Effect of Controlled Hydrothermal Treatments on Mung Bean Starch Structure and Its Relationship with Digestibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Starch Dispersions and Heat Treatment
2.3. Differential Scanning Colorimetry
2.4. Rapid Viscosity Analyzer (RVA)
2.5. Starch Morphology
2.5.1. Electron Microscopy
2.5.2. Polarized Light Microscopy
2.6. Wide-Angle X-ray Diffraction
2.7. Fourier Transform Infrared Spectroscopy
2.8. In Vitro Digestion Kinetics
2.9. Statistical Analysis
3. Results and Discussion
3.1. Thermal Properties
3.2. Pasting Properties
3.3. Morphology of Starch
3.4. X-ray Diffraction
3.5. Short-Range Molecular Order by Fourier Transform Infrared Spectroscopy
3.6. In Vitro Digestion Kinetics
3.7. Pearson’s Correlation Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, Z.; Yao, Y.; Zhu, Y.; Ren, G. Nutritional composition and antioxidant activity of twenty mung bean cultivars in China. Crop. J. 2016, 4, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Xie, J.; Gong, B.; Xu, X.; Tang, W.; Li, X.; Li, C.; Xie, M. Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocoll 2018, 76, 131–140. [Google Scholar] [CrossRef]
- Tang, D.; Dong, Y.; Ren, H.; Li, L.; He, C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem. Cent. J. 2014, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, R.M.; Yang, R.Y.; Easdown, W.J.; Thavarajah, D.; Thavarajah, P.; Hughes, J.D.; Keatinge, J. Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. J. Sci. Food Agric. 2013, 93, 1805–1813. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, M.; Wu, H.; Jing, L.; Gong, B.; Gou, M.; Zhao, K.; Li, W. The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle. J. Food Sci. Technol. 2018, 55, 5142–5152. [Google Scholar] [CrossRef]
- Photinam, R.; Moongngarm, A.; Paseephol, T. Process optimization to increase resistant starch in vermicelli prepared from mung bean and cowpea starch. Emir. J. Food Agric. 2016, 28, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, W.; Xu, C.; Zhou, X. Morphological features and physicochemical properties of waxy wheat starch. Int. J. Biol. Macromol. 2013, 62, 304–309. [Google Scholar] [CrossRef]
- Hu, P.; Zhao, H.; Duan, Z.; Linlin, Z.; Wu, D. Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. J. Cereal. Sci. 2004, 40, 231–237. [Google Scholar] [CrossRef]
- Yao, M.; Tian, Y.; Yang, W.; Huang, M.; Zhou, S.; Liu, X. The multi-scale structure, thermal and digestion properties of mung bean starch. Intl. J. Biol. Macromol. 2019, 131, 871–878. [Google Scholar] [CrossRef]
- Gunaratne, A.; Gan, R.; Wu, K.; Kong, X.; Collado, L.; Arachchi, L.V.; Kumara, K.; Pathirana, S.M.; Corke, H. Physicochemical properties of mung bean starches isolated from four varieties grown in Sri Lanka. Starch-Stärke 2018, 70, 1700129. [Google Scholar] [CrossRef]
- Fujiwara, N.; Hall, C.; Jenkins, A.L. Development of Low Glycemic Index (GI) Foods by Incorporating Pulse Ingredients into Cereal-Based Products: Use of In Vitro Screening and In Vivo Methodologies. Cereal. Chem. 2017, 94, 110–116. [Google Scholar] [CrossRef]
- Slaughter, S.L.; Ellis, P.R.; Butterworth, P.J. An investigation of the action of porcine pancreatic α-amylase on native and gelatinised starches. Biochim. Biophys Acta. 2001, 1525, 29–36. [Google Scholar] [CrossRef]
- Wang, Y.; Chao, C.; Huang, H.; Wang, S.; Wang, S.; Wang, S.; Copeland, L. Revisiting Mechanisms Underlying Digestion of Starches. J. Agric. Food Chem. 2019, 67, 8212–8226. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Dhital, S.; Zhang, B.; He, X.; Fu, X.; Huang, Q. Surface structural features control in vitro digestion kinetics of bean starches. Food Hydrocoll 2018, 85, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Yu, L.; Xie, F.; Chen, L. Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydr. Polym. 2006, 65, 357–363. [Google Scholar] [CrossRef]
- Karim, A.A.; Norziah, M.; Seow, C. Methods for the study of starch retrogradation. Food Chem. 2000, 71, 9–36. [Google Scholar] [CrossRef]
- Tester, R.F.; Karkalas, J.; Qi, X. Starch—composition, fine structure and architecture. J. Cereal. Sci. 2004, 39, 151–165. [Google Scholar] [CrossRef]
- Tang, H.; Mitsunaga, T.; Kawamura, Y. Molecular arrangement in blocklets and starch granule architecture. Carbohydr. Polym. 2006, 63, 555–560. [Google Scholar] [CrossRef]
- Li, W.; Guo, H.; Wang, P.; Tian, X.; Zhang, W.; Saleh, A.S.; Zheng, J.; Ouyang, S.; Luo, Q.; Zhang, G. Physicochemical characteristics of high pressure gelatinized mung bean starch during recrystallization. Carbohydr. Polym. 2015, 131, 432–438. [Google Scholar] [CrossRef]
- Gou, M.; Wu, H.; Saleh, A.S.; Jing, L.; Liu, Y.; Zhao, K.; Su, C.; Zhang, B.; Jiang, H.; Li, W. Effects of repeated and continuous dry heat treatments on properties of sweet potato starch. Intl. J. Biol. Macromol. 2019, 129, 869–877. [Google Scholar] [CrossRef]
- Yin, X.; Ma, Z.; Hu, X.; Li, X.; Boye, J.I. Molecular rearrangement of Laird lentil (Lens culinaris Medikus) starch during different processing treatments of the seeds. Food Hydrocoll. 2018, 79, 399–408. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Z.; Ren, N.; Li, X.; Liu, L.; Hu, X. Understanding the multi-scale structural changes in starch and its physicochemical properties during the processing of chickpea, navy bean, and yellow field pea seeds. Food Chem. 2019, 289, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.H.; Warren, F.J.; Milligan, P.J.; Butterworth, P.J.; Ellis, P.R. A novel method for classifying starch digestion by modelling the amylolysis of plant foods using first-order enzyme kinetic principles. Food Func. 2014, 5, 2751–2758. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Hasjim, J.; Wu, A.C.; Henry, R.J.; Gilbert, R.G. Variation in amylose fine structure of starches from different botanical sources. J. Agric. Food Chem. 2014, 62, 4443–4453. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.-J.; Liu, Q.; Hoover, R. Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties, and nutritional fractions of pea, lentil, and navy bean starches. Food Res. Int. 2010, 43, 501–508. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Liu, L.; Wang, S.; Copeland, L. Structural orders of wheat starch do not determine the in vitro enzymatic digestibility. J. Agric. Food Chem. 2017, 65, 1697–1706. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Wang, S.; Copeland, L. Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization. Sci. Rep. 2016, 6, 28271. [Google Scholar] [CrossRef] [Green Version]
- Bogracheva, T.Y.; Meares, C.; Hedley, C.L. The effect of heating on the thermodynamic characteristics of potato starch. Carbohydr. Polym. 2006, 63, 323–330. [Google Scholar] [CrossRef]
- Hoover, R.; Hughes, T.; Chung, H.; Liu, Q. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res. Int. 2010, 43, 399–413. [Google Scholar] [CrossRef]
- Xu, M.; Saleh, A.S.; Gong, B.; Li, B.; Jing, L.; Gou, M.; Jiang, H.; Li, W. The effect of repeated versus continuous annealing on structural, physicochemical, and digestive properties of potato starch. Food Res. Int. 2018, 111, 324–333. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Zhang, Y.; Xu, F.; Zhu, K.; Li, S.; Tan, L.; Wu, G.; Dong, W. Effect of degree of polymerization of amylopectin on the gelatinization properties of jackfruit seed starch. Food Chem. 2019, 289, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Yu, L.; Simon, G.P.; Liu, X.; Dean, K.; Chen, L. Internal structures and phase-transitions of starch granules during gelatinization. Carbohydr. Polym. 2011, 83, 1975–1983. [Google Scholar] [CrossRef]
- Chen, P.; Liu, X.; Zhang, X.; Sangwan, P.; Yu, L. Phase transition of waxy and normal wheat starch granules during gelatinization. Int. J. Polym. Sci. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Bartz, J.; da Rosa Zavareze, E.; Dias, A.R.G. Study of heat–moisture treatment of potato starch granules by chemical surface gelatinization. J. Sci. Food Agric. 2017, 97, 3114–3123. [Google Scholar] [CrossRef]
- Hoover, R.; Li, Y.; Hynes, G.; Senanayake, N. Physicochemical characterization of mung bean starch. Food Hydrocoll. 1997, 11, 401–408. [Google Scholar] [CrossRef]
- Chen, P.; Wang, K.; Kuang, Q.; Zhou, S.; Wang, D.; Liu, X. Understanding how the aggregation structure of starch affects its gastrointestinal digestion rate and extent. Int. J. Bio. Macromol. 2016, 87, 28–33. [Google Scholar] [CrossRef]
- Hoover, R.; Ratnayake, W. Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chem. 2002, 78, 489–498. [Google Scholar] [CrossRef]
- Moo-Huchin, V.; Cabrera-Sierra, M.; Estrada-León, R.; Ríos-Soberanis, C.; Betancur-Ancona, D.; Chel-Guerrero, L.; Ortiz-Fernández, A.; Estrada-Mota, I.; Pérez-Pacheco, E. Determination of some physicochemical and rheological characteristics of starch obtained from Brosimum alicastrum Swartz seeds. Food Hydrocoll. 2015, 45, 48–54. [Google Scholar] [CrossRef]
- Warren, F.J.; Zhang, B.; Waltzer, G.; Gidley, M.J.; Dhital, S. The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems. Carbohydr. Polym. 2015, 117, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Dahiya, P.; Linnemann, A.; Nout, M.; Van Boekel, M.; Grewal, R. Nutrient composition of selected newly bred and established mung bean varieties. LWT-Food Sci. Technol. 2013, 54, 249–256. [Google Scholar] [CrossRef]
- Butterworth, P.J.; Warren, F.J.; Grassby, T.; Patel, H.; Ellis, P.R. Analysis of starch amylolysis using plots for first-order kinetics. Carbohydr. Polym. 2012, 87, 2189–2197. [Google Scholar] [CrossRef]
- Zhang, B.; Dhital, S.; Gidley, M.J. Densely packed matrices as rate determining features in starch hydrolysis. Trends Food Sci. Technol. 2015, 43, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhang, B.; Dhital, S. Starch digestion in intact pulse cells depends on the processing induced permeability of cell walls. Carbohydr. Polym. 2019, 225, 115204. [Google Scholar] [CrossRef] [PubMed]
Sample | Onset | Peak T. | E. of Gel. | Concl. T. | E. of Ret. | DG |
---|---|---|---|---|---|---|
To | Tp | ΔHg | Tc | ΔHr = Tc − To | (%) | |
Native | 66.33 ± 0.46 c | 71.71 ± 0.36 c | 14.07 ± 1.46 a | 76.39 ± 0.04 c | 10.15 ± 0.41 a | 0 |
50 °C | 66.48 ± 0.00 c | 71.62 ± 0.43 c | 14.40 ± 1.81 a | 76.49 ± 0.36 c | 10.06 ± 0.36 a | 2.5 |
60 °C | 70.01 ± 1.58 b | 73.87 ± 1.87 b | 11.44 ± 2.39 a | 78.61 ± 2.25 b | 8.60 ± 0.60 b | 20.55 |
70 °C | 76.69 ± 0.03 a | 79.84 ± 0.04 a | 6.77 ± 2.05 b | 83.38 ± 0.62 a | 6.68 ± 0.65 c | 52.98 |
80 °C | N.D. | N.D. | N.D. | N.D. | N.D. | 100 |
90 °C | N.D. | N.D. | N.D. | N.D. | N.D. | 100 |
100 °C | N.D. | N.D. | N.D. | N.D. | N.D. | 100 |
Sample | P. V. | T. V. | F. V. | Bd. | Sb. |
---|---|---|---|---|---|
(mPa.s) | (mPa.s) | (mPa.s) | (mPa.s) | (mPa.s) | |
Native | 6613.50 ± 121.62 a | 3455.50 ± 82.73 a | 4784.50 ± 286.37 c | 3157.50 ± 38.89 a | 1329 ± 203.64 d |
50 °C | 5846 ± 192.33 b | 3307.50 ± 96.87 ab | 4866.50 ± 71.41 bc | 2538.50 ± 95.45 b | 1559 ± 25.45 d |
60 °C | 4906 ± 38.18 c | 2833.50 ± 109.60 c | 5105 ± 103.23 ab | 2072.50 ± 71.41 c | 2271.50 ± 212.83 b |
70 °C | 4067 ± 57.98 d | 2781.50 ± 65.76 c | 5390 ± 32.52 a | 1285.50 ± 123.74 d | 2608.50 ± 33.23 a |
80 °C | 3027.50 ± 35.50 e | 2395.50 ± 26.50 cd | 4435 ± 21.00 c | 631.5 ± 9.5 e | 2039 ± 5.00 c |
90 °C | 2244 ± 18.38 f | 2214 ± 25.45 d | 3612.50 ± 24.74 d | 30 ± 7.07 f | 1398.50 ± 0.70 d |
100 °C | 2015.50 ± 75.66 f | 1835.50 ± 9.19 e | 2650.50 ± 10.60 e | 180 ± 66.46 f | 815 ± 1.41 e |
Sample | C∞ | K | DMO | DDH |
---|---|---|---|---|
(%) | (min−1) | (1047/1022 cm−1) | (995/1022 cm−1) | |
Native | 22.69 ± 0.50 e | 0.015 ± 0.000 cd | 1.35 ± 0.0002 a | 1.38 ± 0.001 a |
50 °C | 43.34 ± 1.02 d | 0.018 ± 0.000 c | 1.17 ± 0.0001 b | 1.25 ± 0.0002 b |
60 °C | 60.09 ± 0.30 c | 0.022 ± 0.000 bc | 1.06 ± 0.0002 c | 1.07 ± 0.0000 c |
70 °C | 71.70 ± 0.01 b | 0.030 ± 0.001 b | 1.04 ± 0.001 d | 1.06 ± 0.0035 d |
80 °C | 79.16 ± 0.17 a | 0.040 ± 0.004 a | 1.04 ± 0.002 d | 1.00 ± 0.0004 e |
90 °C | 78.70 ± 0.39 a | 0.041 ± 0.001 a | 1.03 ± 0.0006 e | 0.9918 ± 0.0004 f |
100 °C | 78.99 ± 0.10 a | 0.041 ±0.000 a | 1.01 ± 0.0008 f | 0.98 ± 0.0003 f |
To | Tp | ΔHg | Tc | ∆Hr | DG | C∞ | K | DMO | DDH | P. V. | T. V. | F. V. | Bd. | Sb. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tp | 1.000 ** | 1 | |||||||||||||
ΔHg | 0.891 ** | 0.901 ** | 1 | ||||||||||||
Tc | 0.999 ** | 1.000 ** | 0.907 ** | 1 | |||||||||||
∆Hr | 0.946 ** | 0.954 ** | 0.990 ** | 0.958 ** | 1 | ||||||||||
DG | −0.891 ** | −0.901 ** | −1.000 ** | −0.907 ** | −0.990 ** | 1 | |||||||||
C∞ | −0.665 | −0.682 | −0.890 ** | −0.69 | −0.849 * | 0.898 ** | 1 | ||||||||
K | −0.874 * | −0.885 ** | −0.995 ** | −0.891 ** | −0.982 ** | 0.997 ** | 0.923 ** | 1 | |||||||
DMO | 0.521 | 0.538 | 0.75 | 0.545 | 0.708 | −0.762 * | −0.963 ** | −0.803 * | 1 | ||||||
DDH | 0.645 | 0.661 | 0.859 * | 0.668 | 0.821 * | −0.865 * | −0.988 ** | −0.891 ** | 0.975 ** | 1 | |||||
P.V. | 0.840 * | 0.852 * | 0.968 ** | 0.857 * | 0.955 ** | −0.972 ** | −0.938 ** | −0.984 ** | 0.853 * | 0.923 ** | 1 | ||||
T.V. | 0.832 * | 0.843 * | 0.935 ** | 0.847 * | 0.929 ** | −0.937 ** | −0.898 ** | −0.947 ** | 0.831 * | 0.905 ** | 0.980 ** | 1 | |||
F.V. | 0.834 * | 0.830 * | 0.688 | 0.829 * | 0.749 | −0.687 | −0.461 | −0.681 | 0.375 | 0.465 | 0.722 | 0.785 * | 1 | ||
Bd. | 0.832 * | 0.844 * | 0.971 ** | 0.850 * | 0.954 ** | 0.975 ** | −0.943 ** | −0.988 ** | 0.851 * | 0.919 ** | 0.995 ** | 0.957 ** | 0.682 | 1 | |
Sb. | 0.509 | 0.494 | 0.186 | 0.487 | 0.286 | −0.183 | 0.132 | −0.164 | −0.202 | −0.131 | 0.196 | 0.275 | 0.812 * | 0.155 | 1 |
R.C. | 0.774 * | 0.787 * | 0.919 ** | 0.792 * | 0.903 ** | 0.928 ** | −0.979 ** | −0.951 ** | 0.938 ** | 0.968 ** | 0.969 ** | 0.944 ** | 0.607 | 0.968 ** | 0.053 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awais, M.; Ashraf, J.; Wang, L.; Liu, L.; Yang, X.; Tong, L.-T.; Zhou, X.; Zhou, S. Effect of Controlled Hydrothermal Treatments on Mung Bean Starch Structure and Its Relationship with Digestibility. Foods 2020, 9, 664. https://doi.org/10.3390/foods9050664
Awais M, Ashraf J, Wang L, Liu L, Yang X, Tong L-T, Zhou X, Zhou S. Effect of Controlled Hydrothermal Treatments on Mung Bean Starch Structure and Its Relationship with Digestibility. Foods. 2020; 9(5):664. https://doi.org/10.3390/foods9050664
Chicago/Turabian StyleAwais, Muhammad, Jawad Ashraf, Lili Wang, Liya Liu, Xiaoxue Yang, Li-Tao Tong, Xianrong Zhou, and Sumei Zhou. 2020. "Effect of Controlled Hydrothermal Treatments on Mung Bean Starch Structure and Its Relationship with Digestibility" Foods 9, no. 5: 664. https://doi.org/10.3390/foods9050664
APA StyleAwais, M., Ashraf, J., Wang, L., Liu, L., Yang, X., Tong, L. -T., Zhou, X., & Zhou, S. (2020). Effect of Controlled Hydrothermal Treatments on Mung Bean Starch Structure and Its Relationship with Digestibility. Foods, 9(5), 664. https://doi.org/10.3390/foods9050664