Food Authentication: Identification and Quantitation of Different Tuber Species via Capillary Gel Electrophoresis and Real-Time PCR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Material
2.2. DNA Isolation
2.3. Preparation of Spiked Sample Material
2.3.1. DNA Mixtures
2.3.2. Matrix Mixtures of Fruiting Bodies
2.4. Real-Time PCR
Practical Determination of LoD
2.5. Isolation of DNA Fragments from Agarose Gels
2.6. RFLP and CGE
3. Results and Discussion
3.1. Real-Time PCR
3.1.1. Primer Specificity
3.1.2. Quantitation
3.2. RFLP and CGE
3.2.1. PCR-Amplification of the ITS Region, Evaluation via CGE
3.2.2. RFLP of the ITS Region, Evaluation via CGE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trappe, J.M.; Molina, R.; Luoma, D.L.; Cázares, E.; Pilz, D.; Smith, J.E.; Castellano, M.A.; Miller, S.L. Diversity, ecology, and conservation of truffle fungi in forests of the Pacific Northwest. 2009. Available online: https://www.fs.fed.us/pnw/pubs/pnw_gtr772.pdf (accessed on 21 March 2020).
- Læssøe, T.; Hansen, K. Truffle trouble: What happened to the Tuberales? Mycol. Res. 2007, 111, 1075–1099. [Google Scholar] [CrossRef] [PubMed]
- Harley, J.L.; Smith, S.E. Mycorrhizal symbiosis; Academic Press Inc.: Lodon, UK, 1983. [Google Scholar]
- Giovannetti, G.; Fontana, A. Mycorrhizal synthesis between Cistaceae and Tuberaceae. New Phytol. 1982, 92, 533–537. [Google Scholar] [CrossRef]
- Mello, A.; Fontana, A.; Meotto, F.; Comandini, O.; Bonfante, P. Molecular and morphological characterization of Tuber magnatum mycorrhizas in a long-term survey. Microbiol. Res. 2001, 155, 279–284. [Google Scholar] [CrossRef]
- Zambonelli, A.; Iotti, M.; Murat, C. True Truffle (Tuber Spp.) in the World: Soil Ecology, Systematics and Biochemistry; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Bougher, N.L.; Lebel, T. Sequestrate (truffle-like) fungi of Australia and New Zealand. Aust. Syst. Bot. 2001, 14, 439–484. [Google Scholar] [CrossRef]
- Ceruti, A.; Fontana, A.; Nosenzo, C. Le specie europee del genere Tuber: Una revisione storica; Museo Regionale di Scienze Naturali di Torino: Torino, Italy, 2003. [Google Scholar]
- Chevalier, G.; Frochot, H. Ecology and possibility of culture in Europe of the Burgundy truffle (Tuber uncinatum Chatin). Agric. Ecosyst. Environ. 1990, 28, 71–73. [Google Scholar] [CrossRef]
- Pegler, D. Useful fungi of the world: Morels and truffles. Mycologist 2003, 17, 174–175. [Google Scholar] [CrossRef]
- Marjanovic, Z.; Saljnikov, E.; Milenkovic, M.; Grebenc, T. Ecological features of Tuber magnatum Pico in the conditions of West Balkans–soil characterization. In Proceedings of the 3rd international congress on truffles, Spoleto, Italy, 25–28 November 2008. [Google Scholar]
- Lazzari, B.; Gianazza, E.; Viotti, A. Molecular characterization of some truffle species. In Biotechnology of Ectomycorrhizae; Plenum Press: New York, NY, USA, 1995; pp. 161–169. [Google Scholar]
- Hall, I.R.; Yun, W.; Amicucci, A. Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol. 2003, 21, 433–438. [Google Scholar] [CrossRef]
- Mello, A.; Murat, C.; Bonfante, P. Truffles: Much more than a prized and local fungal delicacy. FEMS Microbiol. Lett. 2006, 260, 1–8. [Google Scholar] [CrossRef]
- Favre, J.; Parguey Leduc, A.; Sejalon Delmas, N.; Dargent, R.; Kulifaj, M. The ascocarp of Tuber indicum (Chinese truffle) recently introduced in France: Preliminary study. C. r. hebd. séances Acad. sci. Serie 3 Sciences de la Vie (France) 1996, 319, 517–521. [Google Scholar]
- Bonito, G.; Trappe, J.M.; Donovan, S.; Vilgalys, R. The Asian black truffle Tuber indicum can form ectomycorrhizas with North American host plants and complete its life cycle in non-native soils. Fungal Ecol. 2011, 4, 83–93. [Google Scholar] [CrossRef]
- García-Montero, L.G.; Díaz, P.; Di Massimo, G.; García-Abril, A. A review of research on Chinese Tuber species. Mycol Prog. 2010, 9, 315–335. [Google Scholar] [CrossRef]
- Murat, C.; Zampieri, E.; Vizzini, A.; Bonfante, P. Is the Perigord black truffle threatened by an invasive species? We dreaded it and it has happened! New Phytol. 2008, 178, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Paolocci, F.; Rubini, A.; Riccioni, C.; Granetti, B.; Arcioni, S. Cloning and characterization of two repeated sequences in the symbiotic fungus Tuber melanosporum Vitt. FEMS Microbiol. Ecol. 2000, 34, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Séjalon-Delmas, N.; Roux, C.; Martins, M.; Kulifaj, M.; Bécard, G.; Dargent, R. Molecular tools for the identification of Tuber melanosporum in agroindustry. J. Agric. Food Chem. 2000, 48, 2608–2613. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Xu, J. Fungal DNA barcoding. Genome 2016, 59, 913–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Bolchacova, E.; Voigt, K.; Crous, P.W. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [Green Version]
- Haase, I.; Brüning, P.; Matissek, R.; Fischer, M. Real-time PCR assays for the quantitation of rDNA from apricot and other plant species in marzipan. J. Agric. Food Chem. 2013, 6, 3414–3418. [Google Scholar] [CrossRef]
- Johnson, S.M.; Carlson, E.L.; Pappagianis, D. Determination of ribosomal DNA copy number and comparison among strains of Coccidioides. Mycopathologia 2015, 179, 45–51. [Google Scholar] [CrossRef]
- López-Calleja, I.M.; de la Cruz, S.; Pegels, N.; González, I.; García, T.; Martín, R. High resolution TaqMan real-time PCR approach to detect hazelnut DNA encoding for ITS rDNA in foods. Food Chem. 2013, 141, 1872–1880. [Google Scholar] [CrossRef]
- Bertini, L.; Potenza, L.; Zambonelli, A.; Amicucci, A.; Stocchi, V. Restriction fragment length polymorphism species-specific patterns in the identification of white truffles. FEMS Microbiol. Lett. 1998, 164, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Gandeboeuf, D.; Dupre, C.; Chevalier, G.; Nicolas, P.; Roeckel-Drevet, P. Typing Tuber ectomycorrhizae by polymerase chain amplification of the internal transcribed spacer of rDNA and the sequence characterized amplified region markers. Can. J. Microbiol. 1997, 43, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Henrion, B.; Chevalier, G.; Martin, F. Typing truffle species by PCR amplification of the ribosomal DNA spacers. Mycol. Res. 1994, 98, 37–43. [Google Scholar] [CrossRef]
- Mabru, D.; Dupré, C.; Douet, J.; Leroy, P.; Ravel, C.; Ricard, J.; Medina, B.; Castroviejo, M.; Chevalier, G. Rapid molecular typing method for the reliable detection of Asiatic black truffle (Tuber indicum) in commercialized products: Fruiting bodies and mycorrhizal seedlings. Mycorrhiza. 2001, 11, 89–94. [Google Scholar] [CrossRef]
- Murat, C.; Vizzini, A.; Bonfante, P.; Mello, A. Morphological and molecular typing of the below-ground fungal community in a natural Tuber magnatum truffle-ground. FEMS Microbiol. Lett. 2005, 245, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Paolocci, F.; Rubini, A.; Granetti, B.; Arcioni, S. Typing Tuber melanosporum and Chinese black truffle species by molecular markers. FEMS Microbiol. Lett. 1997, 153, 255–260. [Google Scholar] [CrossRef]
- Paolocci, F.; Rubini, A.; Granetti, B.; Arcioni, S. Rapid molecular approach for a reliable identification of Tuber spp. ectomycorrhizae. FEMS Microbiol. Ecol. 1999, 28, 23–30. [Google Scholar] [CrossRef]
- Douet, J.; Castroviejo, M.; Mabru, D.; Chevalier, G.; Dupré, C.; Bergougnoux, F.; Ricard, J.; Médina, B. Rapid molecular typing of Tuber melanosporum, T. brumale and T. indicum from tree seedlings and canned truffles. Anal. Bioanal. Chem. 2004, 379, 668–673. [Google Scholar] [CrossRef]
- Gryndler, M.; Trilčová, J.; Hršelová, H.; Streiblová, E.; Gryndlerová, H.; Jansa, J. Tuber aestivum Vittad. mycelium quantified: Advantages and limitations of a qPCR approach. Mycorrhiza 2013, 23, 341–348. [Google Scholar] [CrossRef]
- Zampieri, E.; Rizzello, R.; Bonfante, P.; Mello, A. The detection of mating type genes of Tuber melanosporum in productive and non productive soils. Appl Soil Ecol. 2012, 57, 9–15. [Google Scholar] [CrossRef]
- Iotti, M.; Leonardi, M.; Lancellotti, E.; Salerni, E.; Oddis, M.; Leonardi, P.; Perini, C.; Pacioni, G.; Zambonelli, A. Spatio-temporal dynamic of Tuber magnatum mycelium in natural truffle grounds. PLoS ONE 2014, 9, e115921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salerni, E.; Iotti, M.; Leonardi, P.; Gardin, L.; D’Aguanno, M.; Perini, C.; Pacioni, P.; Zambonelli, A. Effects of soil tillage on Tuber magnatum development in natural truffières. Mycorrhiza 2014, 24, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Parladé, J.; De la Varga, H.; De Miguel, A.M.; Sáez, R.; Pera, J. Quantification of extraradical mycelium of Tuber melanosporum in soils from truffle orchards in northern Spain. Mycorrhiza 2013, 23, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Rizzello, R.; Zampieri, E.; Vizzini, A.; Autino, A.; Cresti, M.; Bonfante, P.; Mello, A. Authentication of prized white and black truffles in processed products using quantitative real-time PCR. Food Res. Int. 2012, 48, 792–797. [Google Scholar] [CrossRef]
- Holland, P.M.; Abramson, R.D.; Watson, R.; Gelfand, D.H. Detection of specific polymerase chain reaction product by utilizing the 5’–3’exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 1991, 88, 7276–7280. [Google Scholar] [CrossRef] [Green Version]
- Haunshi, S.; Pattanayak, A.; Bandyopadhaya, S.; Saxena, S.C.; Bujarbaruah, K.M. A simple and quick DNA extraction procedure for rapid diagnosis of sex of chicken and chicken embryos. J. Poult. Sci. 2008, 45, 75–81. [Google Scholar] [CrossRef]
- Bruüning, P.; Haase, I.; Matissek, R.; Fischer, M. Marzipan: Polymerase chain reaction-driven methods for authenticity control. J. Agric. Food Chem. 2011, 59, 11910–11917. [Google Scholar] [CrossRef] [PubMed]
- Debode, F.; Marien, A.; Janssen, É.; Bragard, C.; Berben, G. Influence of the amplicon length on real-time PCR results. Biotechnol., Agron., Soc. Environ. 2017, 21, 3–11. [Google Scholar]
- Cankar, K.; Štebih, D.; Dreo, T.; Žel, J.; Gruden, K. Critical points of DNA quantification by real-time PCR–effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnol. 2006, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Paolocci, F.; Rubini, A.; Riccioni, C.; Topini, F.; Arcioni, S. Tuber aestivum and Tuber uncinatum: Two morphotypes or two species? FEMS Microbiol. Lett. 2004, 235, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Paolocci, F.; Angelini, P.; Cristofari, E.; Granetti, B.; Arcioni, S. Identification of Tuber spp and corresponding ectomycorrhizae through molecular markers. J. Agric. Food Chem. 1995, 69, 511–517. [Google Scholar] [CrossRef]
- Bonito, G.M.; Gryganskyi, A.P.; Trappe, J.M.; Vilgalys, R. A global meta-analysis of Tuber ITS rDNA sequences: Species diversity, host associations and long-distance dispersal. Mol. Ecol. 2010, 19, 4994–5008. [Google Scholar] [CrossRef] [PubMed]
- Roux, C.; Séjalon-Delmas, N.; Martins, M.; Parguey-Leduc, A.; Dargent, R.; Bécard, G. Phylogenetic relationships between European and Chinese truffles based on parsimony and distance analysis of ITS sequences. FEMS Microbiol. Lett. 1999, 180, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Qiao, P.; Tian, W.; Liu, P.; Yu, F.; Chen, J.; Deng, X.; Wan, S.; Wang, R.; Wang, Y.; Guo, H. Phylogeography and population genetic analyses reveal the speciation of the Tuber indicum complex. Fungal Genet. Biol. 2018, 113, 14–23. [Google Scholar] [CrossRef] [PubMed]
Tuber Species | Geographical Origin | Fruiting Bodies Analyzed | |
---|---|---|---|
Numbers with Regard to the Origin | Total Number | ||
T. albidum Pico | Italy | 5 | 5 |
T. indicum | China | 5 | 5 |
T. himalayense | Dali, Yunnan, China | 20 | 20 |
T. brumale | Sarrion, Teruel, Spain | 2 | 2 |
T. melanosporum | Marche, Italy | 2 | |
France | 1 | ||
Australia | 2 | ||
Sarrion, Teruel, Spain | 8 | ||
Castello, Valencia, Spain | 6 | ||
unknown | 1 | 20 | |
T. magnatum | Romagna, Italy | 2 | |
Buzet, Croatia | 1 | ||
Turin, Piemonte, Italy | 1 | ||
Italy | 5 | ||
L’Aquila, Abruzzo, Italy | 1 | ||
Perugia, Umbria, Italy | 1 | ||
Rome, Lazio, Italy | 1 | ||
Naples, Campania, Italy | 1 | ||
Ancona, Marche, Italy | 1 | ||
Campobasso, Molise, Italy | 1 | 15 | |
T. aestivum | unknown | 19 | |
Romania | 15 | ||
Italy | 11 | ||
Hungary | 3 | ||
Toscana, Florence, Italy | 2 | 50 | |
Processed food containing truffle: | |||
T. melanosporum fruiting bodies canned in saltwater | 6 | ||
salt with dried T. aestivum | 1 | ||
T. brumale chopped and cooked in sherry port wine stock | 1 |
Primer/Probes | Name | Sequence 5′–3′ | Product Size (bp) |
---|---|---|---|
specific for T. melanosporum | Primer Mela-fw Mela-rv Probe | ACGACGGACTTTATAAACGGTTATAA AGCGGGTATCCCTCCCTGATT Cy5–GACCTGGATCAGTCACAAGTCTTGTCTGGT-BHQ2 | 141 |
specific for T. indicum/ T. himalayense | Primer Indi-fw ITS4LNG * Probe | AACAACAGACTTTGTAAAGGGTT TGATATGCTTAAGTTCAGCGGG HEX-GGACCTAGATCAGTCACAAGTCATGTCTGG-BHQ2 | 146 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schelm, S.; Siemt, M.; Pfeiffer, J.; Lang, C.; Tichy, H.-V.; Fischer, M. Food Authentication: Identification and Quantitation of Different Tuber Species via Capillary Gel Electrophoresis and Real-Time PCR. Foods 2020, 9, 501. https://doi.org/10.3390/foods9040501
Schelm S, Siemt M, Pfeiffer J, Lang C, Tichy H-V, Fischer M. Food Authentication: Identification and Quantitation of Different Tuber Species via Capillary Gel Electrophoresis and Real-Time PCR. Foods. 2020; 9(4):501. https://doi.org/10.3390/foods9040501
Chicago/Turabian StyleSchelm, Stefanie, Melanie Siemt, Janin Pfeiffer, Christina Lang, Hans-Volker Tichy, and Markus Fischer. 2020. "Food Authentication: Identification and Quantitation of Different Tuber Species via Capillary Gel Electrophoresis and Real-Time PCR" Foods 9, no. 4: 501. https://doi.org/10.3390/foods9040501
APA StyleSchelm, S., Siemt, M., Pfeiffer, J., Lang, C., Tichy, H.-V., & Fischer, M. (2020). Food Authentication: Identification and Quantitation of Different Tuber Species via Capillary Gel Electrophoresis and Real-Time PCR. Foods, 9(4), 501. https://doi.org/10.3390/foods9040501