Rapid Pasteurization of Apple Juice Using a New Ultrasonic Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Juices
2.2. Preparation of Microorganisms
2.3. Microbial Survival in Apple Juice during Ultrasonic Processing
2.3.1. Ultrasound Treatment and Heat Treatment
2.3.2. Effect of Pulp on Microbial Survival
2.4. Thermal Processing
2.5. Particle Size Analysis
2.6. Determination of Total Phenolic Content
2.7. Measurement of Antioxidant Activity
2.8. Measurement of Microbial Growth and Decrease in Antioxidant Activity and Total Phenolic Content during Storage
2.9. Statistical Analysis
3. Results and Discussion
3.1. Microbial Survival in Pulp Free Apple Juice during Ultrasonic Processing
3.2. Effect of Pulp on Microbial Survival during Ultrasonic Processing
3.3. Effect of Ultrasonic Processing on Pulp Particle Size
3.4. Effect of Ultrasonic Processing on DPPH Value and Total Phenolic Content
3.5. Changes in Total Plate Count of Apple Juice during Storage
3.6. Changes in DPPH Value and Total Phenolic Content of Apple Juice during Storage
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; WHO technical report series 916; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Markowski, J.; Plocharski, W. Determination of phenolic compounds in apples and processed apple products. J. Fruit Ornam. Plant Res. 2006, 14, 133–142. [Google Scholar]
- Rupasinghe, H.P.; Huber, G.M.; Embree, C.; Forsline, P.L. Red-fleshed apple as a source for functional beverages. Can. J. Plant Sci. 2010, 90, 95–100. [Google Scholar] [CrossRef]
- USDA. Apples and Oranges Are America’s Top Fruit Choices. Available online: https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=58322 (accessed on 29 November 2018).
- Hyson, D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef]
- Danyluk, M.; Goodrich-Schneider, R.; Schneider, K.; Harris, L.; Worobo, R. Outbreaks of Foodborne Disease Associated with Fruit and Vegetable Juices, 1922–2010. 2012. Available online: https://ucfoodsafety.ucdavis.edu/sites/g/files/dgvnsk7366/files/inline-files/223883.pdf (accessed on 16 June 2020).
- FDA. Guidance for Industry: Juice HACCP Hazards and Controls Guidance, 1st ed.; Center for Food Safety and Applied Nutrition, Food and Drug Administration: College Park, MD, USA. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-juice-hazard-analysis-critical-control-point-hazards-and-controls-guidance-first (accessed on 26 September 2019).
- Walkling-Ribeiro, M.; Noci, F.; Cronin, D.A.; Riener, J.; Lyng, J.G.; Morgan, D.J. Reduction of Staphylococcus aureus and quality changes in apple juice processed by ultraviolet irradiation, pre-heating and pulsed electric fields. J. Food Eng. 2008, 89, 267–273. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, L.J.; Rupasinghe, H.P. Effect of thermal and non-thermal pasteurisation on the microbial inactivation and phenolic degradation in fruit juice: A mini-review. J. Sci. Food Agric. 2013, 93, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Rawson, A.; Patras, A.; Tiwari, B.K.; Noci, F.; Koutchma, T.; Brunton, N. Effect of thermal and nonthermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Res. Int. 2011, 44, 1875–1887. [Google Scholar] [CrossRef]
- Zinoviadou, K.G.; Galanakis, C.M.; Brncic, M.; Grimi, N.; Boussetta, N.; Mota, M.J.; Saraiva, J.A.; Patras, A.; Tiwari, B.; Barba, F.J. Fruit juice sonication: Implications on food safety and physicochemical and nutritional properties. Food Res. Int. 2015, 77, 743–752. [Google Scholar] [CrossRef]
- Tomadoni, B.; Cassani, L.; Viacava, G.; Moreira, M.D.R.; Ponce, A. Effect of ultrasound and storage time on quality attributes of strawberry juice. J. Food Process Eng. 2017, 40, e12533. [Google Scholar] [CrossRef]
- Guerrouj, K.; Sánchez-Rubio, M.; Taboada-Rodríguez, A.; Cava-Roda, R.M.; Marín-Iniesta, F. Sonication at mild temperatures enhances bioactive compounds and microbiological quality of orange juice. Food Bioprod. Process. 2016, 99, 20–28. [Google Scholar] [CrossRef]
- Ertugay, M.F.; Başlar, M. The effect of ultrasonic treatments on cloudy quality-related quality parameters in apple juice. Innov. Food Sci. Emerg. Technol. 2014, 26, 226–231. [Google Scholar] [CrossRef]
- Center for Food Safety. Microbiological Guidelines for Food. Available online: https://www.cfs.gov.hk/english/food_leg/files/food_leg_Microbiological_Guidelines_for_Food_e.pdf/ (accessed on 6 December 2018).
- Cruz-Cansino Ndel, S.; Reyes-Hernández, I.; Delgado-Olivares, L.; Jaramillo-Bustos, D.P.; Ariza-Ortega, J.A.; Ramírez-Moreno, E. Effect of ultrasound on survival and growth of Escherichia coli in cactus pear juice during storage. Braz. J. Microbiol. 2016, 47, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Farhadi Chitgar, M.; Aalami, M.; Maghsoudlou, Y.; Milani, E. Comparative study on the effect of heat treatment and sonication on the quality of barberry (Berberis vulgaris) juice. J. Food Process. Preserv. 2017, 41, e12956. [Google Scholar] [CrossRef]
- Baboli, Z.M.; Williams, L.; Chen, G. Design of a batch ultrasonic reactor for rapid pasteurization of juices. J. Food Eng. 2020, 268, 109736. [Google Scholar] [CrossRef]
- FDA. Code of Federal Regulations—Title 21—Food and Drugs. Part 173 Secondary Direct Food Additives Permitted in Food for Human Consumption. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=173 (accessed on 26 September 2019).
- Sauer, A.; Moraru, C.I. Inactivation of Escherichia coli ATCC 25922 and Escherichia coli O157: H7 in apple juice and apple cider, using pulsed light treatment. J. Food Prot. 2009, 72, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Lewis, G.D.; Ashokkumar, M.; Hemar, Y. Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. Ultrason. Sonochem. 2014, 21, 446–453. [Google Scholar] [CrossRef]
- Legay, M.; Simony, B.; Boldo, P.; Gondrexon, N.; Le Person, S.; Bontemps, A. Improvement of heat transfer by means of ultrasound: Application to a double-tube heat exchanger. Ultrason. Sonochem. 2012, 19, 1194–1200. [Google Scholar] [CrossRef]
- Saeeduddin, M.; Abid, M.; Jabbar, S.; Hu, B.; Hashim, M.M.; Khan, M.A.; Xie, M.; Wu, T.; Zeng, X. Physicochemical parameters, bioactive compounds and microbial quality of sonicated pear juice. Int. J. Food Sci. Technol. 2016, 51, 1552–1559. [Google Scholar] [CrossRef]
- Başlar, M.; Ertugay, M.F. The effect of ultrasound and photosonication treatment on polyphenoloxidase (PPO) activity, total phenolic component and colour of apple juice. Int. J. Food Sci. Technol. 2013, 48, 886–892. [Google Scholar] [CrossRef]
- Martínez-Flores, H.E.; Garnica-Romo, M.G.; Bermúdez-Aguirre, D.; Pokhrel, P.R.; Barbosa-Cánovas, G.V. Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage. Food Chem. 2015, 172, 650–656. [Google Scholar] [CrossRef]
- Heinz, V.; Toepfl, S.; Knorr, D. Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. Innov. Food Sci. Emerg. Technol. 2003, 4, 167–175. [Google Scholar] [CrossRef]
- Sant’Ana, A.S.; Rosenthal, A.; Massaguer, P.R. Heat resistance and the effects of continuous pasteurization on the inactivation of Byssochlamys fulva ascospores in clarified apple juice. J. Appl. Microbiol. 2009, 107, 197–209. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Kahraman, O.; Lee, H.; Zhang, W.; Feng, H. Manothermosonication (MTS) treatment of apple-carrot juice blend for inactivation of Escherichia coli 0157:H7. Ultrason. Sonochem. 2017, 38, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Ugarte-Romero, E.; Feng, H.; Martin, S.E.; Cadwallader, K.R.; Robinson, S.J. Inactivation of Escherichia coli with power ultrasound in apple cider. J. Food Sci. 2006, 71, E102–E108. [Google Scholar] [CrossRef]
- Walkling-Ribeiro, M.; Noci, F.; Riener, J.; Cronin, D.A.; Lyng, J.G.; Morgan, D.J. The impact of thermosonication and pulsed electric fields on Staphylococcus aureus inactivation and selected quality parameters in orange juice. Food Bioproc. Tech. 2009, 2, 422–430. [Google Scholar] [CrossRef]
- Patist, A.; Bates, D. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov. Food Sci. Emerg. Technol. 2008, 9, 147–154. [Google Scholar] [CrossRef]
- Helander, I.M.; Latva-Kala, K.; Lounatmaa, K. Permeabilizing action of polyethyleneimine on Salmonella typhimurium involves disruption of the outer membrane and interactions with lipopolysaccharide. Microbiology 1998, 144, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Abid, M.; Jabbar, S.; Hu, B.; Hashim, M.M.; Wu, T.; Lei, S.; Khan, M.A.; Zeng, X. Thermosonication as a potential quality enhancement technique of apple juice. Ultrason. Sonochem. 2014, 21, 984–990. [Google Scholar] [CrossRef]
- Dinçer, C.; Topuz, A. Inactivation of Escherichia coli and quality changes in black mulberry juice under pulsed sonication and continuous thermosonication treatments. J. Food Process. Preserv. 2015, 39, 1744–1753. [Google Scholar] [CrossRef]
- Valero, M.; Recrosio, N.; Saura, D.; Muñoz, N.; Martí, N.; Lizama, V. Effects of ultrasonic treatments in orange juice processing. J. Food Eng. 2007, 80, 509–516. [Google Scholar] [CrossRef]
- Cameron, M. Impact of Low-Frequency High-Power Ultrasound on Spoilage and Potentially Pathogenic Dairy Microbes. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2007. [Google Scholar]
- Illera, A.E.; Sanz, M.T.; Benito-Román, O.; Varona, S.; Beltrán, S.; Melgosa, R.; Solaesa, A.G. Effect of thermosonication batch treatment on enzyme inactivation kinetics and other quality parameters of cloudy apple juice. Innov. Food Sci. Emerg. Technol. 2018, 47, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Asgharzadehahmadi, S.; Raman, A.A.A.; Parthasarathy, R.; Sajjadi, B. Sonochemical reactors: Review on features, advantages and limitations. Renew. Sust. Energ. Rev. 2016, 63, 302–314. [Google Scholar] [CrossRef]
- Pokhrel, P.R.; Bermúdez-Aguirre, D.; Martínez-Flores, H.E.; Garnica-Romo, M.G.; Sablani, S.; Tang, J.; Barbosa-Cánovas, G.V. Combined effect of ultrasound and mild temperatures on the inactivation of E. coli in fresh carrot juice and changes on its physicochemical characteristics. J. Food Sci. 2017, 82, 2343–2350. [Google Scholar] [CrossRef]
- Sulaiman, A.; Farid, M.; Silva, F.V. Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing. Food Sci. Technol. Int. 2017, 23, 265–276. [Google Scholar] [CrossRef]
- Cruz-Cansino Ndel, S.; Ramírez-Moreno, E.; León-Rivera, J.E.; Delgado-Olivares, L.; Alanís-García, E.; Ariza-Ortega, J.A.; de Jesús Manríquez-Torres, J.; Jaramillo-Bustos, D.P. Shelf life, physicochemical, microbiological and antioxidant properties of purple cactus pear (Opuntia ficus indica) juice after thermoultrasound treatment. Ultrason. Sonochem. 2015, 27, 277–286. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Šimunek, M.; Petrović, M.; Bedić, H.; Herceg, Z.; Juretić, H. Aromatic profile and sensory characterisation of ultrasound treated cranberry juice and nectar. Ultrason. Sonochem. 2017, 38, 783–793. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Orsolani, L.; Martínez-Yépez, A.; Tapia, M.S. Microbiological and sensory quality of sonicated calcium-added orange juice. LWT Food Sci. Technol. 2010, 43, 808–813. [Google Scholar] [CrossRef]
- New Zealand Ministry for Primary Industries. How to Determine the Shelf Life of Food. Available online: https://www.mpi.govt.nz/dmsdocument/12540/direct (accessed on 2 October 2019).
- Knorr, D.; Zenker, M.; Heinz, V.; Lee, D.U. Applications and potential of ultrasonics in food processing. Trends Food Sci. Technol. 2004, 15, 261–266. [Google Scholar] [CrossRef]
Processing Condition | Bacterium | Treatment | Temperature (°C) | Treatment Time (s) | Ultrasound Amplitude (%) |
---|---|---|---|---|---|
I | E. coli | Ultrasound | 60 | 35 | 45 |
II | S. aureus | Ultrasound | 62 | 30 | 50 |
III | - | Heat | 72 | 16 | - |
Bacterium | Treatment Condition | Pulp Content (%) | log(N0/N) (log CFU/mL) | |
---|---|---|---|---|
E. coli | High | 1 | 5.27 ± 0.14 a | |
I | Low | 0.4 | 5.28 ± 0.13 a | |
Pulp free | 0 | 5.04 ± 0.17 a | ||
S. aureus | High | 1 | 4.30 ± 0.03 b | |
II | Low | 0.4 | 5.26 ± 0.52 a | |
Pulp free | 0 | 5.51 ± 0.26 a |
Processing Condition | DPPH value (Trolox Equivalent, mM/mL) | Total Phenolic Content (Gallic Acid Equivalent, mg/L) |
---|---|---|
Control | 3.46 ± 0.33 a | 643.7 ± 50.8 a |
I | 3.45 ± 0.17 a | 696.9 ± 39.3 a |
II | 4.11 ± 0.34 a | 830.9 ± 21.8 b |
III | 3.31 ± 0.12 a | 674.2 ± 30.0 a |
Storage Time (d) | logN (log CFU/mL) | |||
---|---|---|---|---|
Condition I | Condition II | Condition III | Control | |
0 | 0.96 ± 0.17 a,1 | 0.00 ± 0.00 b,1 | 0.00 ± 0.00 b,1 | 3.65 ± 0.40 c,1 |
7 | 1.00 ± 0.02 a,1 | 0.00 ± 0.00 b,1 | 0.00 ± 0.00 b,1 | 3.88 ± 0.63 c,1 |
14 | 1.16 ± 0.28 a,1 | 0.30 ± 0.00 b,1 | 0.00 ± 0.00 b,1 | 5.27 ± 0.49 c,2 |
21 | 0.93 ± 0.04 a,1 | 0.00 ± 0.00 b,1 | 0.24 ± 0.34 b,1 | 5.20 ± 0.10 c,2 |
28 | 1.11 ± 0.05 a,1 | 0.15 ± 0.21 b,1 | 0.00 ± 0.00 b,1 | 8.36 ± 0.53 c,3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baboli, Z.M.; Williams, L.; Chen, G. Rapid Pasteurization of Apple Juice Using a New Ultrasonic Reactor. Foods 2020, 9, 801. https://doi.org/10.3390/foods9060801
Baboli ZM, Williams L, Chen G. Rapid Pasteurization of Apple Juice Using a New Ultrasonic Reactor. Foods. 2020; 9(6):801. https://doi.org/10.3390/foods9060801
Chicago/Turabian StyleBaboli, Zahra Moaddabdoost, Leonard Williams, and Guibing Chen. 2020. "Rapid Pasteurization of Apple Juice Using a New Ultrasonic Reactor" Foods 9, no. 6: 801. https://doi.org/10.3390/foods9060801
APA StyleBaboli, Z. M., Williams, L., & Chen, G. (2020). Rapid Pasteurization of Apple Juice Using a New Ultrasonic Reactor. Foods, 9(6), 801. https://doi.org/10.3390/foods9060801