Microencapsulation of Rambutan Peel Extract by Spray Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Rambutan Peel for Extraction of Bioactive Compounds
2.3. Extraction of Bioactive Compounds from Fresh Rambutan Peel
2.4. Drying of Rambutan Peel to Increase the Concentration of Bioactive Compounds in the Extract
2.5. Number of Extractions Required to Extract at Least 90% of the Bioactive Compounds in Rambutan Peel
2.6. Optimization of Extraction of Bioactive Compounds from Rambutan Peel
2.7. Preparation of the Solution for the Spray Drying Process
2.8. Microencapsulation by Spray Drying of the Rambutan Peel Extract
Analysis of Powders
2.9. Analytical Methods
2.9.1. Total Phenolic Compounds Determination
2.9.2. Antioxidant Capacity Determination
2.9.3. Hydrolyzable Tannins Determination
2.9.4. Determination of Bioactive Compounds on the Surface of the Particles
2.9.5. Determination of Retention and Encapsulation Efficiency
2.9.6. Determination of Moisture Content and Water Activity (aw)
2.9.7. Bulk Density Determination
2.9.8. Tapped Density Determination
2.9.9. Hausner Ratio Determination
2.10. Characterization of the Powder Obtained under Optimal Spray Drying Conditions
2.10.1. Solubility Determination
2.10.2. Particle Size Distribution Determination
2.10.3. Surface Morphology Determination
2.11. Statistical Analysis
3. Results and Discussion
3.1. Bioactive Compounds in Fresh Rambutan Peel
3.2. Comparison between the Amount of Bioactive Compounds of Fresh and Dry Rambutan Peel
3.3. Optimization of Extraction Parameters for Bioactive Compounds from Rambutan Peel
3.4. Optimum Extraction Conditions
3.5. Microencapsulation by Spray Drying
3.5.1. Retention Efficiency of Phenolic Compounds
3.5.2. Encapsulation Efficiency of Phenolic Compounds
3.5.3. Retention and Encapsulation Efficiency of Hydrolyzable Tannins
3.5.4. Retention Efficiency of Antioxidant Capacity
3.6. Physicochemical Properties of Encapsulated Powders
3.7. Optimized Spray Drying Conditions
3.8. Properties of the Optimized Encapsulated Powder
3.8.1. Solubility
3.8.2. Particle Size Distribution
3.8.3. Surface Morphology of Microcapsules
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Da Silva, L.M.R.; De Figueiredo, E.A.T.; Ricardo, N.M.P.S.; Vieira, I.G.P.; De Figueiredo, R.W.; Brasil, I.M.; Gomes, C.L. Quantification of Bioactive Compounds in Pulps and By-Products of Tropical Fruits from Brazil. Food Chem. 2014, 143, 398–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarma Arroyo, B.; Santos Pinheiro, A.; de Melo, E.D.A.; Campos, A.; Lins, L.; Boyano-Orozco, L.C. Bioactive Compounds and Their Potential Use as Ingredients for Food and Its Application in Food Packaging. In Bioactive Compounds; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 143–156. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Iwamoto, S. Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends Food Sci. Technol. 2019, 86, 109–117. [Google Scholar] [CrossRef]
- Theagarajan, R.; Malur Narayanaswamy, L.; Dutta, S.; Moses, J.A.; Chinnaswamy, A. Valorisation of grape pomace (cv. Muscat) for development of functional cookies. Int. J. Food Sci. Technol. 2019, 54, 1299–1305. [Google Scholar] [CrossRef]
- Rodrigues, F.; Sarmento, B.; Amaral, M.H.; Oliveira, M.B.P.P. Exploring the antioxidant potentiality of two food by-products into a topical cream: Stability, in vitro and in vivo evaluation. Drug Dev. Ind. Pharm. 2016, 42, 880–889. [Google Scholar] [CrossRef]
- Hernández, C.; Ascacio-Valdés, J.; De la Garza, H.; Wong-Paz, J.; Aguilar, C.N.; Martínez-Ávila, G.C.; Castro-López, C.; Aguilera-Carbó, A. Polyphenolic content, in vitro antioxidant activity and chemical composition of extract from Nephelium lappaceum L. (Mexican rambutan) husk. Asian Pac. J. Trop. Med. 2017, 10, 1201–1205. [Google Scholar] [CrossRef]
- Mahmood, K.; Kamilah, H.; Alias, A.K.; Ariffin, F. nutritional and therapeutic potentials of rambutan fruit (Nephelium lappaceum L.) and the by-Products: A Review. J. Food Meas. Charact. 2018, 12, 1556–1571. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M.; Mongkonpaibool, K.; Butsaratrakool, T.; Chinmuang, T. rambutan seed as a new promising unconventional source of specialty fat for cosmetics. Ind. Crops Prod. 2016, 83, 149–154. [Google Scholar] [CrossRef]
- Samuagam, L.; Khoo, H.E.; Akowuah, G.A.; Okechukwu, P.N.; Yim, H.S. Hplc analysis of antioxidant compounds in some selected tropical fruits’ peel. Innov. Rom. Food Biotechnol. 2014, 14, 61–68. [Google Scholar]
- Lisdiana; Yuniastuti, A.; Kusfitasari, A. Analysis of vitamin c and mineral content on rambutan peels exstract. J. Phys. Conf. Ser. 2019, 1321, 1–4. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Hou, H.; Zhuang, Y.; Sun, L. Metal Chelating, Inhibitory DNA Damage, and Anti-Inflammatory Activities of Phenolics from Rambutan (Nephelium Lappaceum) Peel and the Quantifications of Geraniin and Corilagin. Molecules 2018, 23, 2263. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Guo, Y.; Sun, L.; Zhuang, Y. Anti-Diabetic Effects of Phenolic Extract from Rambutan Peels (Nephelium lappaceum) in High-Fat Diet and Streptozotocin-Induced Diabetic Mice. Nutrients 2017, 9, 801. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Ma, Q.; Guo, Y.; Sun, L. Protective Effects of Rambutan (Nephelium lappaceum) Peel Phenolics on H2O2-Induced Oxidative Damages in HepG2 Cells and D-Galactose-Induced Aging Mice. Food Chem. Toxicol. 2017, 108, 554–562. [Google Scholar] [CrossRef]
- Lestari, S.R.; Djati, M.S.; Rudijanto, A.; Fatchiyah, F. PPARγ expression by rambutan peel extract in obesity rat model-induced high-calorie diet. Asian Pac. J. Trop. Biomed. 2015, 5, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Phuong, N.N.M.; Le, T.T.; Van Camp, J.; Raes, K. Evaluation of antimicrobial activity of rambutan (Nephelium lappaceum L.) peel extracts. Int. J. Food Microbiol. 2020, 321, 108539. [Google Scholar] [CrossRef]
- Khaizill, E.Z.; Nik, A.S.; Mohd, D.S. Preliminary Study on Anti-Proliferative Activity of Methanolic Extract of Nephelium lappaceum Peels towards Breast (MDA-MB-231), Cervical (HeLa) and Osteosarcoma (MG-63) Cancer Cell Lines. Health Environ. J. 2013, 4, 66–79. [Google Scholar]
- Zhuang, Y.; Sun, X.; Liu, B.; Hou, H.; Sun, Y. Effects of Rambutan Peel (Nepheliumlappaceum) PhenolicExtract on RANKL-Induced Differentiation of RAW264.7 Cells into Osteoclasts and Retinoic Acid-Induced Osteoporosis in Rats. Nutrients 2020, 12, 833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mota, M.D.; da Boa Morte, A.N.; e Silva, L.C.R.C.; Chinalia, F.A. Sunscreen protection factor enhancement through supplementation with rambutan (Nephelium lappaceum L.) Ethanolic Extract. J. Photochem. Photobiol. B Biol. 2020, 205, 111837. [Google Scholar] [CrossRef]
- Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem. 2019, 272, 494–506. [Google Scholar] [CrossRef]
- Madalena, D.A.; Pereira, R.N.; Vicente, A.A.; Ramos, Ó.L. New Insights on Bio-Based Micro—And Nanosystems in Food. Encycl. Food Chem. 2018, 708–714. [Google Scholar] [CrossRef]
- Dias, M.I.; Ferreira, I.C.F.R.; Barreiro, M.F. Microencapsulation of bioactives for food applications. Food Funct. 2015, 6, 1035–1052. [Google Scholar] [CrossRef] [Green Version]
- Marisa Ribeiro, A.; Estevinho, B.N.; Rocha, F. Microencapsulation of polyphenols—The specific case of the microencapsulation of Sambucus Nigra L. Extracts—A Review. Trends Food Sci. Technol. 2019, 1–14. [Google Scholar] [CrossRef]
- Navidad-Murrieta, M.S.; Pérez-Larios, A.; Sanchéz-Burgos, J.A.; Ragazzo-Sánchez, J.A.; Luna-Bárcenas, G.; Sáyago-Ayerdi, S.G. Use of a Taguchi Design in Hibiscus Sabdariffa Extracts Encapsulated by Spray-Drying. Foods 2020, 9, 128. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Initiative on Food Loss and Waste; FAO: Rome, Italy, 2017. [Google Scholar]
- Samuagam, L.; Cm, S.; Ga, A.; Pn, O.; Hs, Y. The Effect of Extraction Conditions on Total Phenolic Content and Free Radical Scavenging Capacity of Selected Tropical Fruits’ Peel. Health Environ. J. 2013, 4, 80–102. [Google Scholar]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry to Total Phenolics with Phosphomolybdic Acid Reagents. Am. J. Enol. Vinic. 1985, 16, 144–158. [Google Scholar]
- Rufino, M.D.S.; Alves, R.E.; de Brito, E.S.; de Morais, S.M.; Sampaio, C.D.G.; Saura-Calixto, F.D. Metodologia Científica: Determinação Da Atividade Antioxidante Total Em Frutas Pela Captura Do Radical Livre ABTS. Embrapa Agroind. Trop. Comun. Téc. 2007, 127, 1–3. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Toledo-Madrid, K.; Gallardo-Velázquez, T.; Osorio-Revilla, G. Microencapsulation of Purple Cactus Pear Fruit (Opuntia Ficus Indica) Extract by the Combined Method W/O/W Double Emulsion-Spray Drying and Conventional Spray Drying: A Comparative Study. Processes 2018, 6, 189. [Google Scholar] [CrossRef] [Green Version]
- Çam, M.; Hişil, Y. Pressurised water extraction of polyphenols from pomegranate peels. Food Chem. 2010, 123, 878–885. [Google Scholar] [CrossRef]
- Robert, P.; Gorena, T.; Romero, N.; Sepulveda, E.; Chavez, J.; Saenz, C. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int. J. Food Sci. Technol. 2010, 45, 1386–1394. [Google Scholar] [CrossRef]
- Pereyra-Castro, S.C.; Alamilla-Beltrán, L.; Villalobos-Castillejos, F.; Porras-Saavedra, J.; Pérez-Pérez, V.; Gutiérrez-López, G.F.; Jiménez-Aparicio, A.R. Microfluidization and atomization pressure during microencapsulation process: Microstructure, hygroscopicity, dissolution and flow properties. LWT 2018, 96, 378–385. [Google Scholar] [CrossRef]
- Ortiz-Basurto, R.I.; Rubio-Ibarra, M.E.; Ragazzo-Sanchez, J.A.; Beristain, C.I.; Jiménez-Fernández, M. Microencapsulation of Eugenia uniflora L. juice by spray drying using fructans with different degrees of polymerisation. Carbohydr. Polym. 2017, 175, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Plazola-Jacinto, C.P.; Pérez-Pérez, V.; Pereyra-Castro, S.C.; Alamilla-Beltrán, L.; Ortiz-Moreno, A. Microencapsulation of biocompounds from avocado leaves oily extracts. Rev. Mex. Ing. Quim. 2019, 18, 1261–1276. [Google Scholar] [CrossRef]
- Alvarez-Gaona, I.J.; Bater, C.; Zamora, M.C.; Chirife, J. Spray drying encapsulation of red wine: Stability of total monomeric anthocyanins and structural alterations upon storage. J. Food Process. Preserv. 2018, 42, 13457. [Google Scholar] [CrossRef]
- Azaria Gusman, J.; Pi-Jen, T. Extraction of Antioxidant Compounds from Rambutan (Nephelium lappaceum l.) Peel as Agricultural Waste in Taiwan. J. Trop. Crop Sci. 2015, 2, 10–16. [Google Scholar] [CrossRef]
- Chunglok, W.; Utaipan, T.; Somchit, N.; Lertcanawanichakul, M.; Sudjaroen, Y. Antioxidant and Antiproliferative Activities of Non-Edible Parts of Selected Tropical Fruits. Sains Malays. 2014, 43, 689–696. [Google Scholar]
- Fidrianny, I.; Fikayuniar, L.; Insanu, M. Antioxidant activities of various seed extracts from four varieties of rambutan (Nephelium lappaceum) using 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) assays. Asian J. Pharm. Clin. Res. 2015, 8, 215–219. [Google Scholar]
- Cheng, H.S.; Ton, S.H.; Abdul Kadir, K. Ellagitannin geraniin: A review of the natural sources, biosynthesis, pharmacokinetics and biological effects. Phytochem. Rev. 2017, 16, 159–193. [Google Scholar] [CrossRef]
- Maran, J.P.; Manikandan, S.; Priya, B.; Gurumoorthi, P. box-behnken design based multi-response analysis and optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from tea (Camellia sinensis L.) Leaves. J. Food Sci. Technol. 2015, 52, 92–104. [Google Scholar] [CrossRef]
- Kuck, L.S.; Noreña, C.P.Z. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chem. 2016, 194, 569–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaderides, K.; Goula, A.M.; Adamopoulos, K.G. A Process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Innov. Food Sci. Emerg. Technol. 2015, 31, 204–215. [Google Scholar] [CrossRef]
- Çam, M.; Içyer, N.C.; Erdoǧan, F. Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT—Food Sci. Technol. 2014, 55, 117–123. [Google Scholar] [CrossRef]
- Desai, N.M.; Haware, D.J.; Basavaraj, K.; Murthy, P.S. Microencapsulation of antioxidant phenolic compounds from green coffee. Prep. Biochem. Biotechnol. 2019, 49, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Moreno, T.; de Paz, E.; Navarro, I.; Rodríguez-Rojo, S.; Matías, A.; Duarte, C.; Sanz-Buenhombre, M.; Cocero, M.J. Spray Drying Formulation of Polyphenols-Rich Grape Marc Extract: Evaluation of Operating Conditions and Different Natural Carriers. Food Bioprocess Technol. 2016, 9, 2046–2058. [Google Scholar] [CrossRef]
- Eroğlu, E.; Tontul, İ.; Topuz, A. Optimization of aqueous extraction and spray drying conditions for efficient processing of hibiscus blended rosehip tea powder. J. Food Process. Preserv. 2018, 42, 13643. [Google Scholar] [CrossRef]
- Oliveira, B.E.; Junior, P.C.G.; Cilli, L.P.; Contini, L.R.F.; Venturini, A.C.; Yoshida, C.M.P.; Braga, M.B. Spray-drying of grape skin-whey protein concentrate mixture. J. Food Sci. Technol. 2018, 55, 3693–3702. [Google Scholar] [CrossRef]
- Sablania, V.; Bosco, S.J.D.; Rohilla, S.; Shah, M.A. Microencapsulation of Murraya koenigii L. leaf extract using spray drying. J. Food Meas. Charact. 2018, 12, 892–901. [Google Scholar] [CrossRef]
- Gómez-Aldapa, C.A.; Castro-Rosas, J.; Rangel-Vargas, E.; Navarro-Cortez, R.O.; Cabrera-Canales, Z.E.; Díaz-Batalla, L.; Martínez-Bustos, F.; Guzmán-Ortiz, F.A.; Falfan-Cortes, R.N. A Modified achira (Canna indica L.) starch as a wall material for the encapsulation of hibiscus sabdariffa extract using spray drying. Food Res. Int. 2019, 119, 547–553. [Google Scholar] [CrossRef]
- Santiago-Adame, R.; Medina-Torres, L.; Gallegos-Infante, J.A.; Calderas, F.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Ochoa-Martínez, L.A.; Bernad-Bernad, M.J. Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT Food Sci. Technol. 2015, 64, 571–577. [Google Scholar] [CrossRef]
Determination | Result |
---|---|
Phenolics compounds (PC) | 304.52 ± 17.52 |
Hydrolyzable tannins (HT) | 578.22 ± 11.37 |
Antioxidant capacity (ABTS)(AC) | 2935.31 ± 161.52 |
Antioxidant capacity (DPPH)(AC) | 2490.16 ± 187.70 |
Moisture content (%) | 78.13 ± 0.01 |
Operating Conditions (Ti-To-EA) | Moisture (%) | Water Activity (aw) | Bulk Density (g/mL) | Tapped Density (g/mL) | Hausner Ratio |
---|---|---|---|---|---|
160-80-10 | 3.59 ± 0.20 | 0.327 ± 0.03 | 0.195 ± 0.01 | 0.286 ± 0.02 | 1.45 ± 0.15 |
160-70-10 | 5.08 ± 0.23 | 0.355 ± 0.03 | 0.220 ± 0.02 | 0.287 ± 0.02 | 1.30 ± 0.03 |
180-80-10 | 4.24 ± 0.17 | 0.319 ± 0.01 | 0.225 ± 0.01 | 0.286 ± 0.02 | 1.28 ± 0.18 |
180-70-10 | 5.36 ± 0.45 | 0.337 ± 0.02 | 0.238 ± 0.01 | 0.309 ± 0.02 | 1.29 ± 0.03 |
160-80-13 | 3.42 ± 0.11 | 0.305 ± 0.02 | 0.227 ± 0.01 | 0.289 ± 0.03 | 1.27 ± 0.08 |
160-70-13 | 5.08 ± 0.32 | 0.332 ± 0.03 | 0.251 ± 0.00 | 0.311 ± 0.03 | 1.24 ± 0.15 |
180-80-13 | 4.19 ± 0.29 | 0.331 ± 0.00 | 0.231 ± 0.01 | 0.320 ± 0.01 | 1.39 ± 0.04 |
180-70-13 | 5.39 ± 0.27 | 0.381 ± 0.04 | 0.237 ± 0.01 | 0.311 ± 0.01 | 1.32 ± 0.02 |
Response Variable | Predicted Values | Experimental Values |
---|---|---|
PC Retention (%) | 95.40 | 97.72 ± 2.47 |
PC Encapsulation (%) | 93.40 | 96.56 ± 2.47 |
AC Retention (ABTS) (%) | 100.86 | 98.50 ± 2.79 |
AC Retention (DPPH) (%) | 95.15 | 102.31 ± 0.59 |
HT Retention (%) | 90.81 | 90.70 ± 2.53 |
HT Encapsulation (%) | 85.91 | 86.10 ± 2.47 |
Water Activity (aw) | 0.33 | 0.25 ± 0.01 |
Moisture (%) | 3.59 | 3.95 ± 0.10 |
Hausner ratio | 1.35 | 1.42 ± 0.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyano-Orozco, L.; Gallardo-Velázquez, T.; Meza-Márquez, O.G.; Osorio-Revilla, G. Microencapsulation of Rambutan Peel Extract by Spray Drying. Foods 2020, 9, 899. https://doi.org/10.3390/foods9070899
Boyano-Orozco L, Gallardo-Velázquez T, Meza-Márquez OG, Osorio-Revilla G. Microencapsulation of Rambutan Peel Extract by Spray Drying. Foods. 2020; 9(7):899. https://doi.org/10.3390/foods9070899
Chicago/Turabian StyleBoyano-Orozco, Luis, Tzayhrí Gallardo-Velázquez, Ofelia Gabriela Meza-Márquez, and Guillermo Osorio-Revilla. 2020. "Microencapsulation of Rambutan Peel Extract by Spray Drying" Foods 9, no. 7: 899. https://doi.org/10.3390/foods9070899
APA StyleBoyano-Orozco, L., Gallardo-Velázquez, T., Meza-Márquez, O. G., & Osorio-Revilla, G. (2020). Microencapsulation of Rambutan Peel Extract by Spray Drying. Foods, 9(7), 899. https://doi.org/10.3390/foods9070899