1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) Sensory Thresholds in Riesling Wine
Abstract
:1. Introduction
- detection threshold (DT) implies the lowest level at which a stimulus can be detected, but not necessarily recognized;
- recognition threshold (RT) corresponds to the level when a stimulus can be recognized and identified; it is usually higher than DT [25].
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of TDN Stock Solutions
2.3. Panels for Sensory Sessions
2.4. Thresholds Determination Tests
2.4.1. Preparation of Wine Samples
2.4.2. Performance of Thresholds Determination Test
2.5. 3-AFC Tests
2.5.1. Preparation of Wine Samples
2.5.2. Performance of 3-AFC Tests
2.6. Processing of the Data
2.7. Analysis of TDN Content in Wine
3. Results and Discussion
3.1. Thresholds Determination Tests (DT, RT, and RejT)
3.2. 3-AFC Tests, Confirmation of the Recognition Threshold, and Influence of Wine Serving Temperature on the TDN Aroma Recognition
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Daniel, M.A.; Capone, D.L.; Sefton, M.A.; Elsey, G.M. Riesling acetal is a precursor to 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in wine. Aust. J. Grape Wine Res. 2009, 15, 93–96. [Google Scholar] [CrossRef]
- Knapp, H.; Straubinger, M.; Stingl, C.; Winterhalter, P. Analysis of Norisoprenoid Aroma Precursors. In Carotenoid-Derived Aroma Compounds; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2001; Volume 802, pp. 20–35. ISBN 0-8412-3729-8. [Google Scholar]
- Mendes-Pinto, M.M. Carotenoid breakdown products the—Norisoprenoids—In wine aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Kwasniewski, M.T.; Vanden Heuvel, J.E.; Pan, B.S.; Sacks, G.L. Timing of Cluster Light Environment Manipulation during Grape Development Affects C13 Norisoprenoid and Carotenoid Concentrations in Riesling. J. Agric. Food Chem. 2010, 58, 6841–6849. [Google Scholar] [CrossRef] [PubMed]
- Schüttler, A.; Guthier, C.; Stoll, M.; Darriet, P.; Rauhut, D. Impact of grape cluster defoliation on TDN potential in cool climate Riesling wines. BIO Web Conf. 2015, 5, 01006. [Google Scholar] [CrossRef] [Green Version]
- Linsenmeier, A.W.; Löhnertz, O. Changes in Norisoprenoid Levels with Long-term Nitrogen Fertilisation in Different Vintages of Vitis vinifera var. Riesling Wines. S. Afr. J. Enol. Vitic. 2007, 28, 17–24. [Google Scholar] [CrossRef]
- Bindon, K.A.; Dry, P.R.; Loveys, B.R. Influence of Plant Water Status on the Production of C13-Norisoprenoid Precursors in Vitis vinifera L. Cv. Cabernet Sauvignon Grape Berries. J. Agric. Food Chem. 2007, 55, 4493–4500. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Silva Ferreira, A.C.; Mendes Pinto, M.; Hogg, T.; Alves, F.; Guedes de Pinho, P. Carotenoid Compounds in Grapes and Their Relationship to Plant Water Status. J. Agric. Food Chem. 2003, 51, 5967–5971. [Google Scholar] [CrossRef] [PubMed]
- Sponholz, W.R.; Hühn, T. Factors influencing the aging of the Riesling wine. Clonal material and used yeast strain. Vitic. Enol. Sci. 1997, 52, 103–108. [Google Scholar]
- Gerdes, S.M.; Winterhalter, P.; Ebeler, S.E. Effect of Sunlight Exposure on Norisoprenoid Formation in White Riesling Grapes. In Carotenoid-Derived Aroma Compounds; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2001; Volume 802, pp. 262–272. ISBN 0-8412-3729-8. [Google Scholar]
- Marais, J.; van Wyk, C.J.; Rapp, A. Effect of Sunlight and Shade on N orisoprenoid Levels in Maturing Weisser Riesling and Chenin blanc Grapes and Weisser Riesling Wines. S. Afr. J. Enol. Vitic. 1992, 13, 23–32. [Google Scholar] [CrossRef]
- Fischer, U.; Ziegler, M.; Gök, R.; Bechtloff, P.; Wacker, M.; Schmarr, H.G.; Winterhalter, P. Petrolfehlnote in Rieslingweinen—Pflanzenphysiologische, chemische und sensorische Ansätze zur Minimierung; 2017. FEI-Jahrestagung. Institut für Weinbau und Oenologie, DLR Rheinpfalz, 2017. Available online: https://www.fei-bonn.de/veranstaltungen-termine/jahrestagungen/jahrestagung-2017 (accessed on 2 April 2020).
- Capone, D.; Sefton, M.; Pretorius, I.; Hoj, P. Flavour “scalping” by wine bottle closures—The “winemaking” continues post vineyard and winery. Aust. N. Z. Wine Ind. J. 2003, 18, 16–20. [Google Scholar]
- Scrimgeour, N. VINOLOK (VINOSEAL) Closure Evaluation Stage 1: Fundamental Performance Assessment. 2014. Available online: http://www.columbit.com.au/wp-content/uploads/2016/09/awri-otr-taint-scalp-testing-final-report.pdf (accessed on 2 April 2020).
- Skouroumounis, G.K.; Kwiatkowski, M.J.; Francis, I.L.; Oakey, H.; Capone, D.L.; Duncan, B.; Sefton, M.A.; Waters, E.J. The impact of closure type and storage conditions on the composition, colour and flavour properties of a Riesling and a wooded Chardonnay wine during five years’ storage. Aust. J. Grape Wine Res. 2005, 11, 369–377. [Google Scholar] [CrossRef]
- Tarasov, A.; Giuliani, N.; Dobrydnev, A.; Müller, N.; Volovenko, Y.; Rauhut, D.; Jung, R. Absorption of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) from wine by bottle closures. Eur. Food Res. Technol. 2019, 245, 2343–2351. [Google Scholar] [CrossRef]
- Marais, J.; van Wyk, C.J.; Rapp, A. Effect of Storage Time, Temperature and Region on the Levels of 1, l,6-Trimethyl-1,2-dihydronaphthalene and Other Volatiles, and on Quality of Weisser Riesling Wines. S. Afr. J. Enol. Vitic. 1992, 13, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Simpson, R.F. 1,1,6-Trimethyl-1,2-dihydronaphthalene: An important contributor to the bottle aged bouquet of wine. Chem. Ind. 1978, 1, 37. [Google Scholar]
- Black, C.; Leigh, F.; Prue, H.; Capone, D.; Anderson, S.; Day, M.; Holt, H.; Pearson, W.; Herderich, M.; Johnson, D. Aged Riesling and the development of TDN. Wine Vitic. J. 2012, 27, 20–26. [Google Scholar]
- Sacks, G.L.; Gates, M.J.; Ferry, F.X.; Lavin, E.H.; Kurtz, A.J.; Acree, T.E. Sensory Threshold of 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) and Concentrations in Young Riesling and Non-Riesling Wines. J. Agric. Food Chem. 2012, 60, 2998–3004. [Google Scholar] [CrossRef]
- Simpson, R.F.; Miller, G.C. Aroma composition of aged Riesling wine. Vitis 1983, 22, 51–63. [Google Scholar]
- Winterhalter, P. Die Rolle von Glykosidischen Vorstufen für das Aroma von Sekt und Wein und deren technologische Beeinflussung. 2015. Available online: https://www.fei-bonn.de/veranstaltungen-termine/jahrestagungen/jahrestagung-2015 (accessed on 2 April 2020).
- Ross, C.F.; Zwink, A.C.; Castro, L.; Harrison, R. Odour detection threshold and consumer rejection of 1,1,6-trimethyl-1,2-dihydronaphthalene in 1-year-old Riesling wines. Aust. J. Grape Wine Res. 2014, 20, 335–339. [Google Scholar] [CrossRef]
- Ziegler, M.; Gök, R.; Bechtloff, P.; Winterhalter, P.; Schmarr, H.G.; Fischer, U. Impact of matrix variables and expertise of panelists on sensory thresholds of 1,1,6-trimethyl-1,2-dihydronaphthalene known as petrol off-flavor compound in Riesling wines. Food Qual. Prefer. 2019, 78, 103735. [Google Scholar] [CrossRef]
- Delwiche, J. Psychological Considerations in Sensory Analysis. In The Sensory Evaluation of Dairy Products; Clark, S., Costello, M., Drake, M., Bodyfelt, F., Eds.; Springer: New York, NY, USA, 2009; pp. 7–15. ISBN 978-0-387-77408-4. [Google Scholar]
- Filho, T.L.; Minim, V.P.R.; dos Santos Navarro, R.D.C.; Della Lucia, S.M.; Minim, L.A. Methodology for determination of two new sensory thresholds: Compromised acceptance threshold and rejection threshold. Food Res. Int. 2015, 76, 561–566. [Google Scholar] [CrossRef]
- Dobrydnev, A.; Tarasov, A.; Müller, N.; Volovenko, Y.; Rauhut, D.; Jung, R. An optimized method for synthesis and purification of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN). MethodsX 2020, 7, 100768. [Google Scholar] [CrossRef] [PubMed]
- Busch-Stockfisch, M. Sensorik Praxishandbuch. In der Produktentwicklung und Qualitätssicherung; Behr’s Verlag: Hamburg, Germany, 2002; ISBN 978-3-86022-958-3. [Google Scholar]
- ISO. ISO 13301:2018 Sensory Analysis—Methodology—General Guidance for Measuring Odour, Flavour and Taste Detection Thresholds by a Three-Alternative Forced-Choice (3-AFC) Procedure; International Organization for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- ASTM International. ASTM E679-19, Standard Practice for Determination of Odor and Taste Thresholds By a Forced-Choice Ascending Concentration Series Method of Limits; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
References | Panel | Base Wine | Wine Temperature | Sensory Method | Sensory Thresholds, µg/L |
---|---|---|---|---|---|
[18] | n/a | Riesling | n/a | triangle tests | Flavor threshold: 20 |
[20] | Trained | Model wine; Chardonnay | n/a | 3-AFC tests | ODT: 2 |
[23] | Untrained consumers | Riesling, 1-year-old wine | 23 °C | 3-AFC tests | ODT: 20.6 (2010 vintage, NZ), 18.2 (2011 vintage, USA) CRejT1: 157 (2010 vintage, NZ), 82.4 (2011 vintage, USA) |
[24] | Trained consumers | Riesling, 1-year-old wine (2015 vintage) | 15 °C | 3-AFC tests | ODT, Trained panel: 3.1 CDT, Consumers: 14.7 CRejT1 1-year-old wine: 60 CRejT 1 8-year-old wine: 91 |
Sensory Sessions (Accepted Questionnaires) | Thresholds | Calculation Approaches | ||
---|---|---|---|---|
Geometric Mean | 50% Panelists | Median | ||
Session 1 | Detection (DT) | 4 µg/L | 4 µg/L | 5 µg/L |
high free SO2, | Recognition (RT) | 12 µg/L | 12 µg/L | 12 µg/L |
(n = 16) | Rejection (RejT) | 79 µg/L | 82 µg/L | 82 µg/L |
Session 2 | Detection (DT) | 3 µg/L | 4 µg/L | 4 µg/L |
low free SO2, | Recognition (RT) | 11 µg/L | 10 µg/L | 10 µg/L |
(n = 20) | Rejection (RejT) | 71 µg/L | 82 µg/L | 82 µg/L |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasov, A.; Giuliani, N.; Dobrydnev, A.; Schuessler, C.; Volovenko, Y.; Rauhut, D.; Jung, R. 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) Sensory Thresholds in Riesling Wine. Foods 2020, 9, 606. https://doi.org/10.3390/foods9050606
Tarasov A, Giuliani N, Dobrydnev A, Schuessler C, Volovenko Y, Rauhut D, Jung R. 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) Sensory Thresholds in Riesling Wine. Foods. 2020; 9(5):606. https://doi.org/10.3390/foods9050606
Chicago/Turabian StyleTarasov, Andrii, Nicoló Giuliani, Alexey Dobrydnev, Christoph Schuessler, Yulian Volovenko, Doris Rauhut, and Rainer Jung. 2020. "1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) Sensory Thresholds in Riesling Wine" Foods 9, no. 5: 606. https://doi.org/10.3390/foods9050606
APA StyleTarasov, A., Giuliani, N., Dobrydnev, A., Schuessler, C., Volovenko, Y., Rauhut, D., & Jung, R. (2020). 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) Sensory Thresholds in Riesling Wine. Foods, 9(5), 606. https://doi.org/10.3390/foods9050606