Growth Potential of Listeria monocytogenes in Three Different Salmon Products
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Growth Curve of the Three L. monocytogenes Strains in Non-Selective Growth Medium and Physiochemical Characteristics of the Samples
3.2. Growth Characteristics of L. monocytogenes in the Different Salmon Varieties
3.3. Growth Potential δ
3.4. Durability Study
3.5. Total Viable Count
3.6. Protective Effect of 30% NaL Injection into Norwegian Smoked Salmon
3.6.1. Growth Characteristics of L. monocytogenes in Norwegian Smoked Salmon Injected with High Concentration of NaL
3.6.2. Growth Potential δ
3.6.3. Total Viable Counts in Norwegian Smoked Salmon Injected with 30% NaL
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ILSI Research Foundation. Risk Science Institute Achieving Continuous Improvement in Reductions in Foodborne Listeriosis—A Risk-Based Approach. J. Food Prot. 2005, 68, 1932–1994. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control. European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC); European Food Safety Authority; European Centre for Disease Prevention and Control The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in~2015. EFSA J. 2018, 15, 148. [Google Scholar]
- Allerberger, F.; Wagner, M. Listeriosis: A resurgent foodborne infection. Clin. Microbiol. Infect. 2010, 16, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Lado, B.; Yousef, A. Characteristics of Listeria monocytogenes important to food processors. In Listeria, Listeriosis, and Food Safety; CRC Press: Boca Raton, FL, USA, 2007; pp. 157–214. ISBN 9780824757502. [Google Scholar]
- Chan, Y.C.; Wiedmann, M. Physiology and Genetics of Listeria Monocytogenes Survival and Growth at Cold Temperatures. Crit. Rev. Food Sci. Nutr. 2008, 49, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Stoller, A.; Stevens, M.J.A.; Stephan, R.; Guldimann, C. Characteristics of Listeria Monocytogenes Strains Persisting in a Meat Processing Facility over a 4-Year Period. Pathog. (Basel, Switzerland) 2019, 8, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazquez-Boland, J.A.; Kuhn, M.; Berche, P.; Chakraborty, T.; Dominguez-Bernal, G.; Goebel, W.; Gonzalez-Zorn, B.; Wehland, J.; Kreft, J. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol Rev 2001, 14, 584–640. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Analysis of the baseline survey on the prevalence of Listeria monocytogenes in certain ready-to-eat foods in the EU, 2010-2011 Part A: Listeria monocytogenes prevalence estimates. EFSA J. 2013, 11, 3241. [Google Scholar] [CrossRef]
- Aalto-Araneda, M.; Lundén, J.; Markkula, A.; Hakola, S.; Korkeala, H. Processing plant and machinery sanitation and hygiene practices associate with Listeria monocytogenes occurrence in ready-to-eat fish products. Food Microbiol. 2019, 82, 455–464. [Google Scholar] [CrossRef]
- Skjerdal, T.; Reitehaug, E.; Eckner, K. Development of performance objectives for Listeria monocytogenes contaminated salmon (Salmo salar) intended used as sushi and sashimi based on analyses of naturally contaminated samples. Int. J. Food Microbiol. 2014, 184, 8–13. [Google Scholar] [CrossRef]
- Kramarenko, T.; Roasto, M.; Keto-Timonen, R.; Mäesaar, M.; Meremäe, K.; Kuningas, M.; Hörman, A.; Korkeala, H. Listeria monocytogenes in ready-to-eat vacuum and modified atmosphere packaged meat and fish products of Estonian origin at retail level. Food Control 2016, 67, 48–52. [Google Scholar] [CrossRef]
- Acciari, V.A.; Torresi, M.; Iannetti, L.; Scattolini, S.; Pomilio, F.; Decastelli, L.; Colmegna, S.; Muliari, R.; Bossù, T.; Proroga, Y.; et al. Listeria monocytogenes in Smoked Salmon and Other Smoked Fish at Retail in Italy: Frequency of Contamination and Strain Characterization in Products from Different Manufacturers. J. Food Prot. 2017, 80, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Gombas, D.E.; Chen, Y.; Clavero, R.S.; Scott, V.N. Survey of Listeria monocytogenes in Ready-to-Eat Foods. J. Food Prot. 2003, 66, 559–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Althaus, D.; Jermini, M.; Giannini, P.; Martinetti, G.; Reinholz, D.; Nüesch-Inderbinen, M.; Lehner, A.; Stephan, R. Local Outbreak of Listeria monocytogenes Serotype 4b Sequence Type 6 Due to Contaminated Meat Pâté. Foodborne Pathog. Dis. 2017, 14, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Kvistholm Jensen, A.; Nielsen, E.M.; Björkman, J.T.; Jensen, T.; Müller, L.; Persson, S.; Bjerager, G.; Perge, A.; Krause, T.G.; Kiil, K.; et al. Whole-genome Sequencing Used to Investigate a Nationwide Outbreak of Listeriosis Caused by Ready-to-eat Delicatessen Meat, Denmark, 2014. Clin. Infect. Dis. 2016, 63, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control; European Food Safety Authority. Multi-country outbreak of Listeria monocytogenes clonal complex 8 infections linked to consumption of cold-smoked fish products. EFSA Support. Publ. 2019, 16, 16185. [Google Scholar]
- Gillesberg Lassen, S.; Ethelberg, S.; Björkman, J.T.; Jensen, T.; Sørensen, G.; Kvistholm Jensen, A.; Müller, L.; Nielsen, E.M.; Mølbak, K. Two listeria outbreaks caused by smoked fish consumption—Using whole-genome sequencing for outbreak investigations. Clin. Microbiol. Infect. 2016, 22, 620–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakari, U.-M.; Rantala, L.; Pihlajasaari, A.; Toikkanen, S.; Johansson, T.; Hellsten, C.; Raulo, S.M.; Kuusi, M.; Siitonen, A.; Rimhanen-Finne, R. Investigation of increased listeriosis revealed two fishery production plants with persistent Listeria contamination in Finland in 2010. Epidemiol. Infect. 2014, 142, 2261–2269. [Google Scholar] [CrossRef]
- Schjørring, S.; Gillesberg Lassen, S.; Jensen, T.; Moura, A.; Kjeldgaard, J.S.; Müller, L.; Thielke, S.; Leclercq, A.; Maury, M.M.; Tourdjman, M.; et al. Cross-border outbreak of listeriosis caused by cold-smoked salmon, revealed by integrated surveillance and whole genome sequencing (WGS), Denmark and France, 2015 to 2017. Eurosurveillance 2017, 22, 16185. [Google Scholar] [CrossRef]
- Glass, K.A.; Granberg, D.A.; Smith, A.L.; McNamara, A.M.; Hardin, M.; Mattias, J.; Ladwig, K.; Johnson, E.A. Inhibition of Listeria monocytogenes by Sodium Diacetate and Sodium Lactate on Wieners and Cooked Bratwurst. J. Food Prot. 2002, 65, 116–123. [Google Scholar] [CrossRef]
- Lamkey, J.W.; Leak, F.W.; Tuley, W.B.; Johnson, D.D.; West, R.L. Assessment of Sodium Lactate Addition to Fresh Pork Sausage. J. Food Sci. 1991, 56, 220–223. [Google Scholar] [CrossRef]
- Mbandi, E.; Shelef, L.A. Enhanced Inhibition of Listeria monocytogenes and Salmonella Enteritidis in Meat by Combinations of Sodium Lactate and Diacetate. J. Food Prot. 2001, 64, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Mbandi, E.; Shelef, L.A. Enhanced antimicrobial effects of combination of lactate and diacetate on Listeria monocytogenes and Salmonella spp. in beef bologna. Int. J. Food Microbiol. 2002, 76, 191–198. [Google Scholar] [CrossRef]
- Mei, J.; Ma, X.; Xie, J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods 2019, 8, 490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim Sallam, K. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control 2007, 18, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Beaufort, A.; Bergis, H.; Lardeux, A.-L.; Lombard, B. EURL Lm TECHNICAL GUIDANCE DOCUMENT for conducting shelf-life studies on Listeria monocytogenes in ready-to-eat foods. Appl. Environ. Microbiol. 2014, 74, 594–604. [Google Scholar]
- Wickham, H. ggplot2: Elegant graphics for data analysis; Springer: New York, NY, USA, 2009; ISBN 978-0-387-98141-3. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Powell, M.R. Analyzing the power and error of Listeria monocytogenes growth challenge studies. Int. J. Food Microbiol. 2009, 136, 10–17. [Google Scholar] [CrossRef]
- Dalgaard, P.; Vigel Jørgensen, L. Predicted and observed growth of Listeria monocytogenes in seafood challenge tests and in naturally contaminated cold-smoked salmon. Int. J. Food Microbiol. 1998, 40, 105–115. [Google Scholar] [CrossRef]
- Huss, H. Control options for Listeria monocytogenes in seafoods. Int. J. Food Microbiol. 2000, 62, 267–274. [Google Scholar] [CrossRef]
- Lappi, V.R.; Ho, A.; Gall, K.; Wiedmann, M. Prevalence and Growth of Listeria on Naturally Contaminated Smoked Salmon over 28 Days of Storage at 4°C†. J. Food Prot. 2004, 67, 1022–1026. [Google Scholar] [CrossRef]
- De Wit, J.C.; Rombouts, F.M. Antimicrobial activity of sodium lactate. Food Microbiol. 1990, 7, 113–120. [Google Scholar] [CrossRef]
- Weaver, R.A.; Shelef, L.A. Antilisterial Activity of Sodium, Postassium or Calcium Lactate in Pork Liver Sausage. J. Food Saf. 1993, 13, 133–146. [Google Scholar] [CrossRef]
- Hunt, K.; Blanc, M.; Álvarez-Ordóñez, A.; Jordan, K. Challenge Studies to Determine the Ability of Foods to Support the Growth of Listeria monocytogenes. Pathogens 2018, 7, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uyttendaele, M.; Busschaert, P.; Valero, A.; Geeraerd, A.H.; Vermeulen, A.; Jacxsens, L.; Goh, K.K.; De Loy, A.; Van Impe, J.F.; Devlieghere, F. Prevalence and challenge tests of Listeria monocytogenes in Belgian produced and retailed mayonnaise-based deli-salads, cooked meat products and smoked fish between 2005 and 2007. Int. J. Food Microbiol. 2009, 133, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Tang, S.; Liu, R.H.; Wiedmann, M.; Boor, K.J.; Bergholz, T.M.; Wang, S. Effect of Curing Method and Freeze-Thawing on Subsequent Growth of Listeria monocytogenes on Cold-Smoked Salmon. J. Food Prot. 2012, 75, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Neetoo, H.; Ye, M.; Chen, H. Bioactive alginate coatings to control Listeria monocytogenes on cold-smoked salmon slices and fillets. Int. J. Food Microbiol. 2010, 136, 326–331. [Google Scholar] [CrossRef]
- Neetoo, H.; Mahomoodally, F. Use of Antimicrobial Films and Edible Coatings Incorporating Chemical and Biological Preservatives to Control Growth of Listeria monocytogenes on Cold Smoked Salmon. Biomed Res. Int. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Basu, U.; Miller, P.; McMullen, L.M. Differential gene expression and filamentation of Listeria monocytogenes 08-5923 exposed to sodium lactate and sodium diacetate. Food Microbiol. 2017, 63, 153–158. [Google Scholar] [CrossRef]
- Vail, K.M.; McMullen, L.M.; Jones, T.H. Growth and Filamentation of Cold-Adapted, Log-Phase Listeria monocytogenes Exposed to Salt, Acid, or Alkali Stress at 3°C†. J. Food Prot. 2012, 75, 2142–2150. [Google Scholar] [CrossRef]
Bacterial Species | Designation | Serotype | CgMLST 1 | Sequence Type 2 |
---|---|---|---|---|
Listeria monocytogenes | N18-1945 | 1/2a | 5048 | 121 |
Listeria monocytogenes | N18-2495 | 1/2a | 2812 | 204 |
Listeria monocytogenes | N18-2497 | 1/2b | 1271 | 5 |
Salmon Product | Description | Preservation Method (If Any) | Storage | Packaging Units | Shelf Life | aw—Value (SD 1) | pH (SD 1) |
---|---|---|---|---|---|---|---|
Norwegian smoked salmon (low concentration of NaL) | Injection-salted smoked Atlantic salmon from Norway | Brine-injected Working solution of 12% NaL and 20% NaCl, 100–120 g/kg. | Cooled to −3 °C immediately after processing | 200 g | 16 days | 0.96 (0.002) | 6.0 (0.0) |
Salmon fillet | Hand-salted smoked organic Atlantic salmon fillet from Ireland | Salted Sea salt (NaCl) manually added to the outside of the product; 30 g/kg | Cooled to −3 °C immediately after processing | 110 g | 15 days | 0.97 (0.006) | 6.0 (0.1) |
Sushi salmon | Raw Atlantic sushi salmon from Scotland | No conservation Raw, trimmed salmon | Shock-frozen after packaging | whole fillets | 3 days | 0.99 (0.003) | 6.1 (0.1) |
Norwegian smoked salmon (with high concentration of NaL) | Injection-salted, smoked and sliced Atlantic salmon from Norway | Brine-injected Working solution of 30% NaL and 13% NaCl, 100–120 g/kg. | Cooled to −3 °C immediately after processing | 200 g | 16 days | 0.95 (0.003) | 6.0 (0.1) |
Salmon Product | °C | t 1 | Growth Potential δ Replicate 1 2 | Growth Potential δ Replicate 2 2 | Growth Potential δ Replicate 3 2 | Max. Growth Pot. δ (Italic If δ > 0.5) 2, 3 |
---|---|---|---|---|---|---|
Sushi salmon | 5 °C | 0 | 0.00 | 0.00 | 0.00 | 0.00 |
5 °C | 2 | 0.67 | 0.70 | 0.63 | 0.70 | |
5 °C | 3 | 0.87 | 0.95 | 1.05 | 1.05 | |
8 °C | 0 | 0.00 | 0.00 | 0.00 | 0.00 | |
8 °C | 2 | 1.20 | 1.09 | 1.27 | 1.27 | |
8 °C | 3 | 1.16 | 1.87 | 1.98 | 1.98 | |
Norwegian smoked salmon (low NaL) | 5 °C | 0 | 0.00 | 0.00 | 0.00 | 0.00 |
5 °C | 5 | 0.21 | 0.15 | 0.22 | 0.22 | |
5 °C | 12 | 1.94 | 1.73 | 0.47 | 1.94 | |
5 °C | 13 | 1.45 | 1.09 | 0.64 | 1.45 | |
5 °C | 14 | 1.68 | 0.40 | 2.14 | 2.14 | |
5 °C | 15 | 1.18 | 0.96 | 0.93 | 1.18 | |
5 °C | 16 | 2.21 | 1.82 | 0.69 | 2.21 | |
8 °C | 0 | 0.00 | 0.00 | 0.00 | 0.00 | |
8 °C | 5 | 0.79 | 0.72 | 0.93 | 0.93 | |
8°C | 12 | 2.84 | 2.80 | 2.07 | 2.84 | |
8 °C | 13 | 3.31 | 2.97 | 2.30 | 3.31 | |
8 °C | 14 | 3.46 | 3.95 | 3.19 | 3.95 | |
8 °C | 15 | n/a | 3.34 | 3.72 | 3.72 | |
8 °C | 16 | 3.57 | 3.47 | 2.87 | 3.57 | |
Salmon fillet | 5 °C | 0 | 0.00 | 0.00 | 0.00 | 0.00 |
5 °C | 5 | 1.24 | 1.25 | 0.47 | 1.25 | |
5 °C | 11 | 2.45 | 2.78 | 1.76 | 2.78 | |
5 °C | 12 | 2.44 | 2.63 | 1.72 | 2.63 | |
5 °C | 13 | 2.26 | 2.43 | 2.28 | 2.43 | |
5 °C | 14 | 2.48 | 2.73 | 2.63 | 2.73 | |
5 °C | 15 | 2.78 | 3.78 | 1.30 | 3.78 | |
8 °C | 0 | 0.00 | 0.00 | 0.00 | 0.00 | |
8 °C | 5 | 2.05 | 1.58 | 0.33 | 2.05 | |
8 °C | 11 | 3.61 | 2.88 | 2.08 | 3.61 | |
8 °C | 12 | 3.62 | 3.23 | 3.10 | 3.62 | |
8 °C | 13 | 3.53 | 3.37 | 3.29 | 3.53 | |
8 °C | 14 | 3.70 | 4.95 | 1.99 | 4.95 | |
8 °C | 15 | 2.83 | 4.70 | 3.33 | 4.70 |
z | Day | Temperature | Proportion Positive after Enrichment 1 | CI 2 | Quantitative Determination by Direct Plating 3 |
---|---|---|---|---|---|
Salmon fillet | 0 | n/a | 0.6 | 0.22–0.88 | <0 |
11 | 4 °C | 0.8 | 0.35–0.95 | <0 | |
11 | 8 °C | 1 | 0.54–0.99 | <0 | |
13 | 4 °C | 1 | 0.54–0.99 | <0 | |
13 | 8 °C | 0.8 | 0.35–0.95 | <0 | |
14 | 4 °C | 1 | 0.54–0.99 | <0 | |
14 | 8 °C | 0.8 | 0.35–0.95 | <0 | |
Norwegian smoked salmon | 0 | n/a | 1 | 0.54–0.99 | <0 |
13 | 4 °C | 1 | 0.54–0.99 | <0 | |
13 | 8 °C | 0.8 | 0.35–0.95 | <0 | |
15 | 4 °C | 1 | 0.54–0.99 | <0 | |
15 | 8 °C | 1 | 0.54–0.99 | <0 | |
16 | 4 °C | 1 | 0.54–0.99 | <0 | |
16 | 8 °C | 1 | 0.54–0.99 | <0 | |
Sushi salmon | 0 | n/a | 1 | 0.54–0.99 | <0 |
2 | 4 °C | 1 | 0.54–0.99 | <0 | |
2 | 8 °C | 1 | 0.54–0.99 | <0 | |
3 | 4 °C | 1 | 0.54–0.99 | 1 | |
3 | 8 °C | 1 | 0.54–0.99 | 1.7 | |
6 | 4 °C | 1 | 0.54–0.99 | <0 | |
6 | 8 °C | 1 | 0.54–0.99 | 1 | |
8 | 4 °C | 0.6 | 0.22–0.88 | <0 | |
8 | 8 °C | 0.8 | 0.35–0.95 | 1.8 | |
10 | 4 °C | 1 | 0.54–0.99 | <0 | |
10 | 8 °C | 1 | 0.54–0.99 | 1.5 |
Salmon Product | °C | t 1 | Growth Potential δ Replicate 1 2 | Growth Potential δ Replicate 2 2 | Growth Potential δ Replicate 3 2 | Max. Growth Pot. δ (Italic If δ > 0.5) 2, 3 |
---|---|---|---|---|---|---|
Norwegian smoked salmon | 5 °C | 0 | 0.00 | 0.00 | 0.00 | 0.00 |
(high NaL) | 5 °C | 5 | 0.02 | −0.16 | 0.02 | 0.02 |
5 °C | 12 | 0.00 | −0.03 | −0.09 | 0.00 | |
5 °C | 13 | −0.06 | 0.08 | −0.09 | 0.08 | |
5 °C | 14 | −0.11 | 0.09 | 0.07 | 0.09 | |
5 °C | 15 | 0.05 | 1.01 | 0.80 | 1.01 | |
5 °C | 16 | −0.09 | 0.24 | 0.32 | 0.32 | |
8 °C | 0 | 0.00 | 0.00 | 0.00 | 0.00 | |
8 °C | 5 | 0.06 | −0.03 | 0.62 | 0.62 | |
8 °C | 12 | 0.28 | 1.11 | 0.23 | 1.11 | |
8 °C | 13 | 1.51 | 1.19 | 0.76 | 1.51 | |
8 °C | 14 | 0.49 | 0.02 | 1.20 | 1.20 | |
8 °C | 15 | 0.42 | −0.11 | 0.11 | 0.42 | |
8 °C | 16 | 1.19 | 2.12 | 2.30 | 2.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eicher, C.; Ruiz Subira, A.; Corti, S.; Meusburger, A.; Stephan, R.; Guldimann, C. Growth Potential of Listeria monocytogenes in Three Different Salmon Products. Foods 2020, 9, 1048. https://doi.org/10.3390/foods9081048
Eicher C, Ruiz Subira A, Corti S, Meusburger A, Stephan R, Guldimann C. Growth Potential of Listeria monocytogenes in Three Different Salmon Products. Foods. 2020; 9(8):1048. https://doi.org/10.3390/foods9081048
Chicago/Turabian StyleEicher, Corinne, Andres Ruiz Subira, Sabrina Corti, Arnulf Meusburger, Roger Stephan, and Claudia Guldimann. 2020. "Growth Potential of Listeria monocytogenes in Three Different Salmon Products" Foods 9, no. 8: 1048. https://doi.org/10.3390/foods9081048
APA StyleEicher, C., Ruiz Subira, A., Corti, S., Meusburger, A., Stephan, R., & Guldimann, C. (2020). Growth Potential of Listeria monocytogenes in Three Different Salmon Products. Foods, 9(8), 1048. https://doi.org/10.3390/foods9081048