Influence of Electrostatic Field on the Quality Attributes and Volatile Flavor Compounds of Dry-Cured Beef during Chill Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design and Sampling
2.3. HVEF Treatment
2.4. Methods
2.4.1. pH
2.4.2. Moisture Content
2.4.3. Meat Color
2.4.4. Volatile Compounds Analysis
2.5. Statistical Analysis
3. Results and Discussions
3.1. pH
3.2. Moisture Content
3.3. Meat Color
3.4. Volatile Compounds
3.5. Industrial Relevance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wójciak, K.M.; Stasiak, D.M.; Ferysiuk, K.; Solska, E. The influence of sonication on the oxidative stability and nutritional value of organic dry-fermented beef. Meat Sci. 2019, 148, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Albarracín, W.; Sánchez, I.C.; Grau, R.; Barat, J.M. Salt in food processing; usage and reduction: A review. Int. J. Food Sci. Technol. 2011, 46, 1329–1336. [Google Scholar] [CrossRef]
- De Prados, M.; Garcia-Perez, J.V.; Benedito, J. Ultrasonic characterization and online monitoring of pork meat dry salting process. Food Control 2016, 60, 646–655. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Carballo, J. Influence of anatomical retail cut on physicochemical and sensory characteristics of foal “Cecina”. Int. J. Food Prop. 2016, 19, 802–813. [Google Scholar] [CrossRef]
- Marino, R.; della Malva, A.; Gliatta, G.; Muscio, A.; Sevi, A. Quality of donkey bresaola. Ital. J. Anim. Sci. 2009, 8, 715–717. [Google Scholar] [CrossRef]
- Akköse, A.; Aktaş, N. Curing and diffusion coefficient study in pastırma, a Turkish traditional meat product. Meat Sci. 2014, 96, 311–314. [Google Scholar] [CrossRef]
- Duran, G.; Condorí, M.; Altobelli, F. Simulation of a passive solar dryer to charqui production using temperature and pressure networks. Sol. Energy 2015, 119, 310–318. [Google Scholar] [CrossRef]
- Aykın-Dinçer, E.; Erbaş, M. Effect of packaging method and storage temperature on quality properties of cold-dried beef slices. LWT Food Sci. Technol. 2020. in Press. [Google Scholar]
- Chaijan, M. Physicochemical changes of tilapia (Oreochromis niloticus) muscle during salting. Food Chem. 2011, 129, 1201–1210. [Google Scholar] [CrossRef]
- Rahbari, M.; Hamdami, N.; Mirzaei, H.; Jafari, S.M.; Kashaninejad, M.; Khomeiri, M. Effects of high-voltage electric field thawing on the characteristics of chicken breast protein. J. Food Eng. 2018, 216, 98–106. [Google Scholar] [CrossRef]
- Jia, G.; Sha, K.; Meng, J.; Liu, H. Effect of high-voltage electrostatic field treatment on thawing characteristics and post-thawing quality of lightly salted, frozen pork tenderloin. LWT Food Sci. Technol. 2019, 99, 268–275. [Google Scholar] [CrossRef]
- Amiri, A.; Mousakhani-Ganjeh, A.; Shafiekhani, S.; Mandal, R.; Singh, A.P.; Kenari, R.E. Effect of high-voltage electrostatic field thawing on the functional and physicochemical properties of myofibrillar proteins. Innov. Food Sci. Emerg. Technol. 2019, 56, 102191. [Google Scholar] [CrossRef]
- He, X.; Liu, R.; Nirasawa, S.; Zheng, D.; Liu, H. Effect of high-voltage electrostatic field treatment on thawing characteristics and post-thawing quality of frozen pork tenderloin meat. J. Food Eng. 2013, 115, 245–250. [Google Scholar] [CrossRef]
- Hsieh, C.W.; Ko, W.C. Effect of high-voltage electrostatic field on quality of carrot juice during refrigeration. LWT Food Sci. Technol. 2008, 41, 1752–1757. [Google Scholar] [CrossRef]
- Singh, A.; Orsat, V.; Raghavan, V. A comprehensive review on electrohydrodynamic drying and high-voltage electric field in the context of food and bioprocessing. Dry Technol. 2012, 30, 1812–1820. [Google Scholar] [CrossRef]
- Mousakhani-Ganjeh, A.; Hamdami, N.; Soltanizadeh, N. Effect of high-voltage electrostatic field thawing on the lipid oxidation of frozen tuna fish (Thunnus albacares). Innov. Food Sci. Emerg. Technol. 2016, 36, 42–47. [Google Scholar] [CrossRef]
- Jia, G.; Liu, H.; Nirasawa, S.; Liu, H. Effects of high-voltage electrostatic field treatment on the thawing rate and post-thawing quality of frozen rabbit meat. Innov. Food Sci. Emerg. Technol. 2017, 41, 348–356. [Google Scholar] [CrossRef]
- Ko, W.C.; Shi, H.Z.; Chang, C.K.; Huang, Y.H.; Chen, Y.A.; Hsieh, C.W. Effect of adjustable parallel high-voltage on biochemical indicators and actomyosin Ca2+-ATPase from tilapia (Orechromis niloticus). LWT Food Sci. Technol. 2016, 69, 417–423. [Google Scholar] [CrossRef]
- Hsieh, C.W.; Lai, C.H.; Lee, C.H.; Ko, W.C. Effects of high-voltage electrostatic fields on the quality of tilapia meat during refrigeration. J. Food Sci. 2011, 76, M312–M317. [Google Scholar] [CrossRef]
- Ko, W.C.; Yang, S.Y.; Chang, C.K.; Hsieh, C.W. Effects of adjustable parallel high-voltage electrostatic field on the freshness of tilapia (Orechromis niloticus) during refrigeration. LWT Food Sci. Technol. 2016, 66, 151–157. [Google Scholar] [CrossRef]
- Jia, G.; He, X.; Nirasawa, S.; Tatsumi, E.; Liu, H.; Liu, H. Effects of high-voltage electrostatic field on the freezing behavior and quality of pork tenderloin. J. Food Eng. 2017, 204, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Liu, J.; Wang, X.; Wang, R.; Ren, F.; Zhang, Q.; Shan, Y.; Ding, S. Characterization of Volatile Component Changes in Jujube Fruits during Cold Storage by Using Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules 2019, 24, 3904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.Y.; Shao, J.H.; Liu, D.Y.; Xu, X.L.; Zhou, G.H. The distribution of water in pork meat during wet-curing as studied by low-field NMR. Food Sci. Technol. Res. 2014, 20, 393–399. [Google Scholar] [CrossRef]
- North, M.K.; Dalle Zotte, A.; Hoffman, L.C. The effects of dietary quercetin supplementation on the meat quality and volatile profile of rabbit meat during chilled storage. Meat Sci. 2019, 158, 107905. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Alvarez, O.; Gómez-Guillén, M.C. Effect of brine salting at different pHs on the functional properties of cod muscle proteins after subsequent dry salting. Food Chem. 2006, 94, 123–129. [Google Scholar] [CrossRef]
- Qian, S.; Li, X.; Wang, H.; Mehmood, W.; Zhong, M.; Zhang, C.; Blecker, C. Effects of low voltage electrostatic field thawing on the changes in physicochemical properties of myofibrillar proteins of bovine Longissimus dorsi muscle. J. Food Eng. 2019, 261, 140–149. [Google Scholar] [CrossRef]
- Mousakhani-Ganjeh, A.; Hamdami, N.; Soltanizadeh, N. Impact of high-voltage electric field thawing on the quality of frozen tuna fish (Thunnus albacares). J. Food Eng. 2015, 156, 39–44. [Google Scholar] [CrossRef]
- Mainar, M.S.; Leroy, F. Process-driven bacterial community dynamics are key to cured meat colour formation by coagulase-negative staphylococci via nitrate reductase or nitric oxide synthase activities. Int. J. Food Microbiol. 2015, 212, 60–66. [Google Scholar] [CrossRef]
- Gök, V.E.L.I.; Obuz, E.; Şahin, M.E.; Serteser, A. The effects of some natural antioxidants on the color, chemical and microbiological properties of sucuk (Turkish dry-fermented sausage) during ripening and storage periods. J. Food Process Pres. 2011, 35, 677–690. [Google Scholar] [CrossRef]
- Bozkurt, H.; Bayram, M. Colour and textural attributes of sucuk during ripening. Meat Sci. 2006, 73, 344–350. [Google Scholar] [CrossRef]
- Karamucki, T.; Jakubowska, M.; Rybarczyk, A.; Gardzielewska, J. The influence of myoglobin on the colour of minced pork loin. Meat Sci. 2013, 94, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Saputro, E.; Bintoro, V.P.; Pramono, Y.B. Color, pigment and residual nitrite of dendeng sapi naturally cured at various level of celery leaves and incubation temperatures. J. Indones. Trop. Anim. Agric. 2016, 41, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Yim, D.G.; Seo, J.K.; Yum, H.W.; Zahid, M.A.; Park, J.Y.; Parvin, R.; Go, J.; Jin, S.K.; Koo, O.K.; Yang, H.S. Effects of Caesalpinia sappan L. extract on the color stability, antioxidant and antimicrobial activity in cooked pork sausages during cold storage. LWT Food Sci. Technol. 2019, 112, 108235. [Google Scholar]
- Rodríguez-Maecker, R.; Vyhmeister, E.; Meisen, S.; Martinez, A.R.; Kuklya, A.; Telgheder, U. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry. Anal. Bioanal. Chem. 2017, 409, 6595–6603. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, B.; Liu, C.; Su, R.; Hou, Y.; Yao, D.; Zhao, L.; Su, L.; Jin, Y. Meat quality, fatty acids, volatile compounds, and antioxidant properties of lambs fed pasture versus mixed diet. Food Sci. Nutr. 2019, 7, 2796–2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, A.; Kamada, G.; Imanari, M.; Shiba, N.; Yonai, M.; Muramoto, T. Effect of aging on volatile compounds in cooked beef. Meat Sci. 2015, 107, 12–19. [Google Scholar] [CrossRef]
- Chen, K.; Yang, X.; Huang, Z.; Jia, S.; Zhang, Y.; Shi, J.; Hong, H.; Feng, L.; Luo, Y. Modification of gelatin hydrolysates from grass carp (Ctenopharyngodon idellus) scales by Maillard reaction: Antioxidant activity and volatile compounds. Food Chem. 2019, 295, 569–578. [Google Scholar] [CrossRef]
- Huang, T.; Ho, C. Flavors and flavor generation of meat products. In Handbook of Meat and Meat Processing, 2nd ed.; Hui, Y.H., Ed.; The Chemical Rubber Company Press: Boca Raton, FL, USA, 2012; pp. 107–137. [Google Scholar]
- Kerth, C.R.; Miller, R.K. Beef flavor: A review from chemistry to consumer. J. Sci. Food Agric. 2015, 95, 2783–2798. [Google Scholar] [CrossRef]
- Legako, J.F.; Dinh, T.T.N.; Miller, M.F.; Adhikari, K.; Brooks, J.C. Consumer palatability scores, sensory descriptive attributes, and volatile compounds of grilled beef steaks from three USDA Quality Grades. Meat Sci. 2016, 112, 77–85. [Google Scholar] [CrossRef]
- Martínez-Onandi, N.; Rivas-Cañedo, A.; Nuñez, M.; Picon, A. Effect of chemical composition and high pressure processing on the volatile fraction of Serrano dry-cured ham. Meat Sci. 2016, 111, 130–138. [Google Scholar] [CrossRef]
- Song, S.; Tang, Q.; Fan, L.; Xu, X.; Song, Z.; Hayat, K.; Feng, T.; Wang, Y. Identification of pork flavour precursors from enzyme-treated lard using Maillard model system assessed by GC–MS and partial least squares regression. Meat Sci. 2017, 124, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Sha, K.; Lang, Y.M.; Sun, B.Z.; Su, H.W.; Li, H.P.; Zhang, L.; Lei, Y.H.; Li, H.B.; Zhang, Y. Changes in Lipid Oxidation, Fatty Acid Profile and Volatile Compounds of Traditional Kazakh Dry-Cured Beef during Processing and Storage. J. Food Process Pres. 2017, 41, e13059. [Google Scholar] [CrossRef]
Item | Treatments (T) | Days (D) | SEM 1 | Significance | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 7 | 10 | 14 | T | D | T × D | |||
L * | CON | 33.15 a,b | 33.41 a | 33.47 a | 31.82 a,b | 31.41 b | 0.552 | NS | ** | NS |
HVEF | 33.07 a,b | 33.03 a,b | 33.83 a | 31.94 b | 32.47 a,b | |||||
a * | CON | 18.45 a | 15.89 b | 14.59 b,c | 13.84 c | 13.14 c | 0.402 | NS | *** | NS |
HVEF | 17.17 a | 15.88 a,b | 15.26 b | 13.6 c | 12.81 c | |||||
b * | CON | 9.28 a | 9.32 a | 8.53 a,b | 7.57 a,b | 7.31 b | 0.471 | NS | *** | NS |
HVEF | 9.55 a | 9.81 a | 9.69 a | 7.95 b | 8.01 b | |||||
C * | CON | 20.66 a | 18.44 b | 16.95 b,c | 15.81 c,d | 15.09 d | 0.511 | NS | *** | NS |
HVEF | 19.66 a | 18.69 a | 18.10 a | 15.79 b | 15.15 b | |||||
∆E | CON | - | 3.33 b | 4.97 a,A | 5.75 a | 6.47 a | 0.554 | *** | *** | NS |
HVEF | - | 2.11 c | 2.53 c,B | 4.23 a,b | 5.03 a |
Number | Compound | CAS # | Formula | Molecular Mass | Retention Index | Retention Time (s) | Drift Time (ms) |
---|---|---|---|---|---|---|---|
1 | Nonanal (Monomer) | C124196 | C9H18O | 142.2 | 1104.8 | 674.937 | 1.4764 |
2 | Nonanal (Dimer) | C124196 | C9H18O | 142.2 | 1104.4 | 674.07 | 1.9482 |
3 | Maltol | C118718 | C6H6O3 | 126.1 | 1101.6 | 668.002 | 1.2237 |
4 | Linalool | C78706 | C10H18O | 154.3 | 1085.3 | 631.593 | 1.2237 |
5 | Phenylacetaldehyde | C122781 | C8H8O | 120.2 | 1041 | 536.148 | 1.2517 |
6 | Eucalyptol (Monomer) | C470826 | C10H18O | 154.3 | 1033.1 | 520.193 | 1.293 |
7 | Eucalyptol (Dimer) | C470826 | C10H18O | 154.3 | 1033.1 | 520.193 | 1.7271 |
8 | Limonene | C138863 | C10H16 | 136.2 | 1027.5 | 508.891 | 1.2207 |
9 | Beta-Pinene | C127913 | C10H16 | 136.2 | 978.4 | 423.131 | 1.2207 |
10 | Alpha-Terpinene | C99865 | C10H16 | 136.2 | 1011 | 477.646 | 1.2192 |
11 | Myrcene | C123353 | C10H16 | 136.2 | 995.5 | 450.388 | 1.2178 |
12 | Octanal (Monomer) | C124130 | C8H16O | 128.2 | 1005.5 | 467.673 | 1.4038 |
13 | Octanal (Dimer) | C124130 | C8H16O | 128.2 | 1005.5 | 467.673 | 1.8275 |
14 | 1-Octene-3-ol | C3391864 | C8H16O | 128.2 | 986.2 | 435.098 | 1.1572 |
15 | 5-Methyl-furfural | C620020 | C6H6O2 | 110.1 | 968 | 407.841 | 1.1262 |
16 | Benzaldehyde (Monomer) | C100527 | C7H6O | 106.1 | 961.7 | 399.198 | 1.1513 |
17 | Benzaldehyde (Dimer) | C100527 | C7H6O | 106.1 | 961.3 | 398.534 | 1.4702 |
18 | Alpha-Fenchene | C471841 | C10H16 | 136.2 | 949.7 | 383.243 | 1.2178 |
19 | Alpha-Pinene | C80568 | C10H16 | 136.2 | 936.8 | 367.288 | 1.2207 |
20 | Methional | C3268493 | C4H8OS | 104.2 | 921 | 349.338 | 1.0834 |
21 | Heptanal (Monomer) | C111717 | C7H14O | 114.2 | 902.6 | 330.059 | 1.3314 |
22 | Heptanal (Dimer) | C111717 | C7H14O | 114.2 | 901.2 | 328.729 | 1.6976 |
23 | 2-Heptanone (Monomer) | C110430 | C7H14O | 114.2 | 892 | 319.736 | 1.2594 |
24 | 2-Heptanone (Dimer) | C110430 | C7H14O | 114.2 | 890.9 | 318.733 | 1.6345 |
25 | 1-Hexanol (Monomer) | C111273 | C6H14O | 102.2 | 870.4 | 300.009 | 1.3219 |
26 | 1-Hexanol (Dimer) | C111273 | C6H14O | 102.2 | 870 | 299.675 | 1.6382 |
27 | Ethyl 3-methylbutanoate (Monomer) | C108645 | C7H14O2 | 130.2 | 850.7 | 283.291 | 1.2519 |
28 | Ethyl 3-methylbutanoate (Dimer) | C108645 | C7H14O2 | 130.2 | 849.9 | 282.623 | 1.6582 |
29 | Ethyl 2-methylbutanoate | C7452791 | C7H14O2 | 130.2 | 846.6 | 279.948 | 1.2319 |
30 | Furfurol (Monomer) | C98011 | C5H4O2 | 96.1 | 827.6 | 264.902 | 1.0831 |
31 | Furfurol | C98011 | C5H4O2 | 96.1 | 828.1 | 265.236 | 1.3344 |
32 | 3-Methylpentanol | C589355 | C6H14O | 102.2 | 828.9 | 265.905 | 1.3069 |
33 | Hexanal (Monomer) | C66251 | C6H12O | 100.2 | 792.5 | 238.822 | 1.2544 |
34 | Hexanal (Dimer) | C66251 | C6H12O | 100.2 | 792.1 | 238.488 | 1.5644 |
35 | Ethyl 2-methylpropanoate | C97621 | C6H12O2 | 116.2 | 755.6 | 213 | 1.5669 |
36 | Acetoin | C513860 | C4H8O2 | 88.1 | 713.8 | 187.134 | 1.3336 |
37 | 3-Methylbutanal | C590863 | C5H10O | 86.1 | 653.9 | 160.055 | 1.4114 |
38 | Pentanal | C110623 | C5H10O | 86.1 | 736.6 | 200.673 | 1.4084 |
39 | 2-Pentanone (Monomer) | C107879 | C5H10O | 86.1 | 689.1 | 174.403 | 1.1237 |
40 | 2-Pentanone (Dimer) | C107879 | C5H10O | 86.1 | 689.1 | 174.403 | 1.3735 |
41 | 2-Methylbutanal | C96173 | C5H10O | 86.1 | 672.9 | 167.33 | 1.1616 |
42 | Isobutanol (Dimer) | C78831 | C4H10O | 74.1 | 629.2 | 151.77 | 1.3608 |
43 | Isobutanol (Monomer) | C78831 | C4H10O | 74.1 | 626.6 | 150.962 | 1.1713 |
44 | Ethyl Acetate (Dimer) | C141786 | C4H8O2 | 88.1 | 614.7 | 147.324 | 1.3385 |
45 | Ethyl Acetate (Monomer) | C141786 | C4H8O2 | 88.1 | 607.2 | 145.101 | 1.0984 |
46 | Butanal | C123728 | C4H8O | 72.1 | 596.9 | 142.07 | 1.2928 |
47 | 2-Butanone (Monomer) | C78933 | C4H8O | 72.1 | 584.3 | 138.433 | 1.0605 |
48 | 2-Butanone (Dimer) | C78933 | C4H8O | 72.1 | 584.3 | 138.433 | 1.2491 |
49 | 1-Propanol | C71238 | C3H8O | 60.1 | 557.7 | 130.754 | 1.114 |
50 | Acetone | C67641 | C3H6O | 58.1 | 482.3 | 108.93 | 1.1208 |
51 | Ethanol | C64175 | C2H6O | 46.1 | 453.7 | 100.644 | 1.0479 |
52 | 2-Methylbutanol | C137326 | C5H12O | 88.1 | 749.5 | 208.939 | 1.4811 |
53 | 3-Methyl butanoic acid (Monomer) | C503742 | C5H10O2 | 102.1 | 838.7 | 273.567 | 1.2168 |
54 | 3-Methyl butanoic acid (Dimer) | C503742 | C5H10O2 | 102.1 | 838.2 | 273.158 | 1.4899 |
55 | 2-Propanol | C67630 | C3H8O | 60.1 | 503 | 114.909 | 1.1753 |
56 | 2-Hexanol | C626937 | C6H14O | 102.2 | 812 | 253.093 | 1.2727 |
57 | Trimethyl pyrazine | C14667551 | C7H10N2 | 122.2 | 993 | 446.225 | 1.1757 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.-C.; Yu, H.; Xie, P.; Sun, B.-Z.; Wang, X.-Y.; Zhang, S.-S. Influence of Electrostatic Field on the Quality Attributes and Volatile Flavor Compounds of Dry-Cured Beef during Chill Storage. Foods 2020, 9, 478. https://doi.org/10.3390/foods9040478
Xu C-C, Yu H, Xie P, Sun B-Z, Wang X-Y, Zhang S-S. Influence of Electrostatic Field on the Quality Attributes and Volatile Flavor Compounds of Dry-Cured Beef during Chill Storage. Foods. 2020; 9(4):478. https://doi.org/10.3390/foods9040478
Chicago/Turabian StyleXu, Chen-Chen, Hui Yu, Peng Xie, Bao-Zhong Sun, Xiang-Yuan Wang, and Song-Shan Zhang. 2020. "Influence of Electrostatic Field on the Quality Attributes and Volatile Flavor Compounds of Dry-Cured Beef during Chill Storage" Foods 9, no. 4: 478. https://doi.org/10.3390/foods9040478
APA StyleXu, C. -C., Yu, H., Xie, P., Sun, B. -Z., Wang, X. -Y., & Zhang, S. -S. (2020). Influence of Electrostatic Field on the Quality Attributes and Volatile Flavor Compounds of Dry-Cured Beef during Chill Storage. Foods, 9(4), 478. https://doi.org/10.3390/foods9040478