The Effect of Compositional Changes Due to Seasonal Variation on Milk Density and the Determination of Season-Based Density Conversion Factors for Use in the Dairy Industry
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design and Sample Collection
2.2. Sample Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. The Effect of Seasonal Variation and Photoperiod on Milk Composition
4.2. The Effect of Seasonal Variations on Milk Density, Mass Balances and Milk Payment Systems
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amenu, B.; Deeth, H.C. The impact of milk composition on cheddar cheese manufacture. Aust. J. Dairy Technol. 2007, 62, 171. [Google Scholar]
- Lindmark-Månsson, H.; Fondén, R.; Pettersson, H.E. Composition of Swedish dairy milk. Int. Dairy J. 2003, 13, 409–425. [Google Scholar] [CrossRef]
- Botaro, B.G.; Lima, Y.V.R.; Aquino, A.A.; Fernandes, R.H.R.; Garcia, J.F.; Santos, M.V. Effect of beta-lactoglobulin polymorphism and seasonality on bovine milk composition. J. Dairy Res. 2008, 75, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansal, B.; Habib, B.; Rebmann, H.; Chen, X.D. Effect of seasonal variation in milk composition on dairy fouling. In Proceedings of the International Conference on Heat Exchanger Fouling and Cleaning VIII, Schladming, Austria, 19 June 2009. [Google Scholar]
- Heck, J.M.L.; Van Valenberg, H.J.F.; Dijkstra, J.; Van Hooijdonk, A.C.M. Seasonal variation in the Dutch bovine raw milk composition. J. Dairy Sci. 2009, 92, 4745–4755. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F.; McSweeney, P.L.; Paul, L.H. Dairy Chemistry and Biochemistry (No. 637 F6.); Blackie Academic Professional: London, UK, 1998. [Google Scholar]
- Grimley, H.; Grandison, A.; Lewis, M. Changes in milk composition and processing properties during the spring flush period. Dairy Sci. Technol. 2009, 89, 405–416. [Google Scholar] [CrossRef]
- O’Callaghan, T.F.; Hennessy, D.; McAuliffe, S.; Kilcawley, K.N.; O’Donovan, M.; Dillon, P.; Stanton, C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. J. Dairy Sci. 2016, 99, 9424–9440. [Google Scholar] [CrossRef]
- O’Callaghan, T.F.; Mannion, D.T.; Hennessy, D.; McAuliffe, S.; O’Sullivan, M.G.; Leeuwendaal, N.; Ross, R.P. Effect of pasture versus indoor feeding systems on quality characteristics, nutritional composition, and sensory and volatile properties of full-fat Cheddar cheese. J. Dairy Sci. 2017, 100, 6053–6073. [Google Scholar] [CrossRef]
- Kljajevic, N.V.; Tomasevic, I.B.; Miloradovic, Z.N.; Nedeljkovic, A.; Miocinovic, J.B.; Jovanovic, S.T. Seasonal variations of Saanen goat milk composition and the impact of climatic conditions. J. Food Sci. Tech. 2018, 55, 299–303. [Google Scholar] [CrossRef]
- Bernabucci, U.; Basiricò, L.; Morera, P.; Dipasquale, D.; Vitali, A.; Cappelli, F.P.; Calamari, L.U.I.G.I. Effect of summer season on milk protein fractions in Holstein cows. J. Dairy Sci. 2015, 98, 1815–1827. [Google Scholar] [CrossRef] [Green Version]
- Collomb, M.; Bisig, W.; Bütikofer, U.; Sieber, R.; Bregy, M.; Etter, L. Fatty acid composition of mountain milk from Switzerland: Comparison of organic and integrated farming systems. Int. Dairy J. 2008, 18, 976–982. [Google Scholar] [CrossRef]
- Stoop, W.M.; Bovenhuis, H.; Heck, J.M.L.; Van Arendonk, J.A.M. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 2009, 92, 1469–1478. [Google Scholar] [CrossRef]
- Moran, C.A.; Morlacchini, M.; Keegan, J.D.; Fusconi, G. The effect of dietary supplementation with Aurantiochytrium limacinum on lactating dairy cows in terms of animal health, productivity and milk composition. J. Anim. Physiol. Anim. Nutr. 2018, 102, 576–590. [Google Scholar] [CrossRef] [Green Version]
- Adler, S.A.; Jensen, S.K.; Govasmark, E.; Steinshamn, H. Effect of short-term versus long-term grassland management and seasonal variation in organic and conventional dairy farming on the composition of bulk tank milk. J. Dairy Sci. 2013, 96, 5793–5810. [Google Scholar] [CrossRef] [Green Version]
- Soberon, F.; Ryan, C.M.; Nydam, D.V.; Galton, D.M.; Overton, T.R. The effects of increased milking frequency during early lactation on milk yield and milk composition on commercial dairy farms. J. Dairy Sci. 2011, 94, 4398–4405. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; O’Mahony, J.A.; Kelly, A.L.; Guinee, T.P. Seasonal variation in the composition and processing characteristics of herd milk with varying proportions of milk from spring-calving and autumn-calving cows. J. Dairy Res. 2017, 84, 444–452. [Google Scholar] [CrossRef]
- Mehra, R.; O’Brien, B.; Connolly, J.F.; Harrington, D. Seasonal variation in the composition of Irish manufacturing and retail milks: 2. Nitrogen fractions. Ir. J. Agr. Food. Res. 1999, 38, 65–74. [Google Scholar]
- O’Brien, B.; Lennartsson, T.; Mehra, R.; Cogan, T.M.; Connolly, J.F.; Morrissey, P.A.; Harrington, D. Seasonal Variation in the Composition of Irish Manufacturing and Retail Milks: 3. Vitamins. Ir. J. Agr. Food. Res. 1999, 38, 75–85. [Google Scholar]
- O’Brien, B.; Mehra, R.; Connolly, J.F.; Harrington, D. Seasonal variation in the composition of Irish manufacturing and retail milks: 1. Chemical composition and renneting properties. Ir. J. Agr. Food. Res. 1999, 38, 53–64. [Google Scholar]
- O’Brien, B.; Mehra, R.; Connolly, J.F.; Harrington, D. Seasonal variation in the composition of Irish manufacturing and retail milks: 4. Minerals and trace elements. Ir. J. Agr. Food. Res. 1999, 38, 87–99. [Google Scholar]
- Smit, L.E.; Schönfeldt, H.C.; de Beer, W.H.; Smith, M.F. The effect of locality and season on the composition of South African whole milk. J. Food Compos. Anal. 2000, 13, 345–367. [Google Scholar] [CrossRef]
- Chion, A.R.; Tabacco, E.; Giaccone, D.; Peiretti, P.G.; Battelli, G.; Borreani, G. Variation of fatty acid and terpene profiles in mountain milk and “Toma piemontese” cheese as affected by diet composition in different seasons. Food Chem. 2010, 121, 393–399. [Google Scholar] [CrossRef]
- Chen, B.; Lewis, M.J.; Grandison, A.S. Effect of seasonal variation on the composition and properties of raw milk destined for processing in the UK. Food Chem. 2014, 158, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Dairyco UK Milk Composition. Available online: http://www.dairyco.org.uk/market-information/supply-production/composition-andhygiene/uk-milk-composition (accessed on 28 November 2018).
- Kelly, M.L.; Kolver, E.S.; Bauman, D.E.; Van Amburgh, M.E.; Muller, L.D. Effect of intake of pasture on concentrations of conjugated linoleic acid in milk of lactating cows. J. Dairy Sci. 1998, 81, 1630–1636. [Google Scholar] [CrossRef]
- Elgersma, A.; Ellen, G.; Van der Horst, H.; Boer, H.; Dekker, P.R.; Tamminga, S. Quick changes in milk fat composition from cows after transition from fresh grass to a silage diet. Anim. Feed Sci. Tech. 2004, 117, 13–27. [Google Scholar] [CrossRef]
- Auldist, M.J.; Greenwood, J.S.; Wright, M.M.; Hannah, M.; Williams, R.P.W.; Moate, P.J.; Wales, W.J. Incorporating mixed rations and formulated grain mixes into the diet of grazing cows: Effects on milk composition and coagulation properties, and the yield and quality of Cheddar cheese. J. Dairy Sci. 2016, 99, 4196–4205. [Google Scholar] [CrossRef] [Green Version]
- Gulati, A.; Galvin, N.; Hennessy, D.; McAuliffe, S.; O’Donovan, M.; McManus, J.J.; Guinee, T.P. Grazing of dairy cows on pasture versus indoor feeding on total mixed ration: Effects on low-moisture part-skim Mozzarella cheese yield and quality characteristics in mid and late lactation. J. Dairy Sci. 2018, 101, 8737–8756. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.K.; Nielsen, J.H.; Butler, G.; Leifert, C.; Slots, T.; Kristiansen, G.H.; Gustafsson, A.H. Milk quality as affected by feeding regimens in a country with climatic variation. J. Dairy Sci. 2010, 93, 2863–2873. [Google Scholar] [CrossRef]
- Short, A.L. 573. The temperature coefficient of expansion of raw milk. J. Dairy Res. 1955, 22, 69–73. [Google Scholar] [CrossRef]
- Scott, R.; Scott, J.E.; Robinson, R.K.; Wilbey, R.A. Cheesemaking Practice; Springer Science Business Media: New York, NY, USA, 1998. [Google Scholar]
- Rutz, W.D.; Whitnah, C.H.; Baetz, G.D. Some physical properties of milk. I. Density. J. Dairy Sci. 1955, 38, 1312–1318. [Google Scholar] [CrossRef]
- Sodini, I.; Remeuf, F.; Haddad, S.; Corrieu, G. The relative effect of milk base, starter, and process on yogurt texture: A review. Crit. Rev. Food Sci. 2004, 44, 113–137. [Google Scholar] [CrossRef]
- Guignon, B.; Rey, I.; Sanz, P.D. Effect of temperature on the density of whole milk under high pressure. Food Res. Int. 2014, 64, 336–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murthy, A.V.R.; Guyomarc’h, F.; Lopez, C. The temperature-dependent physical state of polar lipids and their miscibility impact the topography and mechanical properties of bilayer models of the milk fat globule membrane. Biochim. Biophys. Acta (BBA) Biomembr. 2016, 1858, 2181–2190. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M.; Dillon, P.; O’Sullivan, K.; Pierce, K.M.; Galvin, N.; Egan, M.; Buckley, F. Intake, efficiency, and feeding behavior characteristics of Holstein-Friesian cows of divergent Economic Breeding Index evaluated under contrasting pasture-based feeding treatments. J. Dairy Sci. 2019, 102, 8234–8246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozrenk, E.; Inci, S.S. The effect of seasonal variation on the composition of cow milk in Van Province. Pak. J. Nut. 2008, 7, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Festila, I.; Miresan, V.; Raducu, C.; Cocan, D.; Constantinescu, R.; Coroian, A. Study on Season Influence on Milk Quality for a Dairy Cow Population of Romanian Spotted Breed. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Ani. Sci. Biotech. 2012, 69, 1–2. [Google Scholar]
- Walstra, P.; Walstra, P.; Wouters, J.T.; Geurts, T.J. Dairy Science and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Ferlay, A.; Martin, B.; Pradel, P.; Coulon, J.B.; Chilliard, Y. Influence of grass-based diets on milk fatty acid composition and milk lipolytic system in Tarentaise and Montbéliarde cow breeds. J. Dairy Sci. 2006, 89, 4026–4041. [Google Scholar] [CrossRef] [Green Version]
- Dewhurst, R.J.; Shingfield, K.J.; Lee, M.R.; Scollan, N.D. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed Sci. Tech. 2006, 131, 168–206. [Google Scholar] [CrossRef]
- Collier, R.J.; Romagnolo, D.; Baumgard, L.H. Lactation: Galactopoiesis, Seasonal Effects. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; pp. 38–44. [Google Scholar]
- Bertocchi, L.; Vitali, A.; Lacetera, N.; Nardone, A.; Varisco, G.; Bernabucci, U. Seasonal variations in the composition of Holstein cow’s milk and temperature–humidity index relationship. Animal 2014, 8, 667–674. [Google Scholar] [CrossRef] [Green Version]
- Dahl, G.E.; Buchanan, B.A.; Tucker, H.A. Photoperiodic Effects on Dairy Cattle: A Review1. J. Dairy Sci. 2000, 83, 885–893. [Google Scholar] [CrossRef]
- Auldist, M.J.; Turner, S.A.; McMahon, C.D.; Prosser, C.G. Effects of melatonin on the yield and composition of milk from grazing dairy cows in New Zealand. J. Dairy Res. 2007, 74, 52–57. [Google Scholar] [CrossRef]
- Geary, U.; Lopez-Villalobos, N.; Garrick, D.J.; Shalloo, L. Development and application of a processing model for the Irish dairy industry. J. Dairy Sci. 2010, 93, 5091–5100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milk Statistics. Available online: https://www.cso.ie/en/releasesandpublications/er/ms/milkstatistics/ (accessed on 27 March 2020).
Trait | Mean | SD | Minimum | Maximum |
---|---|---|---|---|
Fat, % | 4.72 | 1.30 | 2.14 | 14.86 |
Protein, % | 3.85 | 0.61 | 1.76 | 5.95 |
Lactose, % | 4.69 | 0.30 | 2.45 | 5.61 |
Casein, % | 2.88 | 0.58 | 0.61 | 5.00 |
Total Solids, % | 14.02 | 2.65 | 8.66 | 22.48 |
SCS (SCC × ‘000) 1 | 4.66 (93.3) | 0.48 (3.35) | 3.00 (1) | 6.39 (2452) |
Density, g/cm3 | 1.0308 | 0.0021 | 1.0153 | 1.0378 |
Trait | Season | Mean | SEM |
---|---|---|---|
Fat, % | Spring | 5.00 a | 0.14 |
Summer | 4.71 b | 0.11 | |
Autumn | 5.13 a | 0.14 | |
Protein, % | Spring | 3.93 a | 0.05 |
Summer | 3.86 a | 0.04 | |
Autumn | 3.92 a | 0.05 | |
Lactose, % | Spring | 4.59 a | 0.26 |
Summer | 4.62 a | 0.17 | |
Autumn | 4.68 b | 0.31 | |
Total Solids, % | Spring | 13.95 a | 0.37 |
Summer | 13.68 a | 0.32 | |
Autumn | 14.72 b | 0.37 | |
Casein, % | Spring | 3.00 a | 0.06 |
Summer | 2.91 b | 0.04 | |
Autumn | 2.93 a | 0.05 |
Season | Mean | SEM |
---|---|---|
Autumn | 1.0309 b | 0.00007 |
Spring | 1.0304 a | 0.00008 |
Summer | 1.0314 c | 0.00005 |
Effect | Genetic Group | FT | Season | Instrument | Parity | Estimate | p-Value |
---|---|---|---|---|---|---|---|
Intercept | 1.00700 | ||||||
FT | 0.024 | ||||||
HC | 0.00012 | ||||||
HGA | 9.26 × 10−6 | ||||||
LGA | 0.00000 | ||||||
Season | <0.0001 | ||||||
Autumn | −0.00054 | ||||||
Spring | −0.00097 | ||||||
Summer | 0.00000 | ||||||
Instrument | <0.0001 | ||||||
Pycnometer | 0.00205 | ||||||
DMA35 | −0.00006 | ||||||
DMA4500 | 0.00000 | ||||||
Genetic Group | <0.0001 | ||||||
Elite HF | 0.00009 | ||||||
Jersey | 0.00036 | ||||||
NA HF | 0.00000 | ||||||
Parity | 0.0037 | ||||||
1 | 0.00035 | ||||||
2 | 0.00032 | ||||||
3 | 0.00044 | ||||||
4 | 0.00041 | ||||||
5 | 0.00023 | ||||||
6 | 0.00053 | ||||||
8 | 0.00000 | ||||||
Genetic group × season | 0.5545 | ||||||
Elite HF | Autumn | −0.00002 | |||||
Elite HF | Spring | −0.00015 | |||||
Elite HF | Summer | 0.00000 | |||||
Jersey | Autumn | −0.00003 | |||||
Jersey | Spring | −0.00016 | |||||
Jersey | Summer | 0.00000 | |||||
NA HF | Autumn | 0.00000 | |||||
NA HF | Spring | 0.00000 | |||||
NA HF | Summer | 0.00000 | |||||
dim | −0.00002 | <0.0001 | |||||
dim * dim | 6.713 × 10−8 | <0.0001 | |||||
Fat | −0.00066 | <0.0001 | |||||
Protein | 0.00305 | <0.0001 | |||||
Lactose | 0.00342 | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parmar, P.; Lopez-Villalobos, N.; Tobin, J.T.; Murphy, E.; McDonagh, A.; Crowley, S.V.; Kelly, A.L.; Shalloo, L. The Effect of Compositional Changes Due to Seasonal Variation on Milk Density and the Determination of Season-Based Density Conversion Factors for Use in the Dairy Industry. Foods 2020, 9, 1004. https://doi.org/10.3390/foods9081004
Parmar P, Lopez-Villalobos N, Tobin JT, Murphy E, McDonagh A, Crowley SV, Kelly AL, Shalloo L. The Effect of Compositional Changes Due to Seasonal Variation on Milk Density and the Determination of Season-Based Density Conversion Factors for Use in the Dairy Industry. Foods. 2020; 9(8):1004. https://doi.org/10.3390/foods9081004
Chicago/Turabian StyleParmar, Puneet, Nicolas Lopez-Villalobos, John T. Tobin, Eoin Murphy, Arleen McDonagh, Shane V. Crowley, Alan L. Kelly, and Laurence Shalloo. 2020. "The Effect of Compositional Changes Due to Seasonal Variation on Milk Density and the Determination of Season-Based Density Conversion Factors for Use in the Dairy Industry" Foods 9, no. 8: 1004. https://doi.org/10.3390/foods9081004
APA StyleParmar, P., Lopez-Villalobos, N., Tobin, J. T., Murphy, E., McDonagh, A., Crowley, S. V., Kelly, A. L., & Shalloo, L. (2020). The Effect of Compositional Changes Due to Seasonal Variation on Milk Density and the Determination of Season-Based Density Conversion Factors for Use in the Dairy Industry. Foods, 9(8), 1004. https://doi.org/10.3390/foods9081004