Effect of Egg White Protein and Soy Protein Isolate Addition on Nutritional Properties and In-Vitro Digestibility of Gluten-Free Pasta Based on Banana Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pasta Preparation
2.3. Extraction of Sample for Total Phenolic and Antioxidant Capacity
2.4. Total Phenolic Content
2.5. Ferric Reducing/Antioxidant Power (FRAP)
2.6. ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) Radical Scavenging Capacity
2.7. Starch Digestibility
2.8. Protein Content for In-Vitro Protein Digestibility Determination
2.9. In-Vitro Protein Digestibility
2.10. Amino Acid Profiles, Amino Acid Score (AAS) and Protein Digestibility-Corrected Amino Acid Score (PDCAAS)
2.11. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content (TPC)
3.2. Antioxidant Capacities
3.3. Starch Digestibility
3.4. Protein Digestibility
3.5. Amino Acid Profiles and Protein Digestibility Corrected Amino Acid Scores (PDCAAS)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marti, A.; Pagani, M.A. What can play the role of gluten in gluten free pasta? Trends Food Sci. Technol. 2013, 31, 63–71. [Google Scholar] [CrossRef]
- Duta, D.E.; Culetu, A.; Sozer, N. Effect of dry fractionated hybrid protein ingredients on the structural, textural, thermal and sensory properties of gluten-free oat and faba pasta. Int. J. Food Sci. Technol. 2019, 54, 3205–3215. [Google Scholar] [CrossRef]
- Rybicka, I.; Doba, K.; Bińczak, O. Improving the sensory and nutritional value of gluten-free bread. Int. J. Food Sci. Technol. 2019, 54, 2661–2667. [Google Scholar] [CrossRef]
- Aurore, G.; Parfait, B.; Fahrasmane, L. Bananas, raw materials for making processed food products. Trends Food Sci. Technol. 2009, 20, 78–91. [Google Scholar] [CrossRef]
- Campuzano, A.; Rosell, C.M.; Cornejo, F. Physicochemical and nutritional characteristics of banana flour during ripening. Food Chem. 2018, 256, 11–17. [Google Scholar] [CrossRef]
- Sarawong, C.; Rodríguez Gutiérrez, Z.C.; Berghofer, E.; Schoenlechner, R. Gluten-free pasta: Effect of green plantain flour addition and influence of starch modification on the functional properties and resistant starch content. Int. J. Food Sci. Technol. 2014, 49, 2650–2658. [Google Scholar] [CrossRef]
- Agama-Acevedo, E.; Islas-Hernandez, J.J.; Osorio-Diaz, P.; Rendon-Villalobos, R.; Utrilla-Coello, R.G.; Angulo, O.; Bello-Perez, L.A. Pasta with unripe banana flour: Physical, texture, and preference study. J. Food Sci. 2009, 74, S263–S267. [Google Scholar] [CrossRef]
- Choo, C.L.; Aziz, N.A.A. Effects of banana flour and β-glucan on the nutritional and sensory evaluation of noodles. Food Chem. 2010, 119, 34–40. [Google Scholar] [CrossRef]
- Zandonadi, R.P.; Botelho, R.B.; Gandolfi, L.; Ginani, J.S.; Montenegro, F.M.; Pratesi, R. Green banana pasta: An alternative for gluten-free diets. J. Acad. Nutr. Diet. 2012, 112, 1068–1072. [Google Scholar] [CrossRef]
- Flores-Silva, P.C.; Berrios, J.D.J.; Pan, J.; Osorio-Díaz, P.; Bello-Pérez, L.A. Gluten-free spaghetti made with chickpea, unripe plantain and maize flours: Functional and chemical properties and starch digestibility. Int. J. Food Sci. Technol. 2014, 49, 1985–1991. [Google Scholar] [CrossRef]
- Ramli, S.; Alkarkhi, A.F.M.; Yeoh Shin, Y.; Liong, M.-T.; Easa, A.M. Effect of banana pulp and peel flour on physicochemical properties and in vitro starch digestibility of yellow alkaline noodles. Int. J. Food Sci. Nutr. 2009, 60, 326–340. [Google Scholar] [CrossRef] [PubMed]
- Rachman, A.; Brennan, M.A.; Morton, J.; Brennan, C.S. Effect of cassava and banana flours blend on physico-chemical and glycemic characteristics of gluten-free pasta. J. Food Process. Preserv. 2019, 43, e14084. [Google Scholar] [CrossRef]
- Ovando-Martinez, M.; Sáyago-Ayerdi, S.; Agama-Acevedo, E.; Goñi, I.; Bello-Pérez, L.A. Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chem. 2009, 113, 121–126. [Google Scholar] [CrossRef]
- Morreale, F.; Boukid, F.; Carini, E.; Federici, E.; Vittadini, E.; Pellegrini, N. An overview of the Italian market for 2015: Cooking quality and nutritional value of gluten-free pasta. Int. J. Food Sci. Technol. 2019, 54, 780–786. [Google Scholar] [CrossRef]
- Gao, Y.; Janes, M.E.; Chaiya, B.; Brennan, M.A.; Brennan, C.S.; Prinyawiwatkul, W. Gluten-free bakery and pasta products: Prevalence and quality improvement. Int. J. Food Sci. Technol. 2018, 53, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Detchewa, P.; Thongngam, M.; Jane, J.L.; Naivikul, O. Preparation of gluten-free rice spaghetti with soy protein isolate using twin-screw extrusion. J. Food Sci. Technol. 2016, 53, 3485–3494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rachman, A.; Brennan, M.A.; Morton, J.; Brennan, C.S. Effect of egg white protein and soy protein fortification on physicochemical characteristics of banana pasta. J. Food Process. Preserv. 2019, 43, e14081. [Google Scholar] [CrossRef]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, M.A.; Brennan, C.S. How combinations of dietary fibres can affect physicochemical characteristics of pasta. LWT Food Sci. Technol. 2015, 61, 41–46. [Google Scholar] [CrossRef]
- Hossain, A.K.M.M.; Brennan, M.A.; Mason, S.L.; Guo, X.; Zeng, X.A.; Brennan, C.S. The effect of astaxanthin-rich microalgae “Haematococcus pluvialis” and wholemeal flours incorporation in improving the physical and functional properties of cookies. Foods 2017, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.Y.; Murtijaya, J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. Lwt Food Sci. Technol. 2007, 40, 1664–1669. [Google Scholar] [CrossRef]
- Khanizadeh, S.; Tsao, R.; Rekika, D.; Yang, R.; DeEll, J. Phenolic composition and antioxidant activity of selected apple genotypes. J. Food Agric. Environ. 2007, 5, 61–66. [Google Scholar]
- Le, H.M. Antioxidative Effects of Mango Wastes on Shelf Life of Pork Products; Lincoln University: Lincoln, New Zealand, 2012. [Google Scholar]
- Cai, L.; Brennan, C.S.; Yang, H.; Li, W.; Zhao, H. Evolution of oxidative and structural characteristics of proteins, especially lipid transfer protein 1 (LTP1) in beer during forced-ageing. Int. J. Food Sci. Technol. 2019, 54, 3166–3174. [Google Scholar] [CrossRef]
- Desai, A.S.; Brennan, M.A.; Brennan, C.S. Effect of fortification with fish (Pseudophycis bachus) powder on nutritional quality of durum wheat pasta. Foods 2018, 7, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heems, D.; Luck, G.; Fraudeau, C.; Vérette, E. Fully automated precolumn derivatization, on-line dialysis and high-performance liquid chromatographic analysis of amino acids in food, beverages and feedstuff. J. Chromatogr. A 1998, 798, 9–17. [Google Scholar] [CrossRef]
- WHO; FAO; UNU. Protein and Amino Acid Requirements in Human Nutrition (Report of a JOINT WHO/FAO/UNU Expert ConsultationTechnical Report Series) 935; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- FAO. Dietary protein quality evaluation in human nutrition: Report of an FAO expert consultation. FAO Food Nutr. Paper 2013, 1–5, 7–66. [Google Scholar]
- Beatriz Cervejeira, B.; Adelaide Del Pino, B. Bioactive compounds and antioxidant potential of soy products. Aliment. Nutr. 2011, 22, 539–546. [Google Scholar]
- Tang, C.-H.; Ma, C.-Y. Effect of high pressure treatment on aggregation and structural properties of soy protein isolate. LWT Food Sci. Technol. 2009, 42, 606–611. [Google Scholar] [CrossRef]
- Phongthai, S.; D’Amico, S.; Schoenlechner, R.; Homthawornchoo, W.; Rawdkuen, S. Effects of protein enrichment on the properties of rice flour based gluten-free pasta. LWT Food Sci. Technol. 2017, 80, 378–385. [Google Scholar] [CrossRef]
- Crockett, R.; Ie, P.; Vodovotz, Y. Effects of soy protein isolate and egg white solids on the physicochemical properties of gluten-free bread. Food Chem. 2011, 129, 84–91. [Google Scholar] [CrossRef]
- Ramya, N.S.; Prabhasankar, P.; Gowda, L.R.; Modi, V.K.; Bhaskar, N. Influence of freeze-dried shrimp meat in pasta processing qualities of indian t. durum wheat. J. Aquat. Food Prod. Technol. 2015, 24, 582–596. [Google Scholar] [CrossRef]
- Rodríguez De Marco, E.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT Food Sci. Technol. 2014, 58, 102–108. [Google Scholar] [CrossRef]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, M.A.; Brennan, C.S. Synergistic effect of different dietary fibres in pasta on in vitro starch digestion? Food Chem. 2015, 172, 245–250. [Google Scholar] [CrossRef]
- Brennan, C.S.; Kuri, V.; Tudorica, C.M. Inulin-enriched pasta: Effects on textural properties and starch degradation. Food Chem. 2004, 86, 189–193. [Google Scholar] [CrossRef]
- Bustos, M.C.; Perez, G.T.; León, A.E. Sensory and nutritional attributes of fibre-enriched pasta. LWT Food Sci. Technol. 2011, 44, 1429–1434. [Google Scholar] [CrossRef]
- Hager, A.-S.; Czerny, M.; Bez, J.; Zannini, E.; Arendt, E.K. Starch properties, in vitro digestibility and sensory evaluation of fresh egg pasta produced from oat, teff and wheat flour. J. Cereal Sci. 2013, 58, 156–163. [Google Scholar] [CrossRef]
- Lásztity, R.R. The Chemistry of Cereal Proteins, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Shen, Y.; Tebben, L.; Chen, G.; Li, Y. Effect of amino acids on Maillard reaction product formation and total antioxidant capacity in white pan bread. Int. J. Food Sci. Technol. 2019, 54, 1372–1380. [Google Scholar] [CrossRef]
- Layman, K.D.; Rodriguez, R.N. Egg protein as a source of power, strength, and energy. Nutr. Today 2009, 44, 43–48. [Google Scholar] [CrossRef]
- Corgneau, M.; Gaiani, C.; Petit, J.; Nikolova, Y.; Banon, S.; Ritié-Pertusa, L.; Le, D.T.L.; Scher, J. Nutritional quality evaluation of commercial protein supplements. Int. J. Food Sci. Technol. 2019, 54, 2586–2594. [Google Scholar] [CrossRef]
Formulation | TPC (mg GAE/100 g) | FRAP (mmol/100 g) | ABTS (mmol/100 g) |
---|---|---|---|
Raw materials | |||
Semolina flour | 73.80 ± 0.78 | 0.15 ± 0.02 | 0.67 ± 0.02 |
Banana flour | 116.45 ± 4.75 | 1.14 ± 0.00 | 1.46 ± 0.02 |
Soy protein isolate | 261.26 ± 2.50 | 1.06 ± 0.00 | 2.72 ± 0.01 |
Egg white protein | 70.19 ± 1.85 | 0.49 ± 0.00 | 0.11 ± 0.01 |
Pasta samples | |||
Semolina | 55.73 ± 0.73 e | 0.10 ± 0.00 g | 0.31 ± 0.02 g |
Banana | 63.37 ± 0.05 c | 1.05 ± 0.03 a | 1.04 ± 0.01 c |
BE5 | 54.66 ± 2.68 e | 1.02 ± 0.02 a | 1.01 ± 0.00 c |
BS5 | 63.11 ± 1.19 c | 0.89 ± 0.02 c | 0.95 ± 0.01 d |
BE10 | 58.47 ± 1.86 cde | 0.98 ± 0.00 ab | 0.90 ± 0.01 e |
BS10 | 79.78 ± 2.10 b | 0.98 ± 0.00 ab | 1.22 ± 0.01 b |
BE15 | 60.47 ± 1.77 cd | 0.94 ± 0.01 bc | 0.73 ± 0.01 f |
BS15 | 86.69 ± 2.86 a | 1.02 ± 0.01 a | 1.37 ± 0.02 a |
General linear model with semolina pasta excluded from the calculation | |||
Type of protein | |||
Egg white protein | 59.24 b | 0.99 a | 0.92 b |
Soy protein isolate | 73.24 a | 0.93 a | 1.15 a |
Level of protein | |||
0% | 58.89 d | 1.03 a | 1.04 b |
5% | 63.37 c | 0.96 b | 0.98 c |
10% | 69.13 b | 0.98 b | 1.06 a |
15% | 73.58 a | 0.98 b | 1.05 ab |
Formulation | Protein | Protein Digestibility | Protein Availability |
---|---|---|---|
% db | % | % | |
Semolina | 12.26 ± 0.09 c | 85.81 ± 0.10 a | 10.52 ± 0.09 c |
Banana | 3.88 ± 0.04 h | 69.04 ± 0.21 e | 2.68 ± 0.04 h |
BE5 | 7.49 ± 0.05 g | 72.72 ± 0.65 d | 5.44 ± 0.04 g |
BS5 | 8.06 ± 0.03 f | 72.54 ± 0.31 d | 5.85 ± 0.03 f |
BE10 | 10.83 ± 0.07 e | 74.77 ± 0.28 c | 8.10 ± 0.08 e |
BS10 | 11.39 ± 0.02 d | 76.88 ± 0.31 b | 8.76 ± 0.03 d |
BE15 | 14.36 ± 0.14 a | 77.67 ± 0.64 b | 11.16 ± 0.11 a |
BS15 | 13.87 ± 0.02 b | 77.67 ± 0.21 b | 10.77 ± 0.02 b |
General linear model with semolina pasta excluded from the calculation | |||
Type of protein | |||
Egg white protein | 9.14 b | 73.55 b | 6.85 b |
Soy protein isolate | 9.30 a | 74.03 a | 7.01 a |
Level of protein | |||
0% | 3.88 d | 69.04 d | 2.68 d |
5% | 7.77 c | 72.63 c | 5.64 c |
10% | 11.11 b | 75.83 b | 8.43 b |
15% | 14.12 a | 77.67 a | 10.96 a |
Formulation | Amino Acid | |||||||
---|---|---|---|---|---|---|---|---|
His | Ile | Leu | Lys | Cys + Met | Phe + Tyr | Thr | Val | |
Semolina | 57 ± 3 b | 24 ± 1 d | 53 ± 3 bc | 46 ± 2 d | 129 ± 7 a | 59 ± 3 c | 33 ± 2 cd | 29 ± 1 f |
Banana | 137 ± 7 a | 7 ± 1 e | 23 ± 1 d | 127 ± 7 a | 2 ± 0 d | 32 ± 1 e | 64 ± 3 a | 14 ± 1 de |
BE5 | 60 ± 9 b | 31 ± 4 bc | 58 ± 4 bc | 77 ± 12 b | 71 ± 4 b | 58 ± 4 c | 44 ± 6 b | 40 ± 3 b |
BE10 | 53 ± 11 b | 40 ± 1 a | 71 ± 0 a | 78 ± 8 b | 76 ± 8 b | 75 ± 1 ab | 47 ± 4 b | 51 ± 1 a |
BE15 | 40 ± 3 b | 42 ± 1 a | 74 ± 3 a | 73 ± 3 bc | 73 ± 4 b | 78 ± 1 a | 44 ± 2 b | 52 ± 1 a |
BS5 | 42 ± 13 b | 26 ± 3 cd | 51 ± 4 c | 59 ± 8 cd | 45 ± 6 c | 48 ± 2 d | 30 ± 5 d | 28 ± 3 e |
BS10 | 62 ± 3 b | 31 ± 1 b | 60 ± 1 b | 80 ± 2 b | 70 ± 3 bc | 60 ± 1 c | 41 ± 2 bc | 34 ± 2 cd |
BS15 | 60 ± 2 b | 36± 1 ab | 69 ± 1 a | 84 ± 1 b | 107 ± 2 a | 69 ± 1 b | 42 ± 2 bc | 38 ± 1 bc |
EAA* | 16 | 30 | 61 | 48 | 23 | 41 | 25 | 40 |
General linear model with semolina pasta excluded from the calculation | ||||||||
Type of protein | ||||||||
Egg white | 72 a | 30 a | 56 a | 89 a | 55 a | 61 a | 50 a | 39 a |
Soy protein | 75 a | 25 b | 51 b | 88 a | 56 a | 52 b | 44 b | 28 b |
Level of protein | ||||||||
0 | 137 a | 7 d | 23 d | 127 a | 2 d | 32 d | 64 a | 14 c |
5 | 50 b | 28 c | 54 c | 68 b | 58 c | 53 c | 37 c | 34 b |
10 | 57 b | 35 b | 66 b | 79 b | 73 b | 68 b | 44 b | 42 a |
15 | 50 b | 39 a | 71 a | 79 b | 90 a | 73 a | 43 bc | 45 a |
Formulation | Amino Acid | ||||||||
---|---|---|---|---|---|---|---|---|---|
His | Ile | Leu | Lys | Cys + Met | Phe + Tyr | Thr | Val | PDCAAS | |
Semolina | 3.57 ± 0.17 b | 0.80 ± 0.04 cd | 0.87 ± 0.04 bc | 0.96 ± 0.05 d | 5.62 ± 0.32 a | 1.44 ± 0.08 c | 1.31 ± 0.06 cd | 0.73 ± 0.03 de | 0.63 ± 0.03 c |
Banana | 8.57 ± 0.46 a | 0.22 ± 0.02 d | 0.38 ± 0.02 d | 2.65 ± 0.15 a | 0.10 ± 0.01 d | 0.78 ± 0.03 e | 2.57 ± 0.12 a | 0.35 ± 0.02 f | 0.07 ± 0.01 e |
BE5 | 3.72 ± 0.15 b | 1.03 ± 0.05 bc | 0.94 ± 0.07 bc | 1.61 ± 0.25 b | 3.09 ± 0.18 b | 1.41 ± 0.10 c | 1.75 ± 0.26 b | 1.01 ± 0.07 b | 0.69 ± 0.05 bc |
BE10 | 3.32 ± 0.70 b | 1.32 ± 0.02 a | 1.16 ± 0.01 a | 1.63 ± 0.17 b | 3.29 ± 0.32 b | 1.82 ± 0.02 ab | 1.87 ± 0.15 b | 1.27 ± 0.02 a | 0.87 ± 0.00 a |
BE15 | 2.49 ± 0.20 b | 1.39 ± 0.03 a | 1.21 ± 0.04 a | 1.52 ± 0.05 bc | 3.15 ± 0.17 b | 1.90 ± 0.07 a | 1.77 ± 0.08 b | 1.30 ± 0.03 a | 0.94 ± 0.03 a |
BS5 | 2.64 ± 0.80 b | 0.85 ± 0.11 c | 0.84 ± 0.07 c | 1.22 ± 0.17 cd | 1.94 ± 0.27 c | 1.17 ± 0.05 d | 1.20 ± 0.20 d | 0.70 ± 0.08 e | 0.51 ± 0.06 d |
BS10 | 3.86 ± 0.19 b | 1.04 ± 0.05 b | 0.99 ± 0.02 b | 1.67 ± 0.06 b | 3.05 ± 0.12 bc | 1.47 ± 0.03 c | 1.65 ± 0.06 bc | 0.84 ± 0.04 cd | 0.65 ± 0.03 bc |
BS15 | 3.72 ± 1.19 b | 1.20 ± 0.04 ab | 1.13 ± 0.01 a | 1.76 ± 0.03 b | 4.65 ± 0.94 a | 1.68 ± 0.01 b | 1.66 ± 0.06 bc | 0.95 ± 0.03 bc | 0.74 ± 0.02 b |
General linear model with semolina pasta excluded from the calculation | |||||||||
Type of protein | |||||||||
Egg white | 4.52 a | 0.99 a | 0.93 a | 1.85 a | 2.41 a | 1.48 a | 1.99 a | 0.98 a | 0.64 a |
Soy protein | 4.70 a | 0.83 b | 0.84 b | 1.82 a | 2.43 a | 1.27 b | 1.78 b | 0.71 b | 0.49 b |
Level of protein | |||||||||
0 | 8.57 a | 0.22 d | 0.38 d | 2.65 a | 0.10 d | 0.78 d | 2.57 a | 0.35 c | 0.07 d |
5 | 3.18 b | 0.94 c | 0.89 c | 1.42 b | 2.52 c | 1.29 c | 1.47 c | 0.85 b | 0.60 c |
10 | 3.59 b | 1.18 b | 1.08 b | 1.65 b | 3.17 b | 1.65 b | 1.76 b | 1.06 a | 0.76 b |
15 | 3.10 b | 1.29 a | 1.17 a | 1.64 b | 3.90 a | 1.79 a | 1.72 bc | 1.13 a | 0.84 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rachman, A.; A. Brennan, M.; Morton, J.; Brennan, C.S. Effect of Egg White Protein and Soy Protein Isolate Addition on Nutritional Properties and In-Vitro Digestibility of Gluten-Free Pasta Based on Banana Flour. Foods 2020, 9, 589. https://doi.org/10.3390/foods9050589
Rachman A, A. Brennan M, Morton J, Brennan CS. Effect of Egg White Protein and Soy Protein Isolate Addition on Nutritional Properties and In-Vitro Digestibility of Gluten-Free Pasta Based on Banana Flour. Foods. 2020; 9(5):589. https://doi.org/10.3390/foods9050589
Chicago/Turabian StyleRachman, Adetiya, Margaret A. Brennan, James Morton, and Charles S. Brennan. 2020. "Effect of Egg White Protein and Soy Protein Isolate Addition on Nutritional Properties and In-Vitro Digestibility of Gluten-Free Pasta Based on Banana Flour" Foods 9, no. 5: 589. https://doi.org/10.3390/foods9050589
APA StyleRachman, A., A. Brennan, M., Morton, J., & Brennan, C. S. (2020). Effect of Egg White Protein and Soy Protein Isolate Addition on Nutritional Properties and In-Vitro Digestibility of Gluten-Free Pasta Based on Banana Flour. Foods, 9(5), 589. https://doi.org/10.3390/foods9050589