Lyophilized Probiotic Lactic Acid Bacteria Viability in Potato Chips and Its Impact on Oil Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Potato Chips Preparation and Frying
2.3. Probiotic Lactic Acid Bacteria
2.4. Probiotic Lactic Acid Bacteria Production
2.5. Lyophilization and Survival Test
2.6. Probiotic Potato Chips Production and Storage Condition
2.7. Chemical Analysis
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Survival of Probiotic Lactic Acid Bacteria
3.2. Chemical Evaluation of the Stored Potato Chips
3.3. Sensory Evaluation of the Stored Potato Chips
4. Conclusions
Funding
Conflicts of Interest
References
- Yodkraisri, W.; Bhat, R. Quality evaluation of deep fried chips produced from lotus rhizome. Int. Food Res. J. 2012, 19, 1423–1427. [Google Scholar]
- Archana, G.; Babu, P.A.; Sudharsan, K.; Sabina, K.; Raja, R.P.; Sivarajan, M. Evaluation of fat uptake of polysaccharide coatings on deep-fat fried potato chips by confocal laser scanning microscopy. Int. J. Food Prop. 2016, 19, 1583–1592. [Google Scholar] [CrossRef]
- Miller, D.L.; Castellanos, V.H.; Shide, D.J.; Peters, J.C.; Rolls, B.J. Effect of fat-free potato chips with and without nutrition labels on fat and energy intakes. Am. J. Clin. Nutr. 1998, 68, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Allam, S.S.; El-Sayed, F.E. Fortification of fried potato chips with antioxidant vitamins to enhance their nutritional value and storage ability. Gras. Aceit. 2004, 55, 434–443. [Google Scholar]
- Pedrischi, F.; Mery, D.; Marique, T. Quality Evaluation and Control of Potato Chips and French Fries. In Computer Vision Technology for Food Quality Evaluation; Sun, D., Ed.; Academic Press, Elsevier: Oxford, UK, 2008; pp. 545–566. [Google Scholar]
- Beals, K.A. Potatoes, nutrition and health. Am. J. Potato Res. 2019, 96, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Liska, D.; Cook, C.; Wang, D.; Szplka, J. Millard reaction products and potatoes: Have the benefits been clearly assessed? Food Sci. Nutr. 2015, 4, 234–249. [Google Scholar] [CrossRef]
- Joshi, A.; Rudra, S.G.; Sagar, V.R.; Raigond, P.; Dutt, S.; Singh, B. Development of low fat potato chips through microwave processing. J. Food Sci. Technol. 2016, 53, 3296–3303. [Google Scholar] [CrossRef] [Green Version]
- Abong, G.O.; Okoth, M.W.; Imungi, J.K.; Kabira, J.N. Effect of slice thickness and frying temperature on color, texture and sensory properties of crisps made from four Kanyan potato cultivars. Am. J. Food Technol. 2011, 6, 753–762. [Google Scholar] [CrossRef]
- Lin, X.; Xia, Y.; Wang, G.; Yang, Y.; Xiong, Z.; Lv, F. Lactic acid bacteria with antioxidant activities alleviating oxidized oil induced hepatic injury in mice. Front. Microbiol. 2018, 9, 2684. [Google Scholar] [CrossRef]
- Makhoul, H.; Ghaddar, T.; Toufeili, I. Identification of some rancidity measures at the end of the shelf life of sunflower oil. Eur. J. Lipid Sci. Technol. 2006, 108, 143–148. [Google Scholar] [CrossRef]
- Rababah, T.M.; Feng, H.; Yang, W.; Yucel, S. Fortification of potato chips with natural plant extracts to enhance their sensory properties and storage stability. J. Am. Oil Chem. Soc. 2012, 89, 1419–1425. [Google Scholar] [CrossRef]
- FAO/WHO. Guidelines for the Evaluation of Probiotics in Food; FAO/WHO: London, ON, Canada, 2002; pp. 1–11. Available online: http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf (accessed on 16 April 2020).
- Giraffa, G. Lactobacillus helveticus: Importance in food and health. Front. Microbiol. 2014, 5, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerry, R.; Patra, J.K.; Gouda, S.; Park, K.; Shin, H.; Das, G. Benefaction of probiotics for human health. J. Food Drug Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenster, K.; Freeburg, B.; Hollard, C.; Wong, C.; Laursen, R.R.; Ouwehand, A.C. The production and delivery of probiotics: A review of a practical approach. Microorganisms 2019, 7, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera-Espinoza, Y.; Gallardo-Navarro, Y. Non-dairy probiotic products. Food Microbiol. 2010, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gawkowski, D.; Chikindas, M.L. Non-dairy probiotic beverages: The next step into human health. Benefic. Micro. 2013, 4, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.B.; Rivenson, A. Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo [4, 5-f-quinoline, a food mutagen. Cancer Res. 1993, 53, 3914–3918. [Google Scholar]
- Tang, W.; Xing, Z.; Hu, W.; Li, C.; Wang, J.; Wang, Y. Antioxidative effects in vivo and colonization of Lactobacillus plantarum MA2 in the murine intestinal tract. Appl. Microbiol. Biotechnol. 2016, 100, 7193–7202. [Google Scholar] [CrossRef]
- Kumar, R.S.; Kanmani, P.; Yuvaraj, N.; Paari, K.A.; Pattukumar, V.; Thirunavukkarasu, C. Lactobacillus plantarum AS1 isolated from south Indian fermented food Kallappam suppress 1,2-dimethyl hydrazine (DMH)-induced colorectal cancer in male Wister rats. Appl. Biochem. Biotechnol. 2012, 166, 620–631. [Google Scholar] [CrossRef]
- Namdari, A.; Nejati, F. Development of antioxidant activity during milk fermentation by wild isolates of Lactobacillus helveticus. Appl. Food Biotechnol. 2016, 3, 178–186. [Google Scholar]
- Elfahri, K.R.; Vasiljevic, T.; Yeager, T.; Donkor, O.N. Anti-colon cancer and antioxidant activities of bovine skim milk fermented by selected Lactobacillus helveticus strains. J. Dairy Sci. 2016, 99, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak, K.; Gustaw, W.; Kononiuk, A.; Sołowiej, B.; Waśko, A. Estimation of the antioxidant properties of milk protein preparations hydrolyzed by Lactobacillus helveticus T80, T105 and B73. Czech J. Food Sci. 2019, 37, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Van-Ba, H.; Park, W.; Yoo, J.; Kang, H.; Kim, J.; Kang, S.; Kim, B.; Oh, M.; Ham, J. Quality characteristics of functional fermented sausages added with encapsulated probiotic Bifidobacterium longum KACC 91563. Korean J. Food Sci. Anim. Resour. 2018, 38, 981–994. [Google Scholar] [CrossRef] [PubMed]
- An, H.M.; Park, S.Y.; Lee, D.K.; Kim, J.R.; Cha, M.K.; Lee, S.W.; Lim, H.T.; Kim, K.J.; Ha, N.J. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis. 2011, 10, 116. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Yu, Q.; Fu, N.; Liu, X.; Lu, F. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J. Gastroenterol. 2010, 16, 3394–3401. [Google Scholar] [CrossRef]
- Chen, J.J.; Wang, R.; Li, X.F.; Wang, R.L. Bifidobacterium longum supplementation improved high-fat-fed-induced metabolic syndrome and promoted intestinal Reg I gene expression. Exp. Biol. Med. 2011, 236, 823–831. [Google Scholar] [CrossRef]
- Arigoni, F.; Darimont-Nicolau, C.; Mace, C. Lactobacillus helveticus CNCM I-4095 and Weight Control. U.S. Patent 8,454,949, 4 June 2013. [Google Scholar]
- Guergoletto, K.B. Dried Probiotics for Use in Functional Food Applications. In Food Industrial Processes—Methods and Equipment; Valdez, B., Ed.; InTech Open: London, UK, 2012; pp. 227–251. [Google Scholar]
- Oyinloye, T.M.; Yoon, W.B. Effect of freeze-drying on quality and grinding process of food produce: A review. Processes 2020, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Saez-Lara, M.; Gomez-Liorente, C.; Plaza-Diaz, J.; Gil, A. The role of probiotic lactic acid bacteria and Bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: A systematic review of randomized human clinical trials. Biomed. Res. Int. 2015, 2015, 505878. [Google Scholar] [CrossRef]
- Klingberg, T.D.; Budde, B.B. The survival and persistence in the human gastrointestinal tract of five potential probiotic Lactobacilli consumed as freeze-dried cultures or as probiotic sausage. Int. J. Food Microbiol. 2006, 109, 157–159. [Google Scholar] [CrossRef]
- Chen, M.; Mustapha, A. Survival of freeze-dried microcapsules of α-galactosidase producing probiotics in a soy bar matrix. Food Microbiol. 2012, 30, 68–73. [Google Scholar] [CrossRef]
- Li, C.U.I.; Niu, L.Y.; Li, D.J.; Liu, C.Q.; Liu, Y.P.; Liu, C.J.; Song, J.F. Effects of different drying methods on quality, bacterial viability and storage stability of probiotic enriched apple snacks. J. Integr. Agric. 2018, 17, 247–255. [Google Scholar]
- Saarela, M.; Virkajarvi, I.; Alakomi, H.; Sigvart-Mattila, P.; Matto, J. Stability and functionality of freeze-dried Bifidobacterium cell during storage in juice milk. Int. Dairy J. 2006, 16, 1477–1482. [Google Scholar] [CrossRef]
- Terpou, A.; Mantzourani, I.; Galanis, A.; Kanellaki, M.; Bezirtzoglou, E.; Bekatorou, A.; Koutinas, A.A.; Plessas, S. Employment of L. paracasei K5 as a novel potentially probiotic freeze-dried starter for feta-type cheese production. Microorganisms 2019, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitrellou, D.; Kandylis, P.; Kourkoutas, Y. Assessment of freeze-dried immobilized Lactobacillus casei as probiotic adjunct culture in yogurts. Foods 2019, 8, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zyzelewicz, D.; Nebesny, E.; Motyl, I.; Libudzisz, Z. Effect of milk chocolate supplementation with lyophilized Lactobacillus cells on its attributes. Czech J. Food Sci. 2010, 5, 392–406. [Google Scholar] [CrossRef] [Green Version]
- Gadhiya, D.; Shah, N.P.; Patel, A.R.; Prajapati, J.B. Preparation and shelf life study of probiotic chocolate manufactured using Lactobacillus helveticus MTCC 5463. Acta Aliment. 2018, 47, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Yoon, S.; Tan, P.; Yang, S.; Kim, S.; Park, H. Probiotic properties of Lactobacillus plantarum LRCC5193, a plant-origin lactic acid bacterium isolated from Kimchi and its use in chocolates. J. Food Sci. 2018, 83, 2802–2811. [Google Scholar] [CrossRef]
- Petukhov, I.; Malcolmson, L.J.; Przybylski, R.; Armstrong, L. Storage stability of potato chips fried in genetically modified canola oils. J. Am. Oil Chem. Soc. 1999, 76, 889–896. [Google Scholar] [CrossRef]
- Trsic-Milanovic, N.; Kodzie, A.; Baras, J.; Dimitrijevic-Brankovic, S. The influence of a cryoprotective medium containing glycerol on the lyophilization of lactic acid bacteria. J. Serbian Chem. Soc. 2001, 66, 435–440. [Google Scholar] [CrossRef]
- Yeo, S.; Shin, H.S.; Lee, H.W.; Hong, D.; Park, H.; Holzapfel, W. Determination of optimized growth medium and cryoprotective additives to enhance the growth and survival of Lactobacillus salivarius. J. Microbiol. Biotechnol. 2018, 28, 718–731. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemicals (AOAC). Official Methods of Analysis; AOAC International: Washington, DC, USA, 2005. [Google Scholar]
- Ludwig, T.G.; Rochester, N.Y. The anthrone method for the determination of carbohydrates in foods and in oral rinsing. J. Dent. Res. 1956, 35, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalisylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Paquot, C. Standard Methods for the Analysis of Oils, Fats and Derivatives, 6th ed.; Pergamon Press, Elsevier: Oxford, UK, 1979. [Google Scholar]
- Atalay, A.; Inanc, A. Stability of sunflower oil enriched with olive phenolics in deep frying condition. J. Agric. Fac. Gaziosmanpasa Univ. 2018, 35, 152–163. [Google Scholar]
- Sharma, R.; Sonodiya, B.S.; Thakur, G.S.; Jaiswal, P.; Sharma, A.; Bisen, P.S. Standardization of lyophilization medium for Streptococcus thermophiles subjected to viability escalation on freeze drying. Microbiol. Res. 2014, 5, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Parra, K.; Ferrer, M.; Pinero, M.; Barboza, Y.; Medina, L.M. Use of Lactobacillus acidophilus and Lactobacillus casei for a potential probiotic legume-based fermented product using pigeon pea (Cajanus cajan). J. Food Protect. 2013, 76, 265–271. [Google Scholar] [CrossRef]
- Nebesny, E.; Zyzelewicz, D.; Libudzisz, Z. Dark chocolates supplemented with Lactobacillus strains. Eur. Food Res. Technol. 2007, 225, 33–42. [Google Scholar] [CrossRef]
- Simpson, P.J.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. J. Appl. Microbiol. 2005, 99, 493–501. [Google Scholar] [CrossRef]
- Mirkovic, M.; Seratlic, S.; Kilcawley, K.; Mannion, D.; Mirkovic, N.; Radulovic, Z. The sensory quality and volatile profile of dark chocolate enriched with encapsulated probiotic Lactobacillus plantarum bacteria. Sensors 2018, 18, 2570. [Google Scholar] [CrossRef] [Green Version]
- Halagarda, M.; Suwała, G. The quality of salted potato chips available on the polish market. Zeszyty Naukowe. Uniw. Ekonom. Krak. 2016, 8, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Taverniti, V.; Guglielmetti, S. Health-promoting properties of Lactobacillus helveticus. Front. Microbiol. 2012, 3, 392. [Google Scholar] [CrossRef] [Green Version]
- Miochowski, J.; Peczyska-Czoch, W.; Pietka-Ottlik, M.; Wojtowicz-Miochowska, H. Non-metal and enzymatic catalysts for hydroperoxide oxidation of organic compounds. Open Cat. J. 2011, 4, 54–82. [Google Scholar] [CrossRef]
- Lin, M.; Yen, C. Inhibition of lipid peroxidation by Lactobacillus acidophilus and Bifidobacterium longum. J. Agric. Food Chem. 1999, 47, 3661–3664. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Shang, N.; Li, P. In vitro and in vivo antioxidant activity of Bifidobacterium animalis D1 isolated from centenarians. Curr. Microbiol. 2011, 62, 1077–1103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, N.; Feng, Y.; Su, S.; Li, T.; Liang, B. A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV–Vis spectrometry. Food Chem. 2015, 185, 326–332. [Google Scholar] [CrossRef]
Component | Mean (%) ± SD |
---|---|
Moisture | 73.83 ± 0.83 |
Protein | 5.75 ± 0.02 |
Fat | 1.24 ± 0.06 |
Total carbohydrate | 13.88 ± 0.15 |
Reducing sugar | 0.27 ± 0.02 |
Crude fiber | 2.70 ± 0.02 |
Ash | 2.85 ± 0.87 |
Lactic Acid Bacteria | Cryo-Protective Medium * | Cell Viability (Log CFU/g) | Viability Loss (%) | |
---|---|---|---|---|
Before Lyophilization | After Lyophilization | |||
B. longum | SM | 9.22 ± 0.016 | 8.96 ± 0.033 | 44.68 c |
GG | 9.21 ± 0.014 | 9.11 ± 0.047 | 20.97 a | |
L. helveticus | SM | 9.02 ± 0.029 | 8.82 ± 0.060 | 36.66 b |
GG | 9.01 ± 0.020 | 7.91 ± 0.007 | 92.28 d |
Potato Chips Containing LAB Samples | Time (Month) | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | |
Cell Viability (Log CFU/g) | |||||
B. longum in SM a | * 10.20 bA ± 0.03 | 10.15 aB ± 0.00 | 9.55 aC ± 0.07 | 7.81 aD ± 0.02 | 6.50 aE ± 0.04 |
B. longum in GG | 10.14 bA ± 0.04 | 9.22 bB ± 0.03 | 7.65 bC ± 0.01 | 0.00 cD ± 0.00 | 0.00 cD ± 0.00 |
L. helveticus in SM b | 10.63 aA ± 0.05 | 7.11 cB ± 0.02 | 4.28 cC ± 0.00 | 4.28 bD ± 0.02 | 4.06 bE ± 0.08 |
L. helveticus in GG | 9.90 cA ± 0.07 | 4.57 dB ± 0.03 | 0.00 dC ± 0.00 | 0.00 dC ± 0.00 | 0.00 cC ± 0.00 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, H. Lyophilized Probiotic Lactic Acid Bacteria Viability in Potato Chips and Its Impact on Oil Oxidation. Foods 2020, 9, 586. https://doi.org/10.3390/foods9050586
Mostafa H. Lyophilized Probiotic Lactic Acid Bacteria Viability in Potato Chips and Its Impact on Oil Oxidation. Foods. 2020; 9(5):586. https://doi.org/10.3390/foods9050586
Chicago/Turabian StyleMostafa, Heba. 2020. "Lyophilized Probiotic Lactic Acid Bacteria Viability in Potato Chips and Its Impact on Oil Oxidation" Foods 9, no. 5: 586. https://doi.org/10.3390/foods9050586
APA StyleMostafa, H. (2020). Lyophilized Probiotic Lactic Acid Bacteria Viability in Potato Chips and Its Impact on Oil Oxidation. Foods, 9(5), 586. https://doi.org/10.3390/foods9050586