Physico-Chemical Characterization of Tunisian Canary Palm (Phoenix canariensis Hort. Ex Chabaud) Dates and Evaluation of Their Addition in Biscuits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fruit Samples
2.3. Biscuit Preparation
2.4. Physico-Chemical Analysis of Fresh Dates
2.5. Physico-Chemical Analysis of Biscuits
2.6. Extractions of Polyphenols
2.7. Total Phenolic Content
2.8. Antioxidant Capacity
2.9. Synergistic Effect
2.10. RP-HPLC–PDA Analysis of Polyphenols
2.11. Liking Test
2.12. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Characteristics of Fresh Dates
3.2. Physico-Chemical Characteristics of Biscuits
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morici, C. Phoenix canariensis in the Wild. Principes 1998, 42, 85–89. [Google Scholar]
- Naranjo, A.; Sosa, P.; Márquez, M. 9370 Palmerales de Phoenix canariensis endémicos canarios. In VV.AA., Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España; Dirección General de Medio Natural y Política Forestal, Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2009; 52p. [Google Scholar]
- Rivera, D.; Obon, C.; Alcaraz, F.; Egea, T.; Carreño, E.; Laguna, E.; Saro, I.; Sosa, P.A.; Laguna, E. The date palm with blue dates Phoenix senegalensis André (Arecaceae): A horticultural enigma is solved. Sci. Hortic. 2014, 180, 236–242. [Google Scholar] [CrossRef]
- Amorós, A.; Rivera, D.; Larrosa, E.; Obon, C. Physico-chemical and functional characteristics of date fruits from differentPhoenixspecies (Arecaceae). Fruits 2014, 69, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Djouab, A.; Gougam, H.; Amellal, H.; Benamara, S.; Hidous, K. Physical and antioxidant properties of two Algerian date fruit species (Phoenix dactylifera L. and Phoenix canariensis L.). Emir. J. Food Agric. 2016, 28, 601. [Google Scholar] [CrossRef]
- Nehdi, I.A.; Omri, S.; Khalil, M.; Al-Resayes, S. Characteristics and chemical composition of date palm (Phoenix canariensis) seeds and seed oil. Ind. Crop. Prod. 2010, 32, 360–365. [Google Scholar] [CrossRef]
- Nehdi, I.A.; Zarrouk, H.; Al-Resayes, S.I. Changes in chemical composition of Phoenix canariensis Hort. Ex Chabaud palm seed oil during the ripening process. Sci. Hortic. 2011, 129, 724–729. [Google Scholar] [CrossRef]
- Djouab, A.; Benamara, S.; Benamounah, A.; Djemel, F.; Gougam, H. Oxidative Stability of Margarine Enriched with Phoenix canariensis L. Date Peel Extract. Iran. J. Chem. Chem. Eng. 2017, 36, 53–64. [Google Scholar]
- AACC Approved Methods of Analysis, 11th ed.; Method 10-53.01. Baking Quality of Cookie Flour—Macro Wire-Cut Formulation. Approved November 3; Cereals & Grains Association: St. Paul, MN, USA, 1999.
- Baldini, M.; Fabietti, F.; Giammarioli, S.; Onori, R.; Orefice, L.; Stacchini, A. Metodi di Analisi Utilizzati per il Controllo Chimico Degli Alimenti; Istituto Superiore di Sanità: Roma, Italia, 1996; Volume 34. [Google Scholar]
- AOAC Method 991.43, Total, Insoluble and Soluble Dietary Fiber in Food—Enzymatic-Gravimetric Method, MES-TRIS Buffer. Official Methods of Analysis, 16th ed.; AOAC International: Gaithersburg, MD, USA, 1995.
- Bertolino, M.; Dolci, P.; Giordano, M.; Rolle, L.; Zeppa, G. Evolution of chemico-physical characteristics during manufacture and ripening of Castelmagno PDO cheese in wintertime. Food Chem. 2011, 129, 1001–1011. [Google Scholar] [CrossRef]
- AACC Approved Methods of Analysis, 11th ed.; Method 10-52.02. Baking Quality of Cookie Flour—Micro Method. Approved December 16; Cereals & Grains Association: St. Paul, MN, USA, 2008.
- Alahyane, A.; Harrak, H.; Ayour, J.; Elateri, I.; Ait-Oubahou, A.; Benichou, M. Bioactive compounds and antioxidant activity of seventeen Moroccan date varieties and clones (Phoenix dactylifera L.). S. Afr. J. Bot. 2019, 121, 402–409. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Lim, J. Hedonic scaling: A review of methods and theory Hedonic scaling: A review of methods and theory. Food Qual. Prefer. 2011, 22, 733–747. [Google Scholar]
- Al-Asmari, F.; Nirmal, N.; Chaliha, M.; Williams, D.; Mereddy, R.; Shelat, K.; Sultanbawa, Y. Physico-chemical characteristics and fungal profile of four Saudi fresh date (Phoenix dactylifera L.) cultivars. Food Chem. 2017, 221, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; Filannino, P.; Cavoski, I.; Lanera, A.; Mamdouh, B.M.; Gobbetti, M. Bioprocessing technology to exploit organic palm date (Phoenix dactylifera L. cultivar Siwi) fruit as a functional dietary supplement. J. Funct. Foods 2017, 31, 9–19. [Google Scholar] [CrossRef]
- Baliga, M.S.; Baliga, B.R.V.; Kandathil, S.M.; Bhat, H.P.; Vayalil, P.K. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res. Int. 2011, 44, 1812–1822. [Google Scholar] [CrossRef]
- Bouhlali, E.D.T.; Ramchoun, M.; Alem, C.; Ghafoor, K.; Ennassir, J.; Zegzouti, Y.F. Functional composition and antioxidant activities of eight Moroccan date fruit varieties ( Phoenix dactylifera L.). J. Saudi Soc. Agric. Sci. 2017, 16, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Chaira, N.; Ferchichi, A.; Mrabet, A.; Sghairoun, M. Chemical composition of the flesh and the pit of date palm fruit and radical scavenging activity of their extracts. Pak. J. Boil. Sci. 2007, 10, 2202–2207. [Google Scholar] [CrossRef] [Green Version]
- Kchaou, W.; Abbès, F.; Blecker, C.; Attia, H.; Besbes, S. Effects of extraction solvents on phenolic contents and antioxidant activities of Tunisian date varieties (Phoenix dactylifera L.). Ind. Crop. Prod. 2013, 45, 262–269. [Google Scholar] [CrossRef]
- Elleuch, M.; Besbes, S.; Roiseux, O.; Blecker, C.; Deroanne, C.; Drira, N.; Attia, H. Date flesh: Chemical composition and characteristics of the dietary fibre. Food Chem. 2008, 111, 676–682. [Google Scholar] [CrossRef]
- Ghnimi, S.; Al-Shibli, M.; Al-Yammahi, H.R.; Al-Dhaheri, A.; Al-Jaberi, F.; Jobe, B.; Kamal-Eldin, A. Reducing sugars, organic acids, size, color, and texture of 21 Emirati date fruit varieties (Phoenix dactylifera, L.). NFS J. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Ghnimi, S.; Umer, S.; Karim, M.; Kamal-Eldin, A. Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS J. 2017, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cervantes-Paz, B.; Yahia, E.M.; Ornelas-Paz, J.; Victoria-Campos, C.I.; Ibarra-Junquera, V.; Pérez-Martínez, J.D.; Escalante-Minakata, P. Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening. Food Chem. 2014, 146, 188–196. [Google Scholar] [CrossRef]
- Ignat, T.; Schmilovitch, Z.; Feföldi, J.; Bernstein, N.; Steiner, B.; Egozi, H.; Hoffman, A. Nonlinear methods for estimation of maturity stage, total chlorophyll, and carotenoid content in intact bell peppers. Biosyst. Eng. 2013, 114, 414–425. [Google Scholar] [CrossRef]
- Li, F.; Song, X.; Wu, L.; Chen, H.; Liang, Y.; Zhang, Y. Heredities on fruit color and pigment content between green and purple fruits in tomato. Sci. Hortic. 2018, 235, 391–396. [Google Scholar] [CrossRef]
- Kchaou, W.; Abbes, F.; Ben Mansour, R.; Blecker, C.; Attia, H.; Besbes, S. Phenolic profile, antibacterial and cytotoxic properties of second grade date extract from Tunisian cultivars (Phoenix dactylifera L.). Food Chem. 2016, 194, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Bouhlali, E.D.T.; El Hilaly, J.; Ennassir, J.; Benlyas, M.; Alem, C.; Amarouch, M.-Y.; Filali-Zegzouti, Y. Anti-inflammatory properties and phenolic profile of six Moroccan date fruit (Phoenix dactylifera L.) varieties. J. King Saud Univ. Sci. 2018, 30, 519–526. [Google Scholar] [CrossRef]
- Khallouki, F.; Ricarte, I.; Breuer, A.; Owen, R.W. Characterization of phenolic compounds in mature Moroccan Medjool date palm fruits (Phoenix dactylifera) by HPLC-DAD-ESI-MS. J. Food Compos. Anal. 2018, 70, 63–71. [Google Scholar] [CrossRef]
- Allane, T.; Benamara, S. Activités antioxydantes de quelques fruits communs et sauvages d’Algérie. Phytothérapie 2010, 8, 171–175. [Google Scholar] [CrossRef]
- Sheikh, B.Y.; Zihad, S.M.N.K.; Sifat, N.; Uddin, S.J.; Shilpi, J.A.; Hamdi, O.A.A.; Hossain, H.; Rouf, R.; Jahan, I.A. Comparative study of neuropharmacological, analgesic properties and phenolic profile of Ajwah, Safawy and Sukkari cultivars of date palm (Phoenix dactylifera). Orient. Pharm. Exp. Med. 2016, 16, 175–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Harthi, S.; Mavazhe, A.; Al Mahroqi, H.; Alam Khan, S. Quantification of phenolic compounds, evaluation of physicochemical properties and antioxidant activity of four date (Phoenix dactylifera L.) varieties of Oman. J. Taibah Univ. Med. Sci. 2015, 10, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Benmeddour, Z.; Mehinagic, E.; Le Meurlay, D.; Louaileche, H. Phenolic composition and antioxidant capacities of ten Algerian date (Phoenix dactylifera L.) cultivars: A comparative study. J. Funct. Foods 2013, 5, 346–354. [Google Scholar] [CrossRef]
- Amira, E.A.; Behija, S.E.; Beligh, M.; Lamia, L.; Manel, I.; Mohamed, H.; Achour, L. Effects of the Ripening Stage on Phenolic Profile, Phytochemical Composition and Antioxidant Activity of Date Palm Fruit. J. Agric. Food Chem. 2012, 60, 10896–10902. [Google Scholar] [CrossRef]
- Pico, J.; Xu, K.; Guo, M.; Mohamedshah, Z.; Ferruzzi, M.G.; Martinez, M.M. Manufacturing the ultimate green banana flour: Impact of drying and extrusion on phenolic profile and starch bioaccessibility. Food Chem. 2019, 297, 124990. [Google Scholar] [CrossRef]
- Protonotariou, S.; Batzaki, C.; Yanniotis, S.; Mandala, I.G. Effect of jet milled whole wheat flour in biscuits properties. LWT 2016, 74, 106–113. [Google Scholar] [CrossRef]
- Sudha, M.L.; Vetrimani, R.; Leelavathi, K. Influence of fibre from different cereals on the rheological characteristics of wheat flour dough and on biscuit quality. Food Chem. 2007, 100, 1365–1370. [Google Scholar] [CrossRef]
- Tyagi, S.; Manikantan, M.; Oberoi, H.S.; Kaur, G. Effect of mustard flour incorporation on nutritional, textural and organoleptic characteristics of biscuits. J. Food Eng. 2007, 80, 1043–1050. [Google Scholar] [CrossRef]
- Galla, N.R.; Rao, P.P.; Karakala, B.; Gurusiddaiah, M.R.; Akula, S.; Grusiddaiah, M.R. Nutritional, textural and sensory quality of biscuits supplemented with spinach (Spinacia oleracea L.). Int. J. Gastron. Food Sci. 2017, 7, 20–26. [Google Scholar] [CrossRef]
- Gbenga-Fabusiwa, F.J.; Oladele, E.P.; Oboh, G.; Adefegha, A.; Oshodi, A.A. Nutritional properties, sensory qualities and glycemic response of biscuits produced from pigeon pea-wheat composite flour. J. Food Biochem. 2018, 42, e12505. [Google Scholar] [CrossRef]
- Saha, S.; Gupta, A.; Singh, S.; Bharti, N.; Singh, K.; Mahajan, V.; Gupta, H.S. Compositional and varietal influence of finger millet flour on rheological properties of dough and quality of biscuit. LWT 2011, 44, 616–621. [Google Scholar] [CrossRef]
Ingredients | 100 Y | 25/75 R/Y | 50/50 R/Y | 75/25 R/Y | 100 R | Control |
---|---|---|---|---|---|---|
Water | 25 | 25 | 25 | 25 | 25 | 25 |
Sugar | 100 | 100 | 100 | 100 | 100 | 100 |
Salt | 1 | 1 | 1 | 1 | 1 | 1 |
Baking powder | 7 | 7 | 7 | 7 | 7 | 7 |
Shortening agent | 90 | 90 | 90 | 90 | 90 | 90 |
Wheat flour | 242 | 240 | 237 | 234 | 232 | 277 |
Red date powder | 0 | 11 | 23 | 34 | 45 | 0 |
Yellow date powder | 35 | 26 | 17 | 9 | 0 | 0 |
Parameter | Yellow | Red | Significance |
---|---|---|---|
Moisture (%) | 68.55 ± 1.43 | 58.01 ± 1.06 | ** |
Ash (%) | 8.98 ± 0.02 | 2.11 ± 0.01 | *** |
Proteins (%) | 1.07 ± 0.11 | 1.19 ± 0.04 | ns |
Lipids (%) | 0.78 ± 0.02 | 0.33 ± 0.00 | ** |
Sugars (%) | 27.8 ± 1.0 | 56.7 ± 2.7 | ** |
Sucrose (%) | nd | 11.8 ± 2 | n/a |
Glucose (%) | 12.5 ± 0.5 | 22.8 ± 0.3 | *** |
Fructose (%) | 15.3 ± 0.5 | 22.1 ± 0.4 | ** |
Malic acid (mg/g) | 18.65 ± 1.25 | 6.89 ± 0.1 | * |
Citric acid (mg/g) | 4.06 ± 0.21 | 0.77 ± 0.05 | ** |
Total fiber (%) | 36.88 ± 3.5 | 17.37 ± 1.63 | * |
Insoluble fiber (%) | 27.97 ± 2.6 | 13.40 ± 1.26 | * |
Soluble fiber (%) | 8.91 ± 0.84 | 3.97 ± 0.37 | * |
L * | 47.71 ± 0.88 | 35.02 ± 0.48 | *** |
a * | 13.87 ± 0.29 | 24.88 ± 0.41 | *** |
b * | 44.35 ± 1.03 | 26.81 ± 0.62 | *** |
Powder | RSA | TPC |
---|---|---|
Yellow date | 1503.42 ± 61.39 a | 202.09 ± 6.23 a |
Red date | 141.08 ± 19.00 d | 23.70 ± 2.66 d |
25/75 R/Y | 1507.29 ± 53.01 a | 201.80 ± 10.39 a |
50/50 R/Y | 820.65 ± 9.59 b | 130.14 ± 1.11 b |
75/25 R/Y | 513.32 ± 46.88 c | 90.53 ± 3.07 c |
Significance | *** | *** |
Phenolic Compound | Yellow | Red | Significance |
---|---|---|---|
Gallic acid | 416.28 ± 12.81 | 287.57 ± 3.88 | * |
Catechin | 75.49 ± 0.14 | 36.33 ± 7.30 | * |
Caffeic acid | nd | 7.15 ± 0.03 | n/a |
Epicatechin | 562.99 ± 5.75 | 105.11 ± 3.95 | *** |
p-coumaric acid | nd | 20.51 ± 0.21 | n/a |
m-coumaric acid | 10.58 ± 1.53 | 95.85 ± 0.83 | *** |
o-coumaric acid | nd | 1.97 ± 0.70 | n/a |
Rutin | 171.37 ± 13.59 | 25.62 ± 0.72 | ** |
Quercetin-3-O-glucoside | 315.04 ± 3.34 | 39.72 ± 0.36 | *** |
Quercetin-3-O-glucoside derivate 1 | 261.93 ± 4.60 | nd | n/a |
Quercetin-3-O-glucoside derivate 2 | 428.15 ± 3.55 | 114.99 ± 3.15 | *** |
Polyphenolic sum | 2241.80 ± 45.28 | 734.80 ± 21.11 |
Parameter | 100 Y | 100 R | 25/75 R/Y | 50/50 R/Y | 75/25 R/Y | Control | Significance |
---|---|---|---|---|---|---|---|
Humidity (%) | 6.77 ± 0.04 d | 6.22 ± 0.19 cd | 6.38 ± 0.30 cd | 5.64 ± 0.12 b | 6.00 ± 0.21 bc | 4.54 ± 0.33 a | *** |
Spread | 7.64 ± 0.07 ab | 8.28 ± 0.18 c | 7.33 ± 0.09 a | 7.95 ± 0.14 bc | 7.43 ± 0.08 a | 7.91 ± 0.20 bc | *** |
Water activity | 0.50 ± 0.01 d | 0.45 ± 0.02 abc | 0.47 ± 0.01 bcd | 0.44 ± 0.01 ab | 0.48 ± 0.01 cd | 0.42 ± 0.02 a | *** |
Loss of water (%) | 6.04 ± 0.31 bc | 6.55 ± 0.09 c | 5.79 ± 0.09 ab | 5.39 ± 0.22a | 6.07 ± 0.15 bc | 5.68 ± 0.21 ab | * |
Total fiber (%) | 5.44 ± 0.51 c | 3.26 ± 0.31 ab | 4.99 ± 0.47 c | 4.29 ± 0.41 bc | 3.4 ± 0.32 ab | 2.23 ± 0.21 a | ** |
Insoluble fiber (%) | 4 ± 0.37 c | 2.42 ± 0.23 a | 3.83 ± 0.36 c | 3.49 ± 0.33 bc | 2.64 ± 0.25 ab | 1.91 ± 0.19 a | * |
Soluble fiber (%) | 1.44 ± 0.13 c | 0.84 ± 0.08 b | 1.15 ± 0.11 c | 0.81 ± 0.08 b | 0.77 ± 0.07 b | 0.32 ± 0.03 a | ** |
Hardness (N) | 39.07 ± 4.50 a | 39.13 ± 2.71 a | 27.92 ± 2.35 b | 43.73 ± 2.79 a | 42.85 ± 3.25 a | 37.36 ± 4.01 ab | *** |
Rupture work (N/mm) | 37.49 ± 3.41 ab | 33.56 ± 2.79 abc | 24.12 ± 2.84 c | 40.12 ± 4.05 a | 38.33 ± 3.69 a | 27.73 ± 2.99 bc | *** |
L* | 56.41 ± 0.22 a | 56.67 ± 0.85 a | 55.85 ± 0.73 a | 55.78 ± 0.63 a | 54.91 ± 0.87 a | 73.00 ± 1.19 b | *** |
a* | 10.97 ± 0.11 e | 7.04 ± 0.17 b | 9.26 ± 0.16 d | 9.29 ± 0.11 d | 8.33 ± 0.41 c | 2.46 ± 0.28 a | *** |
b* | 38.45 ± 1.18 e | 24.69 ± 0.40 b | 32.57 ± 0.55 d | 31.69 ± 0.61 d | 27.90 ± 0.22 c | 22.41 ± 0.66 a | *** |
RSA (µmol TE/g DW) | 7.77 ± 0.20 a | 3.55 ± 0.05 e | 6.48 ± 0.14 b | 5.57 ± 0.11 c | 4.94 ± 0.04 d | 0.01 ± 0.00 f | *** |
TPC (mg GAE/g DW) | 1.78 ± 0.04 a | 1.09 ± 0.02 d | 1.59 ± 0.03 b | 1.67 ± 0.05 b | 1.48 ± 0.01 c | 0.44 ± 0.02 e | *** |
Doughs | Hardness | Cohesiveness | Gumminess | Springiness | Resilience | Adhesiveness |
---|---|---|---|---|---|---|
100 Y | 445.21 ± 6.30 e | 0.36 ± 0.01 d | 161.37 ± 4.06 e | 0.34 ± 0.01 d | 0.23 ± 0.01 d | −8.59 ± 1.21 c |
100 R | 159.62 ± 5.81 a | 0.31 ± 0.01 b | 48.88 ± 2.11 a | 0.32 ± 0.01 cd | 0.11 ± 0.01 a | −18.43 ± 1.50 a |
25/75 R/Y | 386.96 ± 8.45 d | 0.35 ± 0.01 d | 137.35 ± 5.55 d | 0.32 ± 0.01 cd | 0.21 ± 0.01 d | −7.37 ± 0.57 c |
50/50 R/Y | 294.21 ± 2.09 c | 0.33 ± 0.01 c | 96.98 ± 2.58 c | 0.29 ± 0.01 bc | 0.17 ± 0.00 c | −11.98 ± 0.83 b |
75/25 R/Y | 241.90 ± 9.33 b | 0.31 ± 0.01 bc | 75.88 ± 3.89 b | 0.28 ± 0.0 1b | 0.15 ± 0.00 b | −14.39 ± 0.70 b |
Control | 172.57 ± 10.36 a | 0.27 ± 0.01 a | 46.72 ± 4.28 a | 0.25 ± 0.01 a | 0.12 ± 0.01 a | −13.17 ± 0.66 b |
Significance | *** | *** | *** | *** | *** | *** |
Biscuit | Appearance | Smell | Taste | Flavor | Texture | Overall Liking | Purchase |
---|---|---|---|---|---|---|---|
100 Y | 45,627 c | 46,828 c | 37,476.5 ab | 37,975 ab | 31,521 a | 37,346 a | 37,495 ab |
100 R | 35,961.5 ab | 35,197.5 b | 38,308 ab | 37,324 ab | 31,378.5 a | 36,409.5 a | 37,524 ab |
25/75 R/Y | 43,078.5 bc | 46,673 c | 45,114 b | 45,424 b | 44,025 b | 46,944.5 b | 46,160.5 b |
50/50 R/Y | 43,676 bc | 44,340.5 c | 39,579 ab | 40,539 ab | 36,137 ab | 39,150 ab | 39,552 ab |
75/25 R/Y | 41,727 bc | 41,494.5 bc | 43,146.5 ab | 45,167 b | 42,133.5 b | 43,504 ab | 43,939.5 b |
Control | 28,325 a | 23,861.5 a | 34,771 a | 31,966 a | 53,200 c | 35,041 a | 33,724 a |
Significance | *** | *** | ** | *** | *** | *** | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turki, M.; Barbosa-Pereira, L.; Bertolino, M.; Essaidi, I.; Ghirardello, D.; Torri, L.; Bouzouita, N.; Zeppa, G. Physico-Chemical Characterization of Tunisian Canary Palm (Phoenix canariensis Hort. Ex Chabaud) Dates and Evaluation of Their Addition in Biscuits. Foods 2020, 9, 695. https://doi.org/10.3390/foods9060695
Turki M, Barbosa-Pereira L, Bertolino M, Essaidi I, Ghirardello D, Torri L, Bouzouita N, Zeppa G. Physico-Chemical Characterization of Tunisian Canary Palm (Phoenix canariensis Hort. Ex Chabaud) Dates and Evaluation of Their Addition in Biscuits. Foods. 2020; 9(6):695. https://doi.org/10.3390/foods9060695
Chicago/Turabian StyleTurki, Mohamed, Letricia Barbosa-Pereira, Marta Bertolino, Ismahen Essaidi, Daniela Ghirardello, Luisa Torri, Nabiha Bouzouita, and Giuseppe Zeppa. 2020. "Physico-Chemical Characterization of Tunisian Canary Palm (Phoenix canariensis Hort. Ex Chabaud) Dates and Evaluation of Their Addition in Biscuits" Foods 9, no. 6: 695. https://doi.org/10.3390/foods9060695