Google Scholar] [CrossRef]
- Leclercq, C.; Arcella, D.; Turrini, A. Estimates of the theoretical maximum daily intake of erythorbic acid, gallates, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in Italy: A stepwise approach. Food Chem. Toxicol. 2000, 38, 1075–1084. [Google Scholar] [CrossRef]
- Sabeena Farvin, K.H.; Jacobsen, C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013, 138, 1670–1681. [Google Scholar] [CrossRef]
- Peinado, I.; Girón, J.; Koutsidis, G.; Ames, J.M. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Res. Int. 2014, 66, 36–44. [Google Scholar] [CrossRef] [Green Version]
- IPMA Boletim Climatológico Sazonal Verão 2015. IPMA Inst. Port. do Mar. e da Atmos. 2015, 2015, 1–7.
- Kendon, M.; McCarthy, M.; Jevrejeva, S.; Legg, T. State of the UK Climate 2015; Met Office: Exeter, UK, 2016. [Google Scholar]
- Andrade, P.B.; Barbosa, M.; Matos, R.P.; Lopes, G.; Vinholes, J.; Mouga, T.; Valentão, P. Valuable compounds in macroalgae extracts. Food Chem. 2013, 138, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Shin, K.H.; Kim, B.-K.; Lee, S. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch. Pharm. Res. 2004, 27, 1120–1122. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res. 2008, 57, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Patarra, R.F.; Paiva, L.; Neto, A.I.; Lima, E.; Baptista, J. Nutritional value of selected macroalgae. J. Appl. Phycol. 2011, 23, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Rafiquzzaman, S.M.; Kim, E.-Y.; Kim, Y.-R.; Nam, T.-J.; Kong, I.-S. Antioxidant activity of glycoprotein purified from Undaria pinnatifida measured by an in vitro digestion model. Int. J. Biol. Macromol. 2013, 62, 265–272. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Pasli, A.A.; Ozcelik, B.; Van Camp, J.; Capanoglu, E. Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chem. 2015, 186, 74–82. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, N.; Portugal, C. Programa Nacional para as Doenças Oncológicas-Doenças Oncológicas em Números 2015. Available online: https://www.dgs.pt/estatisticas-de-saude/estatisticas-de-saude/publicacoes/portugal-doencas-oncologicas-em-numeros-2015-pdf.aspx (accessed on 20 February 2020).
Fatty Acids | (% of total FA) | Bioac (%) | |
---|---|---|---|
Myristic acid (C14:0) | 10.92 | ±0.30 | |
Palmitic acid (C16:0) | 16.25 | ±0.10 | |
Oleic acid (C18:1ω9) | 26.39 | ±0.27 | |
Linoleic acid (C18:2ω6) | 5.51 | ±0.05 | |
α-linolenic acid (C18:3ω3) | 4.56 | ±0.03 | 10.9 ± 1.6 |
Stearidonic acid (C18:4ω3) | 2.52 | ±0.02 | 8.1 ± 0.9 |
Arachidonic acid (C20:4ω6) | 16.38 | ±0.04 | 6.1 ± 0.8 |
Eicosapentaenoic acid (C20:5ω3) | 7.45 | ±0.05 | 13.0 ± 1.0 |
Σ Saturated | 32.37 | ±0.21 | |
Σ Monounsaturated | 29.18 | ±0.24 | |
Σ Polyunsaturated | 37.37 | ±0.03 | |
Σ ω3 | 15.07 | ±0.01 | |
Σ ω6 | 22.46 | ±0.02 | |
ω3/ω6 | 0.67 | ±0.00 | |
Unidentified | 1.2 | ±0.23 |
TPC | |||
---|---|---|---|
Initial | Bio | Bioac | |
(mmol EGA/g) | (mmol EGA/g) | (%) | |
F | 0.016 ± 0.002 * | 0.007 ± 0.001 * | 43.7 ± 6.2 |
FD | 0.049 ± 0.005 * | 0.011 ± 0.001 * | 22.4 ± 1.0 # |
FRAP | |||
initial | Bio | Bioac | |
(mmol EAA/g) | (mmol EAA/g) | (%) | |
F | 17.65 ± 0.51 * | 9.05 ± 1.20 * | 51.3 ± 6.8 |
FD | 31.47 ± 0.52 * | 18.73 ± 0.63 * | 59.5 ± 2.0 |
ORAC | |||
initial | Bio | Bioac | |
(mmol E Trolox/g) | (mmol E Trolox/g) | (%) | |
F | 104.95 ± 0.80 * | 44.82 ± 5.71 * | 42.7 ± 5.4 |
FD | 304.09 ± 17.81 * | 138.69 ± 40.44 * | 45.6 ± 13.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francisco, J.; Horta, A.; Pedrosa, R.; Afonso, C.; Cardoso, C.; Bandarra, N.M.; Gil, M.M. Bioaccessibility of Antioxidants and Fatty Acids from Fucus Spiralis. Foods 2020, 9, 440. https://doi.org/10.3390/foods9040440
Francisco J, Horta A, Pedrosa R, Afonso C, Cardoso C, Bandarra NM, Gil MM. Bioaccessibility of Antioxidants and Fatty Acids from Fucus Spiralis. Foods. 2020; 9(4):440. https://doi.org/10.3390/foods9040440
Chicago/Turabian StyleFrancisco, João, André Horta, Rui Pedrosa, Cláudia Afonso, Carlos Cardoso, Narcisa M. Bandarra, and Maria M. Gil. 2020. "Bioaccessibility of Antioxidants and Fatty Acids from Fucus Spiralis" Foods 9, no. 4: 440. https://doi.org/10.3390/foods9040440
APA StyleFrancisco, J., Horta, A., Pedrosa, R., Afonso, C., Cardoso, C., Bandarra, N. M., & Gil, M. M. (2020). Bioaccessibility of Antioxidants and Fatty Acids from Fucus Spiralis. Foods, 9(4), 440. https://doi.org/10.3390/foods9040440