Microwave Treatments of Cereals: Effects on Thermophysical and Parenchymal-Related Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grain Samples
2.2. Microwave Treatments
2.3. Powder Properties
2.3.1. Thermal Properties
2.3.2. TGA and DSC
2.4. Grain Properties
2.4.1. Size, Moisture, Density
2.4.2. Germination Capability
2.4.3. Water Uptake and Mineral Losses
2.4.4. Tissue Structure Analysis
2.4.5. Cooking Treatments and Structure Related Measurements
2.5. Statistical Analysis
3. Results and Discussion
3.1. Microwave Treatments
3.2. Powder Properties
3.3. Grain Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cappelli, P.; Vannucchi, V. Chimica Degli Alimenti: Conservazione e Trasformazione; Zanichelli: Modena, Italy, 1990. [Google Scholar]
- El-Naggar, S.; Mikhaiel, A. Disinfestation of stored wheat grain and flour using gamma rays and microwave heating. J. Stored Prod. Res. 2011, 47, 191–196. [Google Scholar] [CrossRef]
- García-Mosqueda, C.; Salas-Araiza, M.D.; Ceron-Garcia, A.; Estrada-García, H.J.; Rojas-Laguna, R.; Sosa-Morales, M.E. Microwave heating as a post-harvest treatment for white corn (Zea mays) against Sitotroga cerealella. J. Microw. Power Electromagn. Energy 2019, 53, 145–154. [Google Scholar] [CrossRef]
- Kumar, D.; Kalita, P.K. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedin, M.Z.; Rahman, M.Z.; Mia, I.A.M.; Rahman, K.M.M. In-store losses of rice and ways of reducing such losses at farmers’ level: An assessment in selected regions of Bangladesh. J. Bangladesh Agric. Univ. 2012, 10, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Shaaya, E.; Kostjukovski, M.; Eilberg, J.; Sukprakarn, C. Plant oils as fumigants and contact insecticides for the control of stored-product insects. J. Stored Prod. Res. 1997, 33, 7–15. [Google Scholar] [CrossRef]
- Tapondjou, L.; Adler, C.; Bouda, H.; Fontem, D. Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six-stored product beetles. J. Stored Prod. Res. 2002, 38, 395–402. [Google Scholar] [CrossRef]
- Ben-Lalli, A.; Méot, J.-M.; Collignan, A.; Bohuon, P. Modelling heat-disinfestation of dried fruits on “biological model” larvae Ephestia kuehniella (Zeller). Food Res. Int. 2011, 44, 156–166. [Google Scholar] [CrossRef]
- Gamage, T.; Sanguansri, P.; Swiergon, P.; Eelkema, M.; Wyatt, P.; Leach, P.; Alexander, D.; Knoerzer, K. Continuous combined microwave and hot air treatment of apples for fruit fly (Bactrocera tryoni and B. jarvisi) disinfestation. Innov. Food Sci. Emerg. Technol. 2015, 29, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Webber, H.H.; Wagner, R.P.; Pearson, A.G. High-Frequency Electric Fields as Lethal Agents for Insects. J. Econ. Èntomol. 1946, 39, 487–498. [Google Scholar] [CrossRef]
- Angela, A.; Damore, M. Relevance of Dielectric Properties in Microwave Assisted Processes; IntechOpen: London, UK, 2012. [Google Scholar]
- Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing—A review. Food Res. Int. 2013, 52, 243–261. [Google Scholar] [CrossRef]
- Nasrollahzadeh, F.; Varidi, M.; Koocheki, A.; Hadizadeh, F. Effect of microwave and conventional heating on structural, functional and antioxidant properties of bovine serum albumin-maltodextrin conjugates through Maillard reaction. Food Res. Int. 2017, 100, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.N.; Anand, T.; Sharma, M.; Gupta, R.K. Microwave technology for disinfestation of cereals and pulses: An overview. J. Food Sci. Technol. 2012, 51, 3568–3576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Los, A.; Ziuzina, D.; Bourke, P. Current and Future Technologies for Microbiological Decontamination of Cereal Grains. J. Food Sci. 2018, 83, 1484–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalmoro, A.; Naddeo, C.; Caputo, S.; Lamberti, G.; Guadagno, L.; D’Amore, M.; Barba, A. On the relevance of thermophysical characterization in the microwave treatment of legumes. Food Funct. 2018, 9, 1816–1828. [Google Scholar] [CrossRef] [PubMed]
- Jian, F.; Jayas, D.S.; White, N.D.; Fields, P.; Howe, N. An evaluation of insect expulsion from wheat samples by microwave treatment for disinfestation. Biosyst. Eng. 2015, 130, 1–12. [Google Scholar] [CrossRef]
- Vadivambal, R.; Jayas, D.; White, N. Wheat disinfestation using microwave energy. J. Stored Prod. Res. 2007, 43, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Qu, C.; Wang, H.; Liu, S.; Wang, F.; Liu, C. Effects of microwave heating of wheat on its functional properties and accelerated storage. J. Food Sci. Technol. 2017, 54, 3699–3706. [Google Scholar] [CrossRef]
- Rifna, E.; Singh, S.; Chakraborty, S.; Dwivedi, M. Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances. Food Res. Int. 2019, 126, 108654. [Google Scholar] [CrossRef]
- Hamid, M.A.K.; Boulanger, R.J. A New Method for the Control of Moisture and Insect Infestations of Grain by Microwave Power. J. Microw. Power 1969, 4, 11–18. [Google Scholar] [CrossRef]
- Vadivambal, R.; Deji, O.; Jayas, D.; White, N. Disinfestation of stored corn using microwave energy. Agric. Biol. J. N. Am. 2010, 1, 18–26. [Google Scholar]
- Fields, P.G. The control of stored-product insects and mites with extreme temperatures. J. Stored Prod. Res. 1992, 28, 89–118. [Google Scholar] [CrossRef]
- Berrios, J.D.J.; Swanson, B.G.; Cheong, W.A. Physico-chemical characterization of stored black beans (Phaseolus vulgaris L.). Food Res. Int. 1999, 32, 669–676. [Google Scholar] [CrossRef]
- Bhatty, R.S. Cooking quality of lentils: The role of structure and composition of cell walls. J. Agric. Food Chem. 1990, 38, 376–383. [Google Scholar] [CrossRef]
- Lee, C.M.; Chung, K.H. Analysis of Surimi Gel Properties by Compression and Penetration Tests. J. Texture Stud. 1989, 20, 363–377. [Google Scholar] [CrossRef]
- Voicu, G.; Tudosie, E.-M.; Ungureanu, N.; Constantin, G.-A. Some mechanical characteristics of wheat seeds obtained by uniaxial compression tests. Univ. Politeh. Buch. Sci. Bull. D 2013, 75, 265–278. [Google Scholar]
- Nelson, S.O. Measurement of microwave dielectric properties of particulate materials. J. Food Eng. 1994, 21, 365–384. [Google Scholar] [CrossRef]
- Torrealba, R.; Sosa-Morales, M.E.; Olvera-Cervantes, J.L.; Corona-Chavez, A. Dielectric properties of cereals at frequencies useful for processes with microwave heating. J. Food Sci. Technol. 2015, 52, 8403–8409. [Google Scholar] [CrossRef] [Green Version]
- Sweat, V.E. Thermal properties of foods. In Engineering Properties of Foods; Marcel Dekker: New York, NY, USA, 1986; Volume 49. [Google Scholar]
- Božiková, M. Thermophysical parameters of corn and wheat flour. Res. Agric. Eng. 2012, 49, 157–160. [Google Scholar] [CrossRef]
- Mahapatra, A.K.; Lan, Y.; Harris, D. Influence of Moisture Content and Temperature on Thermal Conductivity and Thermal Diffusivity of Rice Flours. Int. J. Food Prop. 2011, 14, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Kaletunc, G. Prediction of specific heat of cereal flours: A quantitative empirical correlation. J. Food Eng. 2007, 82, 589–594. [Google Scholar] [CrossRef]
- Magee, T.; Bransburg, T. Measurement of thermal diffusivity of potato, malt bread and wheat flour. J. Food Eng. 1995, 25, 223–232. [Google Scholar] [CrossRef]
- Kostaropoulos, A.; Saravacos, G. Thermal diffusivity of granular and porous foods at low moisture content. J. Food Eng. 1997, 33, 101–109. [Google Scholar] [CrossRef]
- Ergudenler, A.; Ghaly, A.E. Determination of reaction kinetics of wheat straw using thermogravimetric analysis. Appl. Biochem. Biotechnol. 1992, 34, 75–91. [Google Scholar] [CrossRef]
- Ross, K.; Godfrey, D. Effect of extractives on the thermal decomposition of wheat, triticale, and flax crop residues: A kinetic study. Int.J. Biomass Renew. 2012, 1, 19–31. [Google Scholar]
- Dizaji, H.B.; Dizaji, F.F.; Bidabadi, M. Determining thermo-kinetic constants in order to classify explosivity of foodstuffs. Combust. Explos. Shock Waves 2014, 50, 454–462. [Google Scholar] [CrossRef]
- Draman, S.F.S.; Daik, R.; Latif, F.A.; El-Sheikh, S.M. Characterization and Thermal Decomposition Kinetics of Kapok (Ceiba pentandra L.)—Based Cellulose. Bioresources 2013, 9, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Kirleis, A.; Stroshine, R. Effects of hardness and drying air temperature on breakage susceptibility and dry-milling characteristics of yellow dent corn. Cereal. Chem. 1990, 67, 523–528. [Google Scholar]
- Gursoy, S.; Choudhary, R.; Watson, D.G. Microwave drying kinetics and quality characteristics of corn. Int.J. Agric. Biol. Eng. 2013, 6, 90–98. [Google Scholar]
- Ragha, L.; Mishra, S.; Ramachandran, V.; Bhatia, M.S. Effects of Low-Power Microwave Fields on Seed Germination and Growth Rate. J. Electromagn. Anal. Appl. 2011, 3, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Roman, L.; Martinez, M.M.; Rosell, C.M.; Gómez, M. Effect of Microwave Treatment on Physicochemical Properties of Maize Flour. Food Bioprocess. Technol. 2015, 8, 1330–1335. [Google Scholar] [CrossRef] [Green Version]
- Błaszczak, W.; Gralik, J.; Klockiewicz-Kamińska, E.; Fornal, J.; Warchalewski, J.R. Effect of γ-radiation and microwave heating on endosperm microstructure in relation to some technological properties of wheat grain. Food/Nahrung 2002, 46, 122–129. [Google Scholar] [CrossRef]
Weak Wheat | UN | EM | UCM |
---|---|---|---|
Moisture, % wb ± SD | 1.36 ± 0.01 | 1.29 ± 0.19 | 0.55 ± 0.01 |
Bulk (tapped) density, g/mL ± SD | 0.74 ± 0.01 | 0.73 ± 0.02 | 0.55 ± 0.00 |
(0.77 ± 0.01) | (0.76 ± 0.03) | (0.57 ± 0.01) | |
Durum wheat | UN | EM | UCM |
Moisture, % wb ± SD | 1.24 ± 0.19 | 1.16 ± 0.09 | 0.96 ± 0.09 |
Bulk (tapped) density, g/mL ± SD | 0.80 ± 0.01 | 0.79 ± 0.01 | 0.59 ± 0.03 |
(0.84 ± 0.01) | (0.83 ± 0.01) | (0.62 ± 0.01) | |
Corn | UN | EM | UCM |
Moisture, % wb ± SD | 0.83 ± 0.19 | 0.44 ± 0.11 | 0.23 ± 0.08 |
Bulk (tapped) density, g/mL ± SD | 0.65 ± 0.01 | 0.60 ± 0.01 | 0.55 ± 0.01 |
(0.65 ± 0.01) | (0.60 ± 0.01) | (0.56 ± 0.03) |
Weak Wheat | ||
---|---|---|
UN | EM | UCM |
100 ± 0 | 59 ± 2 | 0 |
Durum wheat | ||
UN | EM | UCM |
88 ± 2 | 93 ± 3 | 0 |
Corn | ||
UN | EM | UCM |
30 ± 5 | 7 ± 7 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barba, A.A.; Naddeo, C.; Caputo, S.; Lamberti, G.; d’Amore, M.; Dalmoro, A. Microwave Treatments of Cereals: Effects on Thermophysical and Parenchymal-Related Properties. Foods 2020, 9, 711. https://doi.org/10.3390/foods9060711
Barba AA, Naddeo C, Caputo S, Lamberti G, d’Amore M, Dalmoro A. Microwave Treatments of Cereals: Effects on Thermophysical and Parenchymal-Related Properties. Foods. 2020; 9(6):711. https://doi.org/10.3390/foods9060711
Chicago/Turabian StyleBarba, Anna Angela, Carlo Naddeo, Silvestro Caputo, Gaetano Lamberti, Matteo d’Amore, and Annalisa Dalmoro. 2020. "Microwave Treatments of Cereals: Effects on Thermophysical and Parenchymal-Related Properties" Foods 9, no. 6: 711. https://doi.org/10.3390/foods9060711
APA StyleBarba, A. A., Naddeo, C., Caputo, S., Lamberti, G., d’Amore, M., & Dalmoro, A. (2020). Microwave Treatments of Cereals: Effects on Thermophysical and Parenchymal-Related Properties. Foods, 9(6), 711. https://doi.org/10.3390/foods9060711