Validation of HPLC and Enzyme-Linked Immunosorbent Assay (ELISA) Techniques for Detection and Quantification of Aflatoxins in Different Food Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Sample Analysis for HPLC
2.3. ELISA Determination
2.4. Method Performance
2.5. Statistical Analysis
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghiasian, S.A.; Maghsood, A.H.; Neyestani, T.R.; Mirhendi, S.H. Occurrence of aflatoxin M1 in raw milk during the summer and winter seasons in Hamedan, Iran. Iran. J. Food Saf. 2007, 27, 188–198. [Google Scholar] [CrossRef]
- Mania, I.; Barone, C.; Pellerito, A.; Laganà, P.; Parisi, S. Trasparenza e valorizzazione delle produzioni alimentari. L’etichettatura e la tracciabilità di filiera come strumenti di tutela. Ind. Aliment. 2017, 56, 18–22. [Google Scholar]
- Sharma, R.K.; Parisi, S. Toxins and Contaminants in Indian Food Products; Springer International Publishing AG: Cham, Switzerland, 2016. [Google Scholar]
- Böhm, J.; Koinig, L.; Razzazi-Fazeli, E.; Blajet-Kosicka, A.; Twaruzek, M.; Grajewski, J.; Lang, C. Survey and risk assessment of the mycotoxins deoxynivalenol, zearalenone, fumonisins, ochratoxin A, and aflatoxins in commercial dry dog food. Mycotoxin Res. 2010, 26, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.M.; Gatta, S.D.; Suman, M.; Visconti, A. Development and in-house validation of a robust and sensitive solid-phase extraction liquid chromatography/tandem mass spectrometry method for the quantitative determination of aflatoxins B1, B2, G1, G2, ochratoxin A, deoxynivalenol, zearalenone, T-2 and HT-2 toxins in cereal-based foods. Rapid Comm. Mass Spectr. 2011, 25, 1869–1880. [Google Scholar]
- Soleimany, F.; Jinap, S.; Faridah, A.; Khatib, A. A UPLC–MS/MS for simultaneous determination of aflatoxins, ochratoxin A, zearalenone, DON, fumonisins, T-2 toxin and HT-2 toxin, in cereals. Food Control 2012, 25, 647–653. [Google Scholar] [CrossRef]
- Nida’ M, S.; Ahmad, R. Mycotoxins in food from Jordan: Preliminary survey. Food Control 2010, 21, 1099–1103. [Google Scholar]
- Gurbay, A.; Aydın, S.; Girgin, G.; Engin, A.B.; Şahin, G. Assessment of aflatoxin M1 levels in milk in Ankara, Turkey. Food Control 2006, 17, 1–4. [Google Scholar] [CrossRef]
- Ali, S.W.; Afzaal, S. Aflatoxins in Pakistani foods: A serious threat to food safety. J. Hyg. Eng. Des. 2014, 9, 20–25. [Google Scholar]
- Park, J.W.; Kim, E.K.; Kim, Y.B. Estimation of the daily exposure of Koreans to aflatoxin B1 through food consumption. Food Add. Contam. 2004, 21, 70–75. [Google Scholar] [CrossRef]
- Jiménez Medina, M.L.; Lafarga, T.; Garrido Frenich, A.; Romero-González, R. Natural Occurrence, Legislation, and Determination of Aflatoxins Using Chromatographic Methods in Food: A Review (from 2010 to 2019). Int. J. Food Saf. Nutr. Pub. Health 2019, 2, 69–77. [Google Scholar] [CrossRef]
- Kos, J.; Hajnal, E.; Jajic, I.; Jovanov, P. Comparison of ELISA, HPLC-FLD and HPLC-MS/MS methods for determination of aflatoxin M1 in natural contaminated milk samples. Acta Chim. Solv. 2016, 63, 747–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magan, N.; Olsen, M. (Eds.) Mycotoxins in Food: Detection and Control; Woodhead Publishing: Cambridge, UK, 2004. [Google Scholar]
- van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Anal. Bioanal. Chem. 2007, 389, 147–157. [CrossRef] [PubMed] [Green Version]
- Wu, F. Mycotoxin risk assessment for the purpose of setting international regulatory standards. Environ. Sci. Technol. 2004, 38, 4049–4055. [Google Scholar] [CrossRef] [Green Version]
- Park, D.L.; Troxell, T.C. US perspective on mycotoxin regulatory issues. In Mycotoxins and Food Safety; Jonathan, W.D., Ed.; Springer: Boston, MA, USA, 2002; pp. 277–285. [Google Scholar]
- Rodríguez-Carrasco, Y.; Mañes, J.; Berrada, H.; Juan, C. Development and validation of a LC-ESI-MS/MS method for the determination of Alternaria toxins alternariol, alternariol methyl-ether and tentoxin in tomato and tomato-based products. Toxins 2016, 8, 328. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Off. J. Eur. Union 2006, L364, 5–14.
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Nesheim, S.; Trucksess, M.W.; Page, S.W.; Greer, J.; Hurley, J.M.; Suggs, F.S.; Wilson, D.M. Molar absorptivities of aflatoxins B1, B2, G1, and G2 in acetonitrile, methanol, and toluene-acetonitrile (9+1) (Modification of AOAC Official Method 97122): Collaborative study. J. AOAC Int. 1999, 82, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, W. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Kos, J.; Janić Hajnal, E.; Jajić, I.; Bojana, S.; Pavle, J.; Jovanov, P. Aflatoxins in Maize. Harvested in the Republic of Serbia Over the Period 2012–2016. Food Addit. Contam. Part B Surveill. 2018, 11, 246–255. [Google Scholar] [CrossRef] [Green Version]
- MasŁowska, J.; Owczarek, A.; Kucharska, U. Determination of aflatoxins in food products by the ELISA method. Czech J. Food Sci. 2018, 19, 8–12. [Google Scholar]
- European Committee for Standardization, Implementing Decision (EU) 2020/667 of 6 May 2020 amending Decision 2012/688/EU as regards an update of relevant technical conditions applicable to the frequency bands 1 920-1 980 MHz and 2 110-2 170 MHz (notified under document C(2020) 2816). Off. J. Eur. Comm. 2002, L221, 8–36.
- Fallah, A.A.; Jafari, T.; Fallah, A.; Rahnama, M. Determination of aflatoxin M1 levels in Iranian white and cream cheese. Food Chem. Toxicol. 2009, 47, 1872–1875. [Google Scholar] [CrossRef]
- Center for Food Safety and Applied Nutrition. Guidance for Industry: Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed; Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration (FDA): Washington, DC, USA, 2000.
- European Commission for Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, L70, 12–34.
- European Committee for Standardization, Management Centre. Food Analysis—Horizontal Methods (2010) Technical Report CEN/TR 16059:2010, Food Analysis-Performance Criteria for Single Laboratory Validated Methods of Analysis for the Determination of Mycotoxins. Technical Committee CEN/TC 275: Brussels, Belgium, 2010. [Google Scholar]
- Juan, C.; Covarelli, L.; Beccari, G.; Colasante, V.; Mañes, J. Simultaneous analysis of twenty-six mycotoxins in durum wheat grain from Italy. Food Control 2016, 62, 322–329. [Google Scholar] [CrossRef]
- Romero-Gonzalez, R.; Martinez Vida, L.J.; Aguilera-Luiz, M.; Garrido Frenich, A. Application of conventional solid-phase extraction for multimycotoxin analysis in beers by ultrahigh-performance liquid chromatography tandem mass spectrometry. J. Agric. Food Chem. 2009, 57, 9385–9392. [Google Scholar] [CrossRef] [PubMed]
- Taniwaki, M.; Pitt, J.I.; Teixeira, A.; Iamanaka, B.T. The source of ochratoxin A in Brazilian coffee and its formation in relation to processing methods. Int. J. Food Microbiol. 2003, 82, 173–179. [Google Scholar] [CrossRef]
- Steyn Van der Merwe, K.; Fourie, L.; Scott, B.; Theron, J. A toxic metabolite produced by aspergillus ochraceus wilh. Nature 1965, 205, 1112. [Google Scholar] [CrossRef]
- Chun, H.; Kim, H.; Ok, H.; Hwang, J.; Chung, D. Determination of aflatoxin levels in nuts and their products consumed in South Korea. Food Chem. 2007, 102, 385–391. [Google Scholar] [CrossRef]
- Delmulle, B.; De Saeger, S.; Adams, A.; De Kimpe, N.; Van Peteghem, C. Development of a liquid chromatography/tandem mass spectrometry method for the simultaneous determination of 16 mycotoxins on cellulose filters and in fungal cultures. Rapid Commun. Mass Spectrom. 2006, 20, 771–776. [Google Scholar] [CrossRef]
- Shephard, G. Impact of mycotoxins on human health in developing countries. Food Addit. Contam. 2008, 25, 146–151. [Google Scholar] [CrossRef] [Green Version]
Item | Number of Samples | Analytical Parameter | Method Used |
---|---|---|---|
Wheat | 10 | Total aflatoxins | ELISA, HPLC |
Corn | 10 | Total aflatoxins | ELISA, HPLC |
Dried fig | 10 | Total aflatoxins | ELISA, HPLC |
Dried coffee beans | 10 | Total aflatoxins | ELISA, HPLC |
Food Sample | Technique | LOD µg/kg | LOQ µg/kg | CRM | Recovery (%) | RSD | ||||
---|---|---|---|---|---|---|---|---|---|---|
0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | 0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | |||||
Wheat | ELISA | 0.05 | 0.09 | 105.2 | 92.3 | 94.1 | 96.9 | 08.2 | 06.1 | 05.3 |
HPLC | 0.01 | 0.04 | 88.1 | 84.1 | 84.3 | 87.5 | 11.1 | 10.3 | 09.3 | |
Corn | ELISA | 0.10 | 0.40 | 104.1 | 95.2 | 98.9 | 93.1 | 9.3 | 6.4 | 7.3 |
HPLC | 0.05 | 0.09 | 87.5 | 80.1 | 82.6 | 80.8 | 10.1 | 9.1 | 11.1 | |
Dried fig | ELISA | 0.02 | 0.40 | 111.3 | 88.2 | 80.9 | 84.9 | 8.2 | 5.1 | 4.9 |
HPLC | 0.03 | 0.45 | 85.4 | 84.1 | 79.6 | 82.3 | 12.1 | 10.4 | 8.4 | |
Coffee beans | ELISA | 0.071 | 0.12 | 103.2 | 83.2 | 88.1 | 83.5 | 9.1 | 6.1 | 5.1 |
HPLC | 0.03 | 0.32 | 79.1 | 74.1 | 80.6 | 82.2 | 13.1 | 11.3 | 10.4 |
Toxins | Wheat | |||||||
LOD µg/kg | LOQ µg/kg | Recovery (%) | RSD | |||||
0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | 0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | |||
AFB1 | 0.05 | 0.12 | 90.1 | 91.6 | 94.3 | 7.6 | 7.7 | 4.3 |
AFB2 | 0.04 | 0.09 | 88.5 | 89.5 | 91.4 | 6.4 | 5.4 | 3.6 |
AFG1 | 0.06 | 0.15 | 92.4 | 94.6 | 96.1 | 5.3 | 6.6 | 7.9 |
AFG2 | 0.07 | 0.13 | 89.5 | 90.5 | 92.1 | 5.6 | 5.4 | 8.5 |
Corn | ||||||||
LOD µg/kg | LOQ µg/kg | Recovery (%) | RSD | |||||
0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | 0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | |||
AFB1 | 0.21 | 0.51 | 76.2 | 77.2 | 87.5 | 6.5 | 7.5 | 3.5 |
AFB2 | 0.09 | 0.12 | 84.3 | 87.9 | 88.7 | 4.4 | 3.5 | 6.6 |
AFG1 | 0.58 | 0.91 | 93.1 | 88.9 | 91.4 | 5.6 | 8.5 | 7.8 |
AFG2 | 0.65 | 0.98 | 83.8 | 88.5 | 90.5 | 7.8 | 4.9 | 7.7 |
Dried fig | ||||||||
LOD µg/kg | LOQ µg/kg | Recovery (%) | RSD | |||||
0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | 0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | |||
AFB1 | 0.06 | 0.41 | 79.4 | 81.2 | 85.4 | 5.7 | 7.9 | 6.6 |
AFB2 | 0.12 | 0.31 | 83.4 | 88.5 | 81.4 | 7.7 | 6.9 | 5.6 |
AFG1 | 0.23 | 0.32 | 85.3 | 89.4 | 84.3 | 6.8 | 4.6 | 4.8 |
AFG2 | 0.16 | 0.21 | 87.6 | 90.5 | 85.0 | 5.5 | 3.5 | 3.9 |
Coffee beans | ||||||||
LOD µg/kg | LOQ µg/kg | Recovery (%) | RSD | |||||
0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | 0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | |||
AFB1 | 0.06 | 0.12 | 85.4 | 90.1 | 92.1 | 6.8 | 4.6 | 3.5 |
AFB2 | 0.07 | 0.13 | 87.5 | 91.1 | 94.3 | 4.9 | 5.9 | 6.5 |
AFG1 | 0.06 | 0.09 | 88.5 | 89.9 | 89.3 | 12.4 | 3.4 | 4.4 |
AFG2 | 0.12 | 0.15 | 89.5 | 93.1 | 95.5 | 5.6 | 9.6 | 8.5 |
Toxins | Wheat | |||||||
LOD µg/kg | LOQ µg/kg | Recovery (%) | RSD | |||||
0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | 0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | |||
AFB1 | 0.04 | 0.09 | 90.1 | 88.6 | 90.3 | 8.6 | 8.6 | 5.5 |
AFB2 | 0.02 | 0.05 | 88.5 | 82.5 | 88.3 | 7.7 | 7.6 | 4.4 |
AFG1 | 0.04 | 0.11 | 92.4 | 90.6 | 90.5 | 6.5 | 8.9 | 8.9 |
AFG2 | 0.06 | 0.09 | 89.5 | 83.5 | 89.5 | 9.8 | 9.8 | 9.5 |
Corn | ||||||||
LOD µg/kg | LOQ µg/kg | Recovery (%) | RSD | |||||
0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | 0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | |||
AFB1 | 0.19 | 0.41 | 66.7 | 72.3 | 84.4 | 7.7 | 6.7 | 8.7 |
AFB2 | 0.05 | 0.09 | 80.5 | 83.2 | 81.3 | 6.9 | 7.8 | 9.9 |
AFG1 | 0.32 | 0.82 | 90.1 | 83.9 | 90.4 | 9.4 | 9.6 | 8.0 |
AFG2 | 0.43 | 0.65 | 80.1 | 81.4 | 89.3 | 8.8 | 5.0 | 4.6 |
Dried fig | ||||||||
LOD µg/kg | LOQ µg/kg | Recovery (%) | RSD | |||||
0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | 0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | |||
AFB1 | 0.05 | 0.31 | 77.2 | 77.5 | 80.5 | 3.5 | 12.1 | 9.9 |
AFB2 | 0.11 | 0.20 | 80.5 | 81.4 | 77.9 | 8.8 | 9.9 | 7.6 |
AFG1 | 0.16 | 0.23 | 79.0 | 80.9 | 79.5 | 9.9 | 7.9 | 8.0 |
AFG2 | 0.08 | 0.12 | 81.3 | 87.5 | 80.5 | 7.0 | 5.5 | 4.9 |
Coffee beans | ||||||||
LOD µg/kg | LOQ µg/kg | Recovery (%) | RSD | |||||
0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | 0.05 µ/kg | 0.5 µ/kg | 1.0 µ/kg | |||
AFB1 | 0.04 | 0.09 | 82.6 | 88.4 | 90.1 | 7.0 | 9.0 | 5.5 |
AFB2 | 0.06 | 0.11 | 81.1 | 84.3 | 89.2 | 6.6 | 4.9 | 7.7 |
AFG1 | 0.09 | 0.07 | 83.2 | 81.9 | 88.4 | 10.6 | 4.0 | 8.9 |
AFG2 | 0.09 | 0.13 | 81.9 | 90.4 | 88.5 | 6.8 | 10.3 | 9.0 |
Food | Method | Number | Positive Samples | Mean ± SD µ/kg | Total Aflatoxin Limits According to EC/Codex Regulation (17) |
---|---|---|---|---|---|
Wheat | ELISA | 10 | 40% | 2.57 ± 1.15 a | 4 µg/kg |
HPLC | 10 | 2.19 ± 1.65 a | |||
Corn | ELISA | 10 | 60% | 4.12 ± 1.05 a | 5 µg/kg |
HPLC | 10 | 3.87 ± 1.17 a | |||
Dried fig | ELISA | 10 | 30% | 2.21 ± 2.25 a | 4 µg/kg |
HPLC | 10 | 2.13 ± 2.07 a | |||
Dried coffee beans | ELISA | 10 | 50% | 1.14 ± 1.09 a | 5 µg/kg |
HPLC | 10 | 1.47 ± 1.88 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omar, S.S.; Haddad, M.A.; Parisi, S. Validation of HPLC and Enzyme-Linked Immunosorbent Assay (ELISA) Techniques for Detection and Quantification of Aflatoxins in Different Food Samples. Foods 2020, 9, 661. https://doi.org/10.3390/foods9050661
Omar SS, Haddad MA, Parisi S. Validation of HPLC and Enzyme-Linked Immunosorbent Assay (ELISA) Techniques for Detection and Quantification of Aflatoxins in Different Food Samples. Foods. 2020; 9(5):661. https://doi.org/10.3390/foods9050661
Chicago/Turabian StyleOmar, Sharaf S., Moawiya A. Haddad, and Salvatore Parisi. 2020. "Validation of HPLC and Enzyme-Linked Immunosorbent Assay (ELISA) Techniques for Detection and Quantification of Aflatoxins in Different Food Samples" Foods 9, no. 5: 661. https://doi.org/10.3390/foods9050661
APA StyleOmar, S. S., Haddad, M. A., & Parisi, S. (2020). Validation of HPLC and Enzyme-Linked Immunosorbent Assay (ELISA) Techniques for Detection and Quantification of Aflatoxins in Different Food Samples. Foods, 9(5), 661. https://doi.org/10.3390/foods9050661