Date Seeds as a Natural Source of Dietary Fibers to Improve Texture and Sensory Properties of Wheat Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wheat Flour and Date Seeds
2.2. Chemical Characterization of Date Seeds
2.3. Morphological Study of Date Seeds
2.4. Extraction of Soluble Polysaccharides and Hemicellulose from Date Seeds
2.5. Functional Properties of Date Seed Fractions
2.5.1. Water-Holding Capacity (WHC)
2.5.2. Fat-Binding Capacity
2.5.3. Emulsion Properties
2.5.4. Foaming Properties
2.6. Dough Preparation and Characterization
2.7. Bread Making and Characterization
2.7.1. Bread Making
2.7.2. Bread Volume
2.7.3. Bread Textural Analysis
2.7.4. Bread Color Evaluation
2.7.5. Bread Sensory Analysis
2.8. Statistical Analysis
3. Results and discussion
3.1. Chemical Composition of Date Seeds
3.2. Physical Properties of Date Seeds
3.3. Extraction Yields of DSP and DSH
3.4. Functional Properties of DSP and DSH
3.4.1. Water-Holding and Fat-Binding Capacities
3.4.2. Emulsifying Properties of DSP and DSH
3.4.3. Foaming Properties of DSP and DSH
3.5. Alveographic Properties of Dough
3.6. Bread Characterization
3.6.1. Analysis of Bread Volume
3.6.2. Textural Properties of Bread
3.6.3. Analysis of Bread Color
3.6.4. Bread Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Nasir, M.U.; Hussain, S.; Jabbar, S.; Rashid, F.; Khalid, N.; Mehmood, A. A review on the nutritional content, functional properties and medicinal potential of dates. Sci. Lett. 2015, 3, 17–22. [Google Scholar]
- Food and Agricultural Organization of the United Nation FAO, Statistical Databases. Available online: http://www.fao.org/faostat/en/#home (accessed on 17 April 2020).
- Herch, W.; Kallel, H.; Boukhchina, S. Physicochemical properties and antioxidant activity of Tunisian date palm (Phoenix dactylifera L.) oil as affected by different extraction methods. Food Sci. Technol. 2014, 34, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Besbes, S.; Blecker, C.; Deroanne, C.; Lognay, G.; Drira, N.-E.; Attia, H. Heating effects on some quality characteristics of date seed oil. Food Chem. 2005, 91, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Al-Shahib, W.; Marshall, R.J. The fruit of the date palm: Its possible use as the best food for the future? Int. J. Food Sci. Nutr. 2003, 54, 247–259. [Google Scholar] [CrossRef]
- Ghnimi, S.; Umer, S.; Karim, A.; Kamal-Eldin, A. Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS J. 2017, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Devshony, S.; Eteshola, E.; Shani, A. Characteristics and some potential applications of date palm (Phoenix dactylifera L.) seeds and seed oil. J. Am. Oil Chem. Soc. 1992, 69, 595–597. [Google Scholar] [CrossRef]
- Hamada, J.S.; Hashim, I.B.; Sharif, F.A. Preliminary analysis and potential uses of date pits in foods. Food Chem. 2002, 76, 135–137. [Google Scholar] [CrossRef]
- Besbes, S.; Blecker, C.; Deroanne, C.; Drira, N.-E.; Attia, H. Date seeds: Chemical composition and characteristic profiles of the lipid fraction. Food Chem. 2004, 84, 577–584. [Google Scholar] [CrossRef]
- Bouaziz, M.A.; Amara, W.B.; Attia, H.; Blecker, C.; Besbes, S. Effect of the addition of defatted date seeds on wheat dough performance and bread quality. J. Texture Stud. 2010, 41, 511–531. [Google Scholar] [CrossRef]
- Ali, K.T.; Fine, N.C.; Faraj, M.; Sarsam, N.H. The use of date products in the ration of the lactating dairy cow and the water buffalo. Indian J. Vet. Sci. Anim. Husb. 1956, 26, 193–201. [Google Scholar]
- Al-Yousef, Y.; Belyea, R.L.; Vandepopuliere, J.M. Sodium Hydroxide Treatment of Date Pits; King Faisal University: Al-Hassa, Saudi Arabia, 1986; Volume 2, pp. 103–104. [Google Scholar]
- AL-Suwaiegh, S.B. Effect of feeding date pits on milk production, composition and blood parameters of lactating ardi goats. Asian-Australas. J. Anim. Sci. 2016, 29, 509–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousif, O.M.; Osman, M.F.; Alhadrami, G.A. Evaluation of dates and date pits as dietary ingredients in tilapia (Oreochromis aureus) diets differing in protein sources. Bioresour. Technol. 1996, 57, 81–85. [Google Scholar] [CrossRef]
- Elgasim, E.A.; Alyousef, Y.A.; Humeid, A.M. Possible hormonal activity of date pits and flesh fed to meat animals. Food Chem. 1995, 52, 149–152. [Google Scholar] [CrossRef]
- Ali, B.H.; Bashir, A.K.; Alhadrami, G. Reproductive hormonal status of rats treated with date pits. Food Chem. 1999, 66, 437–441. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Al-Abid, M.; Al-Shoaily, K.; Al-Amry, M.; Al-Rawahy, F. Compositional and functional characteristics of dates, syrups, and their by-products. Food Chem. 2007, 104, 943–947. [Google Scholar] [CrossRef]
- Suresh, S.; Guizani, N.; Al-Ruzeiki, M.; Al-Hadhrami, A.; Al-Dohani, H.; Al-Kindi, I.; Rahman, M.S. Thermal characteristics, chemical composition and polyphenol contents of date-pits powder. J. Food Eng. 2013, 119, 668–679. [Google Scholar] [CrossRef]
- Sayas-Barberá, E.; Martín-Sánchez, A.M.; Cherif, S.; Ben-Abda, J.; Pérez-Álvarez, J.Á. Effect of date (Phoenix dactylifera L.) pits on the shelf life of beef burgers. Foods 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Rosell, C.M.; Santos, E.; Collar, C. Physico-chemical properties of commercial fibres from different sources: A comparative approach. Food Res. Int. 2009, 42, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Cunniff, P. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1997; ISBN 0-935584-54-4. [Google Scholar]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. Für Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- AFNOR. Céréales et Produits Céréaliers: Détermination de la Teneur en Matières Grasses Totales; AFNOR: Paris, France, 1986. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Prosky, L.; Asp, N.G.; Schweizer, T.F.; DeVries, J.W.; Furda, I. Determination of insoluble, soluble, and total dietary fiber in foods and food products: Interlaboratory study. J. Assoc. Off. Anal. Chem. 1988, 71, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Khabou, W.; Trigui, A.; Ghorbel, R.; Bejar, S. L’amidon dans les rameaux d’olivier (Olea europaea) Cv. “Chemlali de Sfax”: Etude comparative de deux méthodes d’hydrolyse. Olivea 1996, 61, 57–61. [Google Scholar]
- Yao, Y.; Wei, J.Z.; Wang, J.; Zhang, J.P.; Liu, J.H.; Feng, W.H. Extraction of Mytilus coruscus polysaccharides and study on their immunoactivities. Acad. J. Second Mil. Med. Univ. 2005, 26, 896–899. [Google Scholar]
- Peng, F.; Peng, P.; Xu, F.; Sun, R.C. Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv. 2012, 30, 879–903. [Google Scholar] [CrossRef]
- Robertson, J.A.; de Monredon, F.D.; Dysseler, P.; Guillon, F.; Amado, R.; Thibault, J.-F. Hydration properties of dietary fibre and resistant starch: A European collaborative study. LWT-Food Sci. Technol. 2000, 33, 72–79. [Google Scholar] [CrossRef]
- Abdul-Hamid, A.; Luan, Y.S. Functional properties of dietary fibre prepared from defatted rice bran. Food Chem. 2000, 68, 15–19. [Google Scholar] [CrossRef]
- Bouaziz, F.; Koubaa, M.; Ben Jeddou, K.; Kallel, F.; Boisset Helbert, C.; Khelfa, A.; Ellouz Ghorbel, R.; Ellouz Chaabouni, S. Water-soluble polysaccharides and hemicelluloses from almond gum: Functional and prebiotic properties. Int. J. Biol. Macromol. 2016, 93, 359–368. [Google Scholar] [CrossRef]
- Shahidi, F.; Han, X.-Q.; Synowiecki, J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 1995, 53, 285–293. [Google Scholar] [CrossRef]
- Yi, J.; Johnson, J.W.; Kerr, W.L. Properties of bread made from frozen dough containing waxy wheat flour. J. Cereal Sci. 2009, 50, 364–369. [Google Scholar] [CrossRef]
- Bourne, M.C.; Kenny, J.F.; Barnard, J. Computer-assisted readout of data from texture profile analysis curves. J. Texture Stud. 1978, 9, 481–494. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J. Application of hydrocolloids as baking improvers. Chem. Pap. 2008, 63, 26–38. [Google Scholar] [CrossRef]
- Abbès, F.; Bouaziz, M.A.; Blecker, C.; Masmoudi, M.; Attia, H.; Besbes, S. Date syrup: Effect of hydrolytic enzymes (pectinase/cellulase) on physico-chemical characteristics, sensory and functional properties. LWT-Food Sci. Technol. 2011, 44, 1827–1834. [Google Scholar]
- Chandra, R.P.; Bura, R.; Mabee, W.E.; Berlin, A.; Pan, X.; Saddler, J.N. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? Adv. Biochem. Eng. Biotechnol. 2007, 108, 67–93. [Google Scholar]
- Nabili, A.; Fattoum, A.; Passas, R.; Elaloui, E. Extraction and characterization of cellulose from date palm seeds (Phoenix dactylifera L.). Cellul. Chem. Technol. 2016, 50, 9–10. [Google Scholar]
- Bouhlali, E.T.; Alem, C.; Ennassir, J.; Benlyas, M.; Mbark, A.N.; Zegzouti, Y.F. Phytochemical compositions and antioxidant capacity of three date (Phoenix dactylifera L.) seeds varieties grown in the South East Morocco. J. Saudi Soc. Agric. Sci. 2017, 16, 350–357. [Google Scholar] [CrossRef]
- Ben Jeddou, K.; Chaari, F.; Maktouf, S.; Nouri-Ellouz, O.; Boisset Helbert, C.; Ellouz Ghorbel, R. Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chem. 2016, 205, 97–105. [Google Scholar] [CrossRef]
- Flórez-Pardo, L.M.; González-Córdoba, A.; López-Galán, J.E.; Flórez-Pardo, L.M.; González-Córdoba, A.; López-Galán, J.E. Evaluation of different methods for efficient extraction of hemicelluloses leaves and tops of sugarcane. Dyna 2018, 85, 18–27. [Google Scholar] [CrossRef]
- Grigelmo-Miguel, N.; Martín-Belloso, O. Influence of fruit dietary fibre addition on physical and sensorial properties of strawberry jams. J. Food Eng. 1999, 41, 13–21. [Google Scholar] [CrossRef]
- Sila, A.; Bayar, N.; Ghazala, I.; Bougatef, A.; Ellouz-Ghorbel, R.; Ellouz-Chaabouni, S. Water-soluble polysaccharides from agro-industrial by-products: Functional and biological properties. Int. J. Biol. Macromol. 2014, 69, 236–243. [Google Scholar] [CrossRef]
- Prud’homme, R.K.; Khan, S.A. Foams: Theory, Measurements, and Applications; Marcel Dekker, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Sudha, M.L.; Vetrimani, R.; Leelavathi, K. Influence of fibre from different cereals on the rheological characteristics of wheat flour dough and on biscuit quality. Food Chem. 2007, 100, 1365–1370. [Google Scholar] [CrossRef]
- Sivam, A.S.; Sun-Waterhouse, D.; Waterhouse, G.I.N.; Quek, S.; Perera, C.O. Physicochemical properties of bread dough and finished bread with added pectin fiber and phenolic antioxidants. J. Food Sci. 2011, 76, H97–H107. [Google Scholar] [CrossRef]
- Ahmed, J.; Almusallam, A.S.; Al-Salman, F.; AbdulRahman, M.H.; Al-Salem, E. Rheological properties of water insoluble date fiber incorporated wheat flour dough. LWT-Food Sci. Technol. 2013, 51, 409–416. [Google Scholar] [CrossRef]
- Liu, N.; Ma, S.; Li, L.; Wang, X. Study on the effect of wheat bran dietary fiber on the rheological properties of dough. Grain Oil Sci. Technol. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Tronsmo, K.M.; Færgestad, E.M.; Schofield, J.D.; Magnus, E.M. Wheat protein quality in relation to baking performance evaluated by the Chorleywood bread process and a hearth bread baking test. J. Cereal Sci. 2003, 38, 205–215. [Google Scholar] [CrossRef]
- Blibech, M.; Maktouf, S.; Chaari, F.; Zouari, S.; Neifar, M.; Besbes, S.; Ellouze-Ghorbel, R. Functionality of galactomannan extracted from Tunisian carob seed in bread dough. J. Food Sci. Technol. 2013, 52, 423–429. [Google Scholar] [CrossRef]
- Giannou, V.; Tzia, C. Frozen dough bread: Quality and textural behavior during prolonged storage—Prediction of final product characteristics. J. Food Eng. 2007, 79, 929–934. [Google Scholar] [CrossRef]
- Sangnark, A.; Noomhorm, A. Chemical, physical and baking properties of dietary fiber prepared from rice straw. Food Res. Int. 2004, 37, 66–74. [Google Scholar] [CrossRef]
- Wang, J.; Rosell, C.M.; Benedito de Barber, C. Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chem. 2002, 79, 221–226. [Google Scholar] [CrossRef]
- Ranhotra, G.S.; Gelroth, J.A.; Astroth, K.; Posner, E.S. Distribution of total and soluble fiber in various millstreams of wheat. J. Food Sci. 1990, 55, 1349–1351. [Google Scholar] [CrossRef]
- Be, K.; Ca, H.; Mm, C.; Rn, S. Effect of beta-glucan barley fractions in high-fiber bread and pasta. Cereal Foods World 1997, 42, 94–99. [Google Scholar]
- Belghith Fendri, L.; Chaari, F.; Maaloul, M.; Kallel, F.; Abdelkafi, L.; Ellouz Chaabouni, S.; Ghribi-Aydi, D. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT 2016, 73, 584–591. [Google Scholar] [CrossRef]
- Gómez, M.; Ronda, F.; Blanco, C.A.; Caballero, P.A.; Apesteguía, A. Effect of dietary fibre on dough rheology and bread quality. Eur. Food Res. Technol. 2003, 216, 51–56. [Google Scholar] [CrossRef]
- Chang, R.-C.; Li, C.-Y.; Shiau, S.-Y. Physico-chemical and sensory properties of bread enriched with lemon pomace fiber. Czech J. Food Sci. 2015, 33, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Capuano, E.; Ferrigno, A.; Acampa, I.; Ait-Ameur, L.; Fogliano, V. Characterization of the Maillard reaction in bread crisps. Eur. Food Res. Technol. 2008, 228, 311–319. [Google Scholar] [CrossRef]
- Dalgetty, D.D.; Baik, B.-K. Fortification of bread with hulls and cotyledon fibers isolated from peas, lentils, and chickpeas. Cereal Chem. 2006, 83, 269–274. [Google Scholar] [CrossRef]
Allig Variety | Deglet Nour Variety | Ghars Souf Variety | |
---|---|---|---|
Moisture (g·100 g−1) | 4.76 ± 0.2 a | 8.02 ± 0.18 b | 7.81 ± 0.12 b |
Proteins (g·100 g−1) | 2.48 ± 0.15 a | 2.49 ± 0.15 a | 2.62 ± 0.04 a |
Lipids (g·100 g−1) | 8.66 ± 0.12 a | 9.77 ± 0.23 b | 11.29 ± 0.09 c |
Carbohydrates (g·100 g−1) | 83.32 ± 0.19 c | 77.22 ± 0.15 b | 76.47 ± 0.22 a |
Insoluble fibers (g·100 g−1) | 76.99 ± 0.21 b | 75.93 ± 0.12 a | 76.62 ± 0.09 b |
Soluble fibers (g·100 g−1) | 6.72 ± 0.2 b | 4.40 ± 0.13 a | 6.23 ± 0.09 b |
Cellulose (g·100 g−1) | 26.60 ± 0.08 a | 33.92 ± 0.07 c | 31.94 ± 0.09 b |
Hemicellulose (g·100 g−1) | 42.30 ± 0.3 c | 31.97 ± 0.26 a | 34.29 ± 0.24 b |
Insoluble lignin (g·100 g−1) | 24.06 ± 0.04 b | 21.20 ± 0.06 a | 23.96 ± 0.03 b |
Ash (g·100 g−1) | 0.78 ± 0.08 a | 2.32 ± 0.08 b | 1.81 ± 0.72 b |
Zn (mg·100 g−1) | 0.32 ± 0.01 b | 0.29 ± 0.02 a | 0.325 ± 0.01 b |
Mn (mg·100 g−1) | 0.06 ± 0.01 a | Trace | 0.10 ± 0.008 b |
Fe (mg·100 g−1) | Trace | Trace | Trace |
Cu (mg·100 g−1) | 0.29 ± 0.01 a | 0.25 ± 0.01 a | 0.28 ± 0.01 a |
K (mg·100 g−1) | 2.45 ± 0.1 b | 2.7 ± 0.21 b | 1.93 ± 0.14 a |
Na (mg·100 g−1) | 5.86 ± 0.3 a | 5.65 ± 0.24 a | 5.41 ± 0.18 a |
Ca (mg·100 g−1) | 5.51 ± 0.22 c | 3.12 ± 0.3 a | 3.63 ± 0.21 b |
Mg (mg·100 g−1) | 2.57 ± 0.01 c | 1.98 ± 0.01 a | 2.13 ± 0.01 b |
Date Seed Variety | Water-Holding Capacity (g·g−1 Sample) | Fat-Binding Capacity (g·g−1 Sample) | |
---|---|---|---|
DSP | Deglet Nour | 2.7 ± 0.1 a | 7.1 ± 0.4 c |
Ghars Souf | 2.6 ± 0.1 a | 4.5 ± 0.3 a | |
Allig | 2.5 ± 0.2 a | 5.9 ± 0.4 b | |
DSH | Deglet Nour | 6.3 ± 0.2 c | 12 ± 0.1 c |
Ghars Souf | 3.4 ± 0.2 a | 8.6 ± 0.2 a | |
Allig | 5.6 ± 0.2 b | 9 ± 0.2 b |
Deformation Work (10−4 J) | P/L Ratio | |
---|---|---|
FLBM | 102 ± 3.24 a | 0.45 ± 0.03 b |
FHBM | 194 ± 3.75 e | 0.7 ± 0.02 d |
FLBM + 0.5% DSP | 125 ± 2.91 b | 0.39 ± 0.03 a |
FLBM + 0.75% DSP | 154 ± 2.35 d | 0.42 ± 0.01 ab |
FLBM + 0.5% DSH | 153 ± 3.23 cd | 0.56 ± 0.03 c |
FLBM + 0.75% DSH | 194 ± 2.41 e | 1.28 ± 0.02 f |
FLBM + 0.5% LBG | 147 ± 2.35 c | 0.41 ± 0.02 a,b |
FLBM + 0.75% LBG | 216 ± 3.25 f | 0.86 ± 0.03 e |
Hardness (N) | Cohesiveness | Springiness (mm) | Adhesiveness (N) | Chewiness (Nmm) | |
---|---|---|---|---|---|
Control bread with FLBM | 5.56 ± 0.31 c | 0.11 ± 0.05 b | 11.84 ± 2.12 c | 0.52 ± 0.13 a | 7.887 ± 0.6 c |
Reference bread with FHBM | 4.69 ± 0.2 b | 0.086 ± 0.007 a | 5.42 ± 0.65 a | 0.4 ± 0.02 a | 2.19 ± 0.15 a |
Bread with 0.75% LBG | 4.77 ± 0.5 b | 0.11 ± 0.014 b | 12.67 ± 1.23 c | 0.84 ± 0.2 b | 9.82 ± 2.5 c |
Bread with 0.75% DSH | 3.25 ± 0.32 a | 0.15 ± 0.014 c | 10.41 ± 0.0022 b,c | 0.5 ± 0.096 a | 5.22 ± 0.4 b |
Bread with 0.75% DSP | 6.99 ± 0.65 d | 0.16 ± 0.016 c | 8.71 ± 1.2 b | 0.91 ± 0.013 b | 9.738 ± 1.46 c |
Control Bread with FLBM | Reference Bread with FHBM | Bread with 0.75% LBG | Bread with 0.75% DSH | Bread with 0.75% DSP | |
---|---|---|---|---|---|
Crumb | |||||
L* | 63.25 ± 0.26 c | 70.97 ± 0.79 d | 60.24 ± 0.31 c | 29.55 ± 2.057 a | 43.26 ± 3.35 b |
a* | 0.94 ± 0.1 a | 0.51 ± 0.03 a | 0.84 ± 0.04 a | 7.94 ± 0.54 c | 4.67 ± 0.28 b |
b* | 18.13 ± 0.2 c,d | 18.94 ± 0.09 d | 17.58 ± 0.1 c | 8.57 ± 0.86 a | 12.20 ± 0.48 b |
Crust | |||||
L* | 68.52 ± 0.68 c | 67.39 ± 0.03 c | 64.23 ± 0.56 b | 35.59 ± 0.16 a | 63.37 ± 0.01 b |
a* | 1.33 ± 0.05 b | 6.135 ± 0.02 d | 1.04 ± 0.032 a | 10.21 ± 0.03 e | 4.165 ± 0.06 c |
b* | 20.65 ± 0.16 c | 29.85 ± 0.04 e | 22.56 ± 1.1 d | 11.73 ± 0.01 a | 16.59 ± 0.17 b |
Control Bread with FLBM | Reference Bread with FHBM | Bread with 0.75% LBG | Bread with 0.75% DSP | Bread with 0.75% DSH | |
---|---|---|---|---|---|
Overall acceptability | 2.28 ± 0.2 a | 4.55 ± 0.25 c | 2 ± 0.11 a | 3 ± 0.21 b | 4.3 ± 0.12 c |
Appearance | 2.14 ± 0.4 a | 4.85 ± 0.74 b | 2.16 ± 0.2 a | 2.75 ± 0.32 a | 4.2 ± 0.5 b |
Odor | 3.22 ± 0.14 b | 4.15 ± 0.58 c | 2.44 ± 0.3 a | 3.33 ± 0.12 b | 4.11 ± 0.7 c |
Texture | 2.22 ± 0.5 a | 3.55 ± 0.22 b | 2.77 ± 0.17 a | 4 ± 0.5 b,c | 4.3 ± 0.22 c |
Taste | 2.44 ± 0.12 a | 4.66 ± 0.36 b | 2.55 ± 0.56 a | 2.55 ± 0.74 a | 4.1 ± 0.31 b |
Crust color | 2.55 ± 0.22 a | 4 ± 0.23 c | 2.88 ± 0.81 a,b | 3.44 ± 0.22 b,c | 3.8 ± 0.16 c |
Crumb color | 2.44 ± 0.31 a | 3.66 ± 0.4 b | 2 ± 0.21 a | 3.77 ± 0.3 b | 3.66 ± 0.45 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouaziz, F.; Ben Abdeddayem, A.; Koubaa, M.; Ellouz Ghorbel, R.; Ellouz Chaabouni, S. Date Seeds as a Natural Source of Dietary Fibers to Improve Texture and Sensory Properties of Wheat Bread. Foods 2020, 9, 737. https://doi.org/10.3390/foods9060737
Bouaziz F, Ben Abdeddayem A, Koubaa M, Ellouz Ghorbel R, Ellouz Chaabouni S. Date Seeds as a Natural Source of Dietary Fibers to Improve Texture and Sensory Properties of Wheat Bread. Foods. 2020; 9(6):737. https://doi.org/10.3390/foods9060737
Chicago/Turabian StyleBouaziz, Fatma, Amal Ben Abdeddayem, Mohamed Koubaa, Raoudha Ellouz Ghorbel, and Semia Ellouz Chaabouni. 2020. "Date Seeds as a Natural Source of Dietary Fibers to Improve Texture and Sensory Properties of Wheat Bread" Foods 9, no. 6: 737. https://doi.org/10.3390/foods9060737
APA StyleBouaziz, F., Ben Abdeddayem, A., Koubaa, M., Ellouz Ghorbel, R., & Ellouz Chaabouni, S. (2020). Date Seeds as a Natural Source of Dietary Fibers to Improve Texture and Sensory Properties of Wheat Bread. Foods, 9(6), 737. https://doi.org/10.3390/foods9060737