Non-Destructive Imaging and Spectroscopic Techniques for Assessment of Carcass and Meat Quality in Sheep and Goats: A Review
Abstract
:1. Introduction
2. Imaging Techniques to Assess Carcass and Meat Quality in Sheep and Goats
2.1. Dual-Energy X-Ray Absorptiometry
2.2. Computed Tomography
2.3. Magnetic Ressonace Imaging
3. Spectroscopic Techniques for Assessment of Carcass and Meat Quality of Sheep and Goats
3.1. Visible and Near-Infrared Reflectance Spectroscopy
3.2. Hyperspectral Imaging
3.3. Raman Spectroscopy
4. Summary of Attributes across All Technologies Discussed
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hopkins, D.L.; Gardner, G.E.; Toohey, E.S. Australian view on lamb carcass and meat quality – the role of measurement technologies in the Australian sheep industry. In Farm Animal Imaging—A Summary Report; Maltin, C., Craigie, C., Bünger, L., Eds.; SRUC: Edinburgh, UK, 2015; pp. 17–21. [Google Scholar]
- Fowler, S.M.; Hoban, J.M.; Melville, G.; Pethick, D.W.; Morris, S.; Hopkins, D.L. Maintaining the appeal of Australian lamb to the modern consumer. Anim. Prod. Sci. 2018, 58, 1392–1398. [Google Scholar] [CrossRef]
- Aboah, J.; Lees, N. Consumers use of quality cues for meat purchase: Research trends and future pathways. Meat Sci. 2020, 108142. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Lamb, G.C. Introduction: Significance, challenges and strategies of animal production. In Animal Agriculture; Bazer, F.W., Lamb, G.C., Wu, G., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–17. [Google Scholar] [CrossRef]
- Kristensen, L.; Støier, S.; Würtz, J.; Hinrichsen, L. Trends in meat science and technology: The future looks bright, but the journey will be long. Meat Sci. 2014, 98, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.; Silva, S.; Rodrigues, S. 2019. Advances and sheep and goat meat products research. In Advances in Food and Nutrition Research; Toldra, F., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 87, pp. 305–370. [Google Scholar] [CrossRef]
- Narsaiah, K.; Biswas, A.K.; Mandal, P.K. Nondestructive methods for carcass and meat quality evaluation. In Meat Quality Analysis; Biswas, A.K., Mandal, P.K., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 37–49. [Google Scholar] [CrossRef]
- Ho, H.; Stanisic, H.H.F.; Gruchet, M.; Sun, J.; Hunter, P. Generic software modules for the meat industry. In FAIM Farm Animal Imaging—A Summary Report; Maltin, C., Craigie, C., Bünger, L., Eds.; SRUC: Edinburgh, UK, 2015; pp. 109–112. [Google Scholar]
- Jørgensen, T.M.; AL-Tam, F.; Dahl, V.A. Artifact removal in differential phase contrast x-ray computed tomography. In FAIM Farm Animal Imaging—A Summary Report; Maltin, C., Craigie, C., Bünger, L., Eds.; SRUC: Edinburgh, UK, 2015; pp. 105–108. [Google Scholar]
- Ekiz, B.; Baygul, O.; Yalcintan, H.; Ozcan, M. Comparison of the decision tree, artificial neural network and multiple regression methods for prediction of carcass tissues composition of goat kids. Meat Sci. 2020, 161, 108011. [Google Scholar] [CrossRef]
- Chapman, J.; Elbourne, A.; Truong, V.K.; Cozzolino, D. Shining light into meat–a review on the recent advances in in vivo and carcass applications of near infrared spectroscopy. Int. J. Food Sci. Technol. 2020, 55, 935–941. [Google Scholar] [CrossRef]
- Shiel, F.; Persson, C.; Furness, J.; Simas, V.; Pope, R.; Climstein, M.; Hing, W.; Schram, B. Dual energy X-ray absorptiometry positioning protocols in assessing body composition: A systematic review of the literature. J. Sci. Med. Sport 2018, 21, 1038–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marra, M.; Sammarco, R.; De Lorenzo, A.; Iellamo, F.; Siervo, M.; Pietrobelli, A.; Donini, L.M.; Santarpia, L.; Cataldi, M.; Pasanisi, F.; et al. Assessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA): A critical overview. Contrast Media Mol. Imaging 2019, 3548284. [Google Scholar] [CrossRef]
- Scholz, A.M.; Bünger, L.; Kongsro, J.; Baulain, U.; Mitchell, A.D. Non-invasive methods for the determination of body and carcass composition in livestock: Dual energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: Invited review. Animal 2015, 9, 1250–1264. [Google Scholar] [CrossRef] [Green Version]
- Pomar, C.; Kipper, M.; Marcoux, M. Use of dual-energy x-ray absorptiometry in non-ruminant nutrition research. Rev. Bras. Zootec. 2017, 46, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Gardner, G.E.; Starling, S.; Charnley, J.; Hocking-Edwards, J.; Peterse, J.; Williams, A. Calibration of an on-line dual energy X-ray absorptiometer for estimating carcase composition in lamb at abattoir chain-speed. Meat Sci. 2018, 144, 91–99. [Google Scholar] [CrossRef]
- Hunter, T.E.; Suster, D.; Dunshea, F.R.; Cummins, L.J.; Egan, A.R.; Leury, B.J. Dual energy X-ray absorptiometry (DXA) can be used to predict live animal and whole carcass composition of sheep. Small Rum. Res. 2011, 100, 143–152. [Google Scholar] [CrossRef]
- Connaughton, S.L.; Williams, A.; Anderson, F.; Kelman, K.R.; Gardner, G.E. Dual energy X-ray absorptiometry precisely and accurately predicts lamb carcass composition at abattoir chain speed across a range of phenotypic and genotypic variables. Animal 2020. [Google Scholar] [CrossRef] [PubMed]
- Scholz, A.M.; Kremer-Rücker, P.V.; Wenczel, R.; Pappenberger, E. Body composition in farm animals by dual energy X-ray absorptiometry. In Farm Animal Imaging; Maltin, C., Craigie, C., Bünger, L., Eds.; SRUC Scotland: Ingliston, UK, 2013; pp. 9–14. [Google Scholar]
- Ponnampalam, E.N.; Kerr, M.G.; Butler, K.L.; Cottrell, J.J.; Dunshea, F.R.; Jacobs, J.L. Filling the out of season gaps for lamb and hogget production: Diet and genetic influence on carcass yield, carcass composition and retail value of meat. Meat Sci. 2019, 148, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Dunshea, F.R.; Suster, D.; Eason, P.E.; Warner, R.D.; Hopkins, D.L.; Ponnampalam, E.N. Accuracy of dual energy X-ray absorptiometry (DXA), weight, longissimus lumborum muscle depth and GR fat depth to predict half carcass composition in sheep. Aust. J. Exp. Agric. 2007, 47, 1165–1171. [Google Scholar] [CrossRef]
- Juárez, M.; López-Campos, Ó.; Roberts, J.C.; Prieto, N.; Larsen, I.L.; Uttaro, B.M.E.R.; Dugan, M.; Cancino-Baier, D.; Hosford, S.; Galbraith, J.; et al. Exploration of methods for lam carcass yield estimation in Canada. Can. J. Anim. Sci. 2018, 98, 760–768. [Google Scholar] [CrossRef]
- Justice, S.; Britt, J.; Miller, M.; Greene, M.; Davis, C.; Koch, B.; Duckett, S.; Jesch, E. Predictions of Lean Meat Yield in Lambs Using Dexa and Chemical Analyses Proximate. Meat Muscle Biol. 2018, 2, 184. [Google Scholar] [CrossRef]
- Gardner, G.E.; Glendenning, R.; Brumby, O.; Starling, S.; Williams, A. The development and calibration of a dual X-ray absorptiometer for estimating carcass composition at abattoir chain-speed. In Farm Animal Imaging—A Summary Report; Maltin, C., Craigie, C., Bünger, L., Eds.; SRUC: Edinburgh, UK, 2015; pp. 24–26. [Google Scholar]
- Scholz, A.M.; Mitchell, A.D. Body composition: Indirect measurement. In Encyclopedia of Animal Science, 2nd ed.; Ullrey, D.E., Baer, C.K., Pond, W.G., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 152–156. [Google Scholar]
- Pearce, K.L.; Ferguson, M.; Gardner, G.; Smith, N.; Greef, J.; Pethick, D.W. Dual X-ray absorptiometry accurately predicts carcass composition from live sheep and chemical composition of live and dead sheep. Meat Sci. 2009, 81, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Mercier, J.; Pomar, C.; Marcoux, M.; Goulet, F.; Theriault, M.; Castonguay, F.W. The use of dual-energy X-ray absorptiometry to estimate the dissected composition of lamb carcasses. Meat Sci. 2006, 73, 249–257. [Google Scholar] [CrossRef]
- Clarke, R.D.; Kirton, A.H.; Bartle, C.M.; Dobbie, P.M. Application of dual-energy x-ray absorptiometry for ovine carcass evaluation. Proc. N. Z. Soc. Anim. Prod. 1999, 59, 272–274. [Google Scholar]
- McGrath, T.A.; Frank, R.A.; Schieda, N.; Blew, B.; Salameh, J.P.; Bossuyt, P.M.; McInnes, M.D. Diagnostic accuracy of dual-energy computed tomography (DECT) to differentiate uric acid from non-uric acid calculi: Systematic review and meta-analysis. Eur. Radiol. 2020, 30, 2791–2801. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M. 3D scanning applications in medical field: A literature-based review. Clin. Epidemiol. Glob. Health 2019, 7, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Jay, N. CT Scanning and Ultrasound Techniques for In Vivo Assessment in Meat Processing. In Advances in Meat Processing Technology, 1st ed.; Bekhit, A., El-Din, A., Eds.; CRC Press: New York, NY, USA, 2017; pp. 385–410. [Google Scholar]
- Bünger, L.; Macfarlane, J.M.; Lambe, N.R.; Conington, J.; McLean, K.A.; Moore, K.; Glasbey, C.A.; Simm, G. Use of X-ray computed to.mography (CT) in UK sheep production and breeding. In CT Scanning—Techniques and Applications; Karuppasamy, S., Ed.; Intech Open access: Rijeka, Croatia, 2011; pp. 329–348. [Google Scholar]
- Daumas, G.; Donkó, T.; Maltin, C.; Bünger, L. Imaging Facilities (CT & MRI) in EU for Measuring Body Composition; SRUC: Edinburgh, UK, 2015; pp. 5–48. [Google Scholar]
- Bunger, L.; Menezes, A.M.; McLean, K.A.; Gordon, J.; Yates, J.; Moore, K.; Lambe, N.R. Selecting terminal sire breed rams for lean meat percentage–effects on their crossbred lambs. In Farm Animal Imaging—A Summary Report; Maltin, C., Craigie, C., Bünger, L., Eds.; SRUC: Edinburgh, UK, 2015; pp. 56–61. [Google Scholar]
- Bünger, L.; Moore, K.; McLean, K.; Kongsro, J.; Lambe, N. Integrating Computed tomography into commercial sheep breeding in the UK: Cost and value. In Farm Animal Imaging III; Maltin, C., Craigie, C., Bünger, J., Eds.; SRUC: Copenhagen, Denmark, 2014; pp. 22–27. [Google Scholar]
- Lerch, S.; De La Torre, A.; Huau, C.; Monziols, M.; Xavier, C.; Louis, L.; Cozler, Y.L.; Faverdin, P.; Lambertor, P.; Chery, I.; et al. Estimation of dairy goat body composition: A direct calibration and comparison of eight methods. Methods 2020. [Google Scholar] [CrossRef]
- Pomar, C.; van Milgen, J.; Remus, A. Precision livestock feeding, principle and practice. In Poultry and Pig Nutrition. Challenges of the 21st Century; Hendriks, W.H., Verstegen, M.W.A., Babinszky, L., Eds.; Wageningen Academic: Wageningen, The Netherlands, 2019; pp. 397–418. [Google Scholar]
- Young, M.J.; Nsoso, S.J.; Logan, C.M.; Beatson, P.R. Prediction of carcass tissue weight in vivo using live weight, ultrasound or X-ray CT measurements. Proc. N. Z. Soc. Anim. Prod. 1996, 56, 205–211. [Google Scholar]
- Kvame, T.; Vangen, O. In-vivo composition of carcass regions in lambs of two genetic lines, and selection of CT positions for estimation of each region. Small Rumin. Res. 2006, 66, 201–208. [Google Scholar] [CrossRef]
- Macfarlane, J.M.; Lewis, R.M.; Emmans, G.C.; Young, M.J.; Simm, G. Predicting carcass composition of terminal sire sheep using X-ray computed tomography. Anim. Sci. 2006, 82, 289–300. [Google Scholar] [CrossRef]
- Kongsro, J.; Røe, M.; Aastveit, A.H.; Kvaal, K.; Egelandsdal, B. Virtual dissection of lamb carcasses using computer tomography (CT) and its correlation to manual dissection. J. Food Eng. 2008, 88, 86–93. [Google Scholar] [CrossRef]
- Rosenblatt, A.J.; Scrivani, P.V.; Boisclair, Y.R.; Reeves, A.P.; Ramos-Nieves, J.M.; Xie, Y.; Erb, H.N. Evaluation of a semi-automated computer algorithm for measuring total fat and visceral fat content in lambs undergoing in vivo whole body computed tomography. Vet. J. 2017, 228, 46–52. [Google Scholar] [CrossRef]
- Silva, S.R.; Teixeira, A.; Monteiro, A.; Guedes, C.M.; Ginja, M. Using computer tomography to predict composition of light carcass kid goats. In Farm Animal Imaging—A Summary Report; Maltin, C., Craigie, C., Bünger, L., Eds.; SRUC: Edinburgh, UK, 2015; p. 133. [Google Scholar]
- Silva, S.R.; Gonçalves, C.; Santos, V.; Azevedo, J.M.; Guedes, C.; Costa, H.R.; Teixeira, A.; Ginja, M. Prediction of carcass composition of the bravia goat breed by computerized tomography. Rev. Port. Zootec. 2019, 4, 66–71. [Google Scholar]
- Clelland, N.; Bunger, L.; McLean, K.A.; Knott, S.; Matthews, K.R.; Lambe, N.R. Prediction of intramuscular fat content and shear force in Texel lamb loins using combinations of different X-ray computed tomography (CT) scanning techniques. Meat Sci. 2018, 140, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Lambe, N.R.; Young, M.J.; Brotherstone, S.; Kvame, T.; Conington, J.; Kolstad, K.; Simm, G. Body composition changes in Scottish Blackface ewes during one annual production cycle. Anim. Sci. 2003, 76, 211–219. [Google Scholar] [CrossRef]
- Rojo-Gimeno, C.; van der Voort, M.; Niemi, J.K.; Lauwers, L.; Kristensen, A.R.; Wauters, E. Assessment of the value of informatiIon of precision livestock farming: A conceptual framework. NJAS Wagen. J. Life Sci. 2019, 90, 100311. [Google Scholar] [CrossRef]
- Xiberta, P.; Boada, I.; Bardera, A.; Font-i-Furnols, M. A semi-automatic and an automatic segmentation algorithm to remove the internal organs from live pig CT images. Comput. Electron. Agric. 2017, 140, 290–302. [Google Scholar] [CrossRef]
- Ho, H.; Yu, H.B.; Gangsei, L.E.; Kongsro, J. A CT-image based pig atlas model and its potential applications in the meat industry. Meat Sci. 2019, 148, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Lambe, N.R.; Donaldson, C.L.; McLean, K.A.; Gordon, J.; Menezes, A.M.; Clelland, N.; Bunger, L. Genetic control of CT-based spine traits in elite Texel rams. In Farm Animal Imaging—A Summary Report; Maltin, C., Craigie, C., Bünger, L., Eds.; SRUC: Edinburgh, UK, 2015; pp. 52–55. [Google Scholar]
- Jones, H.E.; Lewis, R.M.; Young, M.J.; Wolf, B.T. The use of X-ray computer tomography for measuring the muscularity of live sheep. Anim. Sci. 2002, 75, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Navajas, E.A.; Lambe, N.R.; McLean, K.A.; Glasbey, C.A.; Fisher, A.V.; Charteris, A.J.L.; Bünger, L.; Simm, G. Accuracy of in vivo muscularity indices measured by computed tomography and their association with carcass quality in lambs. Meat Sci. 2007, 75, 533–542. [Google Scholar] [CrossRef]
- Macfarlane, J.M.; Young, M.J.; Lewis, R.M.; Emmans, G.C.; Simm, G. Using X-Ray Computed Tomography to predict intramuscular fat content in terminal sire sheep. In Proceedings of the 56th Annual Meeting of the European Association for Animal Production nº11, Uppsala, Sweden, 5–8 June 2005; p. 267. [Google Scholar]
- Clelland, N.; Bunger, L.; McLean, K.A.; Conington, J.; Maltin, C.; Knott, S.; Lambe, N.R. Prediction of intramuscular fat levels in Texel lamb loins using X-ray computed tomography scanning. Meat Sci. 2014, 98, 263–271. [Google Scholar] [CrossRef]
- Lambe, N.R.; McLean, K.A.; Gordon, J.; Evans, D.; Clelland, N.; Bünger, L. Prediction of intramuscular fat content using CT scanning of packaged lamb cuts and relationships with meat eating quality. Meat Sci. 2017, 123, 112–119. [Google Scholar] [CrossRef]
- Anderson, F.; Pethick, D.W.; Gardner, G.E. The correlation of intramuscular fat content between muscles of the lamb carcass and the use of computed tomography to predict intramuscular fat percentage in lambs. Animal 2014, 9, 1239–1249. [Google Scholar] [CrossRef] [Green Version]
- Doneva, M. Mathematical models for magnetic resonance imaging reconstruction: An overview of the approaches, problems, and future research areas. IEEE Signal Process. Mag. 2020, 37, 24–32. [Google Scholar] [CrossRef]
- Weigand, A.C.; Schweizer, H.; Knob, D.A.; Scholz, A.M. Phenotyping of the Visceral Adipose Tissue Using Dual Energy X-Ray Absorptiometry (DXA) and Magnetic Resonance Imaging (MRI) in Pigs. Animals 2020, 10, 1165. [Google Scholar] [CrossRef]
- Monziols, M.; Collewet, G.; Bonneau, M.; Mariette, F.; Davenel, A.; Kouba, M. Quantification of muscle, subcutaneous fat and intermuscular fat in pig carcasses and cuts by magnetic resonance imaging. Meat Sci. 2006, 72, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Baulain, U.; Henning, M. Untersuchungen zur Schlachtkörper-und Fleischqualität mit Hilfe von MR-Tomographie und MR-Spektroskopie. Arch. Anim. Breed. 2001, 44, 181–192. [Google Scholar] [CrossRef]
- Kremer-Rücker, P.; Bernau, M.; Mendel, C.; Steiner, A.; Gruber, E.; Scholz, A. Eignung der Magnetresonanztomographie zur Schätzung der Schlachtleistung von Merino-Lämmern. Nova Acta Leopold. 2016, 121, 33–43. [Google Scholar]
- Korn, S.; Baulain, U.; Arnold, M.; Brade, W. Application of Magnetic Resonance Imaging and ultrasound to determine carcass quality in lamb. Zuchtungskunde 2005, 77, 382–393. [Google Scholar]
- Mendel, C.; Scholz, A.M.; Kremer, P.V.; Förster, M.; Ringdorfer, F.; Krenn, V.; Zeiler, M.; Steiner, A.; Wagenpfeil, M.; Götz, K.U. Messmethoden zur Beurteilung des Schlachtkörperwertes beim Lamm im Vergleich. DGfZ Schr. 2007, 47, 7–16. [Google Scholar]
- Streitz, E.; Baulain, U.; Kallweit, E. Untersuchungen zur Körperzusammensetzung wachsender Lämmer mit Hilfe der Magnet-Resonanz-Tomographie (MRT). Züchtungskunde 1995, 67, 392–403. [Google Scholar]
- Kušec, G.; Scholz, A.M.; Baulain, U.; Kušec, I.D.; Bernau, M. Non-invasive techniques for exact phenotypic assessment of carcass composition and tissue growth in domestic animals. Acta Agric. Slov. 2016, 5, 12–17. [Google Scholar]
- Smith, S.; Madden, A.M. Body composition and functional assessment of nutritional status in adults: A narrative review of imaging, impedance, strength and functional techniques. J. Hum. Nutr. Diet. 2016, 29, 714–732. [Google Scholar] [CrossRef]
- Caballero, D. Radial textures: A new algorithm to analyze meat quality on MRI. Multimed. Tools Appl. 2020. [Google Scholar] [CrossRef]
- Kutsanedzie, F.Y.; Guo, Z.; Chen, Q. Advances in nondestructive methods for meat quality and safety monitoring. Food Rev. Int. 2019, 35, 536–562. [Google Scholar] [CrossRef]
- Nolasco-Perez, I.M.; Rocco, L.A.; Cruz-Tirado, J.P.; Pollonio, M.A.; Barbon, S.; Barbon, A.P.A.; Barbin, D.F. Comparison of rapid techniques for classification of ground meat. Biosyst. Eng. 2019, 183, 151–159. [Google Scholar] [CrossRef]
- Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Development of optimal protocol for visible and near-infrared reflectance spectroscopic evaluation of meat quality. Meat Sci. 2004, 68, 371–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weeranantanaphan, J.; Downey, G.; Allen, P.; Sun, D.W. A review of near infrared spectroscopy in muscle food analysis: 2005–2010. J. Near Infrared Spectrosc. 2011, 19, 61–104. [Google Scholar] [CrossRef]
- Dixit, Y.; Pham, H.Q.; Realini, C.E.; Agnew, M.P.; Craigie, C.R.; Reis, M.M. Evaluating the performance of a miniaturized NIR spectrophotometer for predicting intramuscular fat in lamb: A comparison with benchtop and hand-held Vis-NIR spectrophotometers. Meat Sci. 2020, 162, 108026. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Andueza, D.D.; de Oliveira, L.; Zawadzki, F.; Prache, S. Comparison of visible and near infrared reflectance spectroscopy on fat to authenticate dietary history of lambs. Animal 2015, 9, 1912–1920. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.; Oliveira, A.; Paulos, K.; Leite, A.; Márcia, A.; Amorim, A.; Pereira, E.; Silva, S.; Rodrigues, S. An approach to predict chemical composition of goat longissimus thoracis et lumborum muscle by near infrared reflectance spectroscopy. Small Rumin. Res. 2015, 126, 40–43. [Google Scholar] [CrossRef] [Green Version]
- Fowler, S.M.; Morris, S.; Hopkins, D.L. Preliminary investigation for the prediction of intramuscular fat content of lamb in-situ using a hand-held NIR spectroscopic device. Meat Sci. 2020, 108153. [Google Scholar] [CrossRef]
- Guy, F.; Prache, S.; Thomas, A.; Bauchart, D.; Andueza, D. Prediction of lamb meat fatty acid composition using near-infrared reflectance spectroscopy (NIRS). Food Chem. 2011, 127, 1280–1286. [Google Scholar] [CrossRef]
- Viljoen, M.; Hoffman, L.C.; Brand, T.S. Prediction of the chemical composition of mutton with near infrared reflectance spectroscopy. Small Rumin. Res. 2007, 69, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Andrés, S.; Murray, I.; Navajas, E.A.; Fisher, A.V.; Lambe, N.R.; Bünger, L. Prediction of sensory characteristics of lamb meat samples by near infrared reflectance spectroscopy. Meat Sci. 2007, 76, 509–516. [Google Scholar] [CrossRef]
- Knight, M.I.; Linden, N.; Ponnampalam, E.N.; Kerr, M.G.; Brown, W.G.; Hopkins, D.L.; Baud, S.; Ball, A.J.; Borggaard, C.; Wesley, I. Development of VISNIR predictive regression models for ultimate pH, meat tenderness (shear force) and intramuscular fat content of Australian lamb. Meat Sci. 2019, 155, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Pullanagari, R.R.; Yule, I.J.; Agnew, M. On-line prediction of lamb fatty acid composition by visible near infrared spectroscopy. Meat Sci. 2015, 100, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Shimoni, M.; Haelterman, R.; Perneel, C. Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–117. [Google Scholar] [CrossRef]
- Andueza, D.; Mourot, B.P.; Hocquette, J.F.; Mourot, J. Phenotyping of Animals and Their Meat: Applications of Low-Power Ultrasounds, Near-Infrared Spectroscopy, Raman Spectroscopy, and Hyperspectral Imaging. In Lawrie’s Meat Science; Toldra, F., Ed.; Elsevier Ltd: Amsterdam, The Netherlands, 2017; pp. 501–519. [Google Scholar]
- Liu, Y.; Pu, H.; Sun, D.W. Hyperspectral imaging technique for evaluating food quality and safety during various processes: A review of recent applications. Trends Food Sci. Technol. 2017, 69, 25–35. [Google Scholar] [CrossRef]
- Cheng, J.H.; Nicolai, B.; Sun, D.W. Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle foods: A review. Meat Sci. 2017, 123, 182–191. [Google Scholar] [CrossRef]
- Xu, J.L.; Sun, D.W. Hyperspectral Imaging Technique for Online Monitoring of Meat Quality and Safety. In Advanced Technologies for Meat Processing, 2nd ed.; Toldra, F., Nollet, L.M.L., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 17–82. [Google Scholar]
- Hung, Y.; Verbeke, W. Sensory attributes shaping consumers’ willingness-to-pay for newly developed processed meat products with natural compounds and a reduced level of nitrite. Food Qual. Prefer. 2018, 70, 21–31. [Google Scholar] [CrossRef]
- Farmer, L.J.; Farrell, D.T. Beef-eating quality: A European journey. Animal 2018, 12, 2424–2433. [Google Scholar] [CrossRef] [Green Version]
- Qiao, T.; Ren, J.; Yang, Z.; Qing, C.; Zabalza, J.; Marshall, S. Visible hyperspectral imaging for lamb quality prediction. TM Tech. Mess. 2015, 82, 643–652. [Google Scholar] [CrossRef] [Green Version]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Non-destructive assessment of instrumental and sensory tenderness of lamb meat using NIR hyperspectral imaging. Food Chem. 2013, 141, 389–396. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innov. Food Sci. Emerg. Technol. 2012, 16, 218–226. [Google Scholar] [CrossRef]
- Pu, H.; Sun, D.W.; Ma, J.; Liu, D.; Kamruzzaman, M. Hierarchical variable selection for predicting chemical constituents in lamb meats using hyperspectral imaging. J. Food Eng. 2014, 143, 44–52. [Google Scholar] [CrossRef]
- Kamruzzaman, M. Food adulteration and authenticity. In Food Safety; Selamat, J., Iqbal, S., Eds.; Springer: Cham, Switzerland, 2016; pp. 127–148. [Google Scholar]
- Craigie, C.R.; Johnson, P.L.; Shorten, P.R.; Charteris, A.; Maclennan, G.; Tate, M.L.; Agnew, M.P.; Taukin, K.R.; Stuart, A.D.; Reis, M. Application of Hyperspectral imaging to predict the pH, intramuscular fatty acid content and composition of lamb M. longissimus lumborum at 24 h post mortem. Meat Sci. 2017, 132, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis. Anal. Chim. Acta 2012, 714, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Hyperspectral imaging for real-time monitoring of water holding capacity in red meat. LWT—Food Sci. Technol. 2016, 66, 685–691. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Online monitoring of red meat color using hyperspectral imaging. Meat Sci. 2016, 116, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Wu, L.G.; Kang, N.B.; Li, H.Y.; Wang, J.Y.; He, X.G. Study on Tan-lamb mutton tenderness by using the fusion of hyperspectral spectrum and image information. J. Optoelectron. Laser 2016, 27, 987–995. [Google Scholar]
- Kamruzzaman, M.; Sun, D.W.; El Masry, G.; Allen, P. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta 2013, 103, 130–136. [Google Scholar] [CrossRef]
- Al-Sarayreh, M.; Reis, M.M.; Yan, W.Q.; Klette, R. Detection of red-meat adulteration by deep spectral–spatial features in hyperspectral images. J. Imaging 2018, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Sanz, J.A.; Fernandes, A.M.; Barrenechea, E.; Silva, S.; Santos, V.; Gonçalves, N.; Patermain, D.; Juriom, A.; Melo-Pinto, P. Lamb muscle discrimination using hyperspectral imaging: Comparison of various machine learning algorithms. J. Food Eng. 2016, 174, 92–100. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Application of NIR hyperspectral imaging for discrimination of lamb muscles. J. Food Eng. 2011, 104, 332–340. [Google Scholar] [CrossRef]
- Qiao, L.; Peng, Y.; Wei, W.; Li, C. Identification of main meat species based on spectral characteristics. In Proceedings of the 2015 ASABE Annual International Meeting, New Orleans, LA, USA, 26–29 July 2015; American Society of Agricultural and Biological Engineers: St Joseph, MI, USA, 2015. Publication nº152189619. [Google Scholar]
- Qiao, L.; Peng, Y.; Chao, K.; Qin, J. Rapid discrimination of main red meat species based on near-infrared hyperspectral imaging technology. In Proceedings of the SPIE—Sensing for Agricultural and Food Quality and Safety VIII, Baltimore, MD, USA, 20–21 April 2016; Kim, M.S., Chao, K., Chin, B.A., Eds.; SPIE: Baltimore, MD, USA, 2016. Publication nº98640U. [Google Scholar]
- Jiang, H.; Wang, W.; Zhuang, H.; Yoon, S.C.; Yang, Y.; Zhao, X. Hyperspectral imaging for a rapid detection and visualization of duck meat adulteration in beef. Food Anal. Methods 2019, 12, 2205–2215. [Google Scholar] [CrossRef]
- Jiang, H.; Cheng, F.; Shi, M. Rapid identification and visualization of jowl meat adulteration in pork using hyperspectral imaging. Foods 2020, 9, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Yu, H.; Zhang, S.; Du, Y.; Sheng, Z.; Chu, Y.; Zhang, D.; Guo, L.; Deng, L. Visualization accuracy improvem;ent of spectral quantitative analysis for meat adulteration using Gaussian distribution of regression coefficients in hyperspectral imaging. Optik 2020, 164737. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Non-invasive analytical technology for the detection of contamination, adulteration, and authenticity of meat, poultry, and fish: A review. Anal. Chim. Acta 2015, 853, 19–29. [Google Scholar] [CrossRef]
- Fowler, S.M.; Schmidt, H.; Scheier, R.; Hopkins, D.L. Raman spectroscopy for predicting meat quality traits. In Advanced Technologies for Meat Processing, 2nd ed.; Toldra, F., Nollet, L.M.L., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 83–112. [Google Scholar]
- Kucha, C.T.; Liu, L.; Ngadi, M.O. Non-destructive spectroscopic techniques and multivariate analysis for assessment of fat quality in pork and pork products: A review. Sensors 2018, 18, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, S.M.; Hopkins, D.L.; Torley, P.J.; Gill, H.; Blanch, E.W. Investigation of chemical composition of meat using spatially off-set Raman spectroscopy. Analyst 2019, 144, 2618–2627. [Google Scholar] [CrossRef]
- Beganović, A.; Hawthorne, L.M.; Bach, K.; Huck, C.W. Critical review on the utilization of handheld and portable Raman spectrometry in meat science. Foods 2019, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Andersen, P.V.; Wold, J.P.; Gjerlaug-Enger, E.; Veiseth-Kent, E. Predicting post-mortem meat quality in porcine longissimus lumborum using Raman, near infrared and fluorescence spectroscopy. Meat Sci. 2018, 145, 94–100. [Google Scholar] [CrossRef]
- Cama-Moncunill, R.; Cafferky, J.; Augier, C.; Sweeney, T.; Allen, P.; Ferragina, A.; Sullivan, C.; Cromie, A.; Hamill, R.M. Prediction of Warner-Bratzler shear force, intramuscular fat, drip-loss and cook-loss in beef via Raman spectroscopy and chemometrics. Meat Sci. 2020, 108157. [Google Scholar] [CrossRef]
- Ostovar Pour, S.; Fowler, S.M.; Hopkins, D.L.; Torley, P.; Gill, H.; Blanch, E.W. Differentiating various beef cuts using spatially offset Raman spectroscopy. J. Raman Spectrosc. 2020, 51, 711–716. [Google Scholar] [CrossRef]
- Boyaci, I.H.; Uysal, R.S.; Temiz, T.; Shendi, E.G.; Yadegari, R.J.; Rishkan, M.M.; Velioglu, H.M.; Tamer, U.; Ozay, D.S.; Vural, H. A rapid method for determination of the origin of meat and meat products based on the extracted fat spectra by using of Raman spectroscopy and chemometric method. Eur. Food Res. Technol. 2014, 238, 845–852. [Google Scholar] [CrossRef]
- Saleem, M.; Amin, A.; Irfan, M. Raman spectroscopy based characterization of cow, goat and buffalo fats. J. Food Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Fowler, S.M.; Schmidt, H.; van de Ven, R.; Wynn, P.; Hopkins, D.L. Raman spectroscopy compared against traditional predictors of shear force in lamb m. longissimus lumborum. Meat Sci. 2014, 98, 652–656. [Google Scholar] [CrossRef]
- Schmidt, H.; Scheier, R.; Hopkins, D.L. Preliminary investigation on the relationship of Raman spectra of sheep meat with shear force and cooking loss. Meat Sci. 2013, 93, 138–143. [Google Scholar] [CrossRef]
- Fowler, S.M.; Schmidt, H.; van de Ven, R.; Wynn, P.; Hopkins, D.L. Predicting tenderness of fresh ovine semimembranosus using Raman spectroscopy. Meat Sci. 2014, 97, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.M.; Schmidt, H.; van de Ven, R.; Wynn, P.; Hopkins, D.L. Predicting meat quality traits of ovine m. semimembranosus, both fresh and following freezing and thawing, using a hand held Raman spectroscopic device. Meat Sci. 2015, 108, 138–144. [Google Scholar] [CrossRef]
- Fowler, S.M.; Ponnampalam, E.N.; Schmidt, H.; Wynn, P.; Hopkins, D.L. Prediction of intramuscular fat content and major fatty acid groups of lamb M. longissimus lumborum using Raman spectroscopy. Meat Sci. 2015, 110, 70–75. [Google Scholar] [CrossRef]
- Beattie, J.R.; Bell, S.E.J.; Borggaard, C.; Fearon, A.M.; Moss, B.W. Classification of adipose tissue species using Raman spectroscopy. Lipids 2007, 42, 679–685. [Google Scholar] [CrossRef]
- Santos, C.C.; Zhao, J.; Dong, X.; Lonergan, S.M.; Huff-Lonergan, E.; Outhouse, A.; Carlson, K.B.; Prusa, K.J.; Fedler, C.A.; Yu, C.; et al. Predicting aged pork quality using a portable Raman device. Meat Sci. 2018, 145, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Sowoidnich, K.; Maiwald, M.; Sumpf, B.; Kronfeldt, H.D. Handheld Raman sensor head for in-situ characterization of meat quality applying a mircosystem 671nm diode laser. In Proceedings of the SPIE—Sensing for Agricultural and Food Quality and Safety VII, Orlando, FL, USA, 13–17 April 2009; Vo-Dinh, T., Lieberman, R.A., Gauglitz, G., Eds.; SPIE: Orlando, FL, USA, 2009. Publication nº73120H. [Google Scholar]
- Craigie, C.R.; Fowler, S.; Knight, M.; Stuart, A.; Hopkins, D.; Reis, M.M. Spectral imaging techniques for predicting meat quality—An Australasian perspective. In FAIM Farm Animal Imaging—A Summary Report; Maltin, C., Craigie, C., Bünger, L., Eds.; SRUC: Edinburgh, UK, 2015; pp. 75–79. [Google Scholar]
- Feng, C.H.; Makino, Y.; Oshita, S.; Martín, J.F.G. Hyperspectral imaging and multispectral imaging as the novel techniques for detecting defects in raw and processed meat products: Current state-of-the-art research advances. Food Control 2018, 84, 165–176. [Google Scholar] [CrossRef]
- Font-i-Furnols, M.; Fulladosa, E.; Prevolnik Povše, M.; Čandek-Potokar, M. Future trends in non-invasive technologies suitable for quality determinations. In A Handbook of Reference Methods for Meat Quality Assessment; Font-i-Furnols, M., Čandek-Potokar, M., Maltin, C., Prevolnik Povše, M., Eds.; SRUC: Edinburgh, UK, 2015; pp. 90–103. [Google Scholar]
Scanning Object | n | Scanner | Scanning Time | Data Analysis | Composition Trait | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fat (%) | Fat (g) | Muscle (%) | Muscle (g) | ||||||||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||||||
Carcass | 155 | Lunar iDXA | ∼3–7 min | SMLR | 0.920 | 0.74 | 0.920 | 260 | 0.780 | 1.99 | 0.920 | 220 | [22] |
Carcass | 155 | Lunar iDXA | ∼3–7 min | PLSR | 0.880 | 2.68 | |||||||
Carcass | 454 | 140 kV GADOX | Chain speed | PLSR | 0.910 | 1.19 | 0.740 | 1.54 | [18] # | ||||
Carcass | 607 | 140 kV GADOX | Chain speed | PLSR | 0.890 | 1.32 | 0.690 | 1.69 | [16] # | ||||
Cold carcass | LR | 0.750 | 0.490 | [23] | |||||||||
Carcass | LR | 0.470 | 0.130 | ||||||||||
Cold carcass | 24 | 140 kV GADOX | 0.770 | 2.48 | 0.660 | 2.35 | [24] # | ||||||
Carcass | 24 | 140 kV GADOX | 0.700 | 2.77 | 0.620 | 2.43 | |||||||
Carcass | 93 | GE Lunar DPX-IQ | 0.730 | 0.90 | 0.830 | 177 | 0.570 | 1.76 | 0.880 | 197 | [19] | ||
In vivo | 93 | 0.510 | 2.22 | 0.710 | 229 | 0.500 | 1.88 | 0.570 | 369 | ||||
Carcass | 28 | Hologic QDR4500A | 0.992 | 0.984 | [17] | ||||||||
In vivo | 28 | Hologic QDR4500A | 0.988 | ||||||||||
In vivo | 59 | GE Lunar DPX IQ | SMLR | 0.590 | 2.13 | 0.670 | 251 | 0.490 | 1.96 | 0.670 | 320 | [25] | |
Carcass | 59 | GE Lunar DPX IQ | SMLR | 0.720 | 1.77 | 0.820 | 185 | 0.520 | 1.92 | 0.840 | 223 | ||
Carcass | 50 | Norland XR-26 | ∼2 min | LR | 0.860 | 420 | 0.900 | 674 | [26] | ||||
In vivo | 50 | Norland XR-26 | ∼2 min | LR | 0.700 | 710 | 0.720 | 1005 | |||||
Carcass | 60 | Hologic QDR4500W | LR | 0.942 | 0.988 | 0.937 | 0.985 | [21] | |||||
Carcass | 140 | Lunar DPX-L | LR | 0.771 | 2.5 | 0.930 | 226 | [27] | |||||
Frozen carcass | 24 | Hologic QDR 4500A | LR | 0.920 | 1.2 | 0.970 | 163 | 0.980 | 232 | [28] |
Specie | Target | n | CT Image | Anatomical Landmarks | Data Analysis | Tissue (kg) | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Muscle | Fat | Bone | |||||||||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | ||||||||
Sheep | In vivo | 21 | 2D | TV7, LV2, LV5, FEM | LR | 0.94 | 0.508 | 0.93 | 0.406 | 0.73 | 0.262 | [38] | |
In vivo | Leg | 47 | 2D | CAV3, CAV4, SV4 | LR | 0.93 | 0.95 | 0.83 | [39] | ||||
Shoulder | 32 | TV6, CV7 | 0.93 | 0.96 | 0.72 | ||||||||
Mid-Region | 104 | LV4, TV8 | 0.89 | 0.98 | 0.69 | ||||||||
In vivo | 160 | 2D | ISC, LV5, TV8 | 0.92 | 0.078 | 0.98 | 0.097 | 0.83 | 0.107 | [40] | |||
Carcass | 120 | PLSR | 0.94 | 0.710 | 0.92 | 0.600 | [41] | ||||||
In vivo | 22 | SS (1 mm) | LR | 0.94 | [42] # | ||||||||
SS (5 mm) | 0.90 | ||||||||||||
Goats | Carcass | 19 | SS (5 mm) | LR | 0.95 | 0.65 | [43] | ||||||
Carcass | 10 | SS (5 mm) | LR | 0.95 | 0.74 | 0.47 | [44] | ||||||
In vivo | 20 | SS (3 mm) | Volume fatty tissues | LR | 0.92 | 0.760 | [36] # |
Target | Traits | n | CT Image | Anatomical Landmarks | R2 | RMSE | Reference |
---|---|---|---|---|---|---|---|
In vivo | IMF, % | 160 | 2D | ISC, LV5,LV2,TV8,TV6 | 0.57 | 0.608 | [53] |
In vivo | 370 | 2D | ISC, LV5, TV8 | 0.51–0.68 | 0.39–0.48 | [54] | |
370 | 2D | LV5 | 0.51–0.65 | 0.40–0.48 | |||
Loin | IMF, % | 303 | SS (8 mm) | 0.36 | 0.620 | [55] | |
In vivo | 377 | SS (8 mm) | 0.51–0.70 | 0.48–0.38 | [45] | ||
377 | SS + 2D | ISC, TV8 | 0.50–0.71 | 0.47–0.37 | |||
Loin | Shear force, kgF | 303 | SS (8 mm) | 0.03 | −0.830 | [55] | |
In vivo | 377 | SS (8 mm) | 0.02–0.06 | 0.16–0.16 | [45] | ||
377 | SS (8 mm) | ISC, TV8 | 0.03–0.13 | 0.16–0.15 | |||
Loin | Texture | 303 | SS (8 mm) | 0.08 | −0.530 | [55] | |
Flavour | 303 | SS (8 mm) | 0.09 | −0.370 | |||
Juiciness | 303 | SS (8 mm) | 0.06 | −0.370 | |||
Liking | 303 | SS (8 mm) | 0.10 | −0.390 |
LW (kg) | n | Body Tissue | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Muscle (g) | Fat (g) | Muscle (%) | Fat (%) | |||||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |||
43 | 31 | 0.89 | 243 | 0.83 | 183 | 0.41 | 1.72 | 0.67 | 1.73 | [61] |
<30 | 49 | 0.96 | 160 | 0.96 | 84 | 0.78 | 1.57 | 0.86 | 1.49 | [62] |
>30 | 84 | 0.91 | 261 | 0.94 | 195 | 0.91 | 1.60 | 0.90 | 1.64 |
Technology | Spectrophotometer | Portability | WR (nm) | n | Attributes | Object | Data Analysis | DA (%) | R2 | RMSE | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
VIS–NIRS | Labspec5000 | Portable | 350–2500 | 498 | IMF | Freeze-dried ground lamb meat | PLSR | 0.76 | 0.41 | [72] | |
VIS–NIRS | Labspec4 | Benchtop | 350–2500 | 498 | IMF | 0.79 | 0.38 | ||||
VIS–NIRS | Trek | Hand-held | 350–2500 | 498 | IMF | 0.73 | 0.34 | ||||
NIRS | NIRScan Nano Tellspec | Hand-held (Mini) | 900–1700 | 498 | IMF | 0.27 | 1.28 | ||||
VIS–NIRS | NIRSystems 6500 | Benchtop | 400–2500 | 69 | Perirenal fat | Pasture #; carcass | PLS-DA | 98.6 | [73] | ||
55 | Perirenal fat | Indoors ##; carcass | 100 | ||||||||
65 | Perirenal fat | Indoors 28 ###; carcass | 98.5 | ||||||||
Visible | MINOLTA CM-700d | Portable | 400–700 | 69 | Perirenal fat | Pasture #; carcass | 98.6 | ||||
55 | Perirenal fat | Indoors ##; carcass | 94.5 | ||||||||
65 | Perirenal fat | Indoors 28 ###; carcass | 92.3 | ||||||||
NIRS | TerraSpec Halo® | Hand-held | 350–2500 | 75 | IMF | Topside; carcass | PLSR | 0.58 | 0.85 | [75] | |
IMF | Loin; carcass | 0.50 | 0.91 | ||||||||
VIS–NIRS | NIRSystems 6500 | Benchtop | 400–2498 | 232 | Taste traits$ | LM | PLSR | <0.40 | [78] | ||
IMF | 0.84 | ||||||||||
Moisture | 0.67 | ||||||||||
VIS–NIRS | NIRSystems 6500 | Benchtop | 400–2500 | 76 | SFA, MUFA, PUFA, CLA | Raw meat | 0.41–0.52 | [76] | |||
NIRS | 700–2500 | SFA, PUFA | Ground meat | 0.89–0.98 | |||||||
VIS–NIRS | 400–2500 | MUFA, CLA | 0.84–0.98 | ||||||||
VIS–NIRS | ASD Labspec | Hand-held | 500–2000 | pH | LM;ST | PLSR | 0.49, 0.70 | [79] | |||
Shear force | LM carcass | 0.34; 0.30 | |||||||||
IMF | LM carcass | 0.55; 0.63 | |||||||||
VIS–NIRS | ASD FieldSpec | Benchtop | 350–2500 | 250 | IMF | LM | PLSR | 0.69 | 1.6 | [80] | |
SFA | 0.60 | 192.21 | |||||||||
MUFA | 0.60 | 168.72 | |||||||||
PUFA | 0.67 | 27.86 | |||||||||
NIRS | InfraAlyzer500 | Benchtop | 1100–2500 | 131 | DM | Freeze-dried LM | PLSR | 0.96 | 0.38 | [77] | |
118 | Protein | 1.00 | 0.92 | ||||||||
120 | Fat | 1.00 | 0.43% | ||||||||
NIRS | Master™ N500 | Benchtop | 420–1000 | 66 | Protein | Goats ground meat | PLSR | 0.87 | 0.43 | [74] | |
62 | Moisture | 0.94 | 0.48 | ||||||||
16 | Fat | 0.60 | 0.49 |
Attributes | n | WR (nm) | Data Analysis | DA (%) | R2 | References | |
---|---|---|---|---|---|---|---|
Sensory* | a* | 29 | 400–1000 | PLSR | 0.84 | [96] | |
a* | 80 | 400–863 | PCA. SVM | 0.48 | [88] | ||
b* | 29 | 400–1000 | PLSR | 0.82 | [96] | ||
b* | 80 | 400–863 | PCA. SVM | 0.26 | [88] | ||
L* | 42 | 900–1700 | PLSR | 0.91 | [94] | ||
L* | 29 | 400–1000 | PLSR | 0.97 | [96] | ||
L* | 80 | 400–863 | PCA. SVM | 0.77 | [88] | ||
Tenderness | 100 | 900–1700 | PLSR | 0.69 | [89] | ||
Chemical | Protein | 81 | 900–1700 | PLSR | 0.85 | [95] | |
Protein | 126 | 1021–1396 | MLR | 0.80 | [91] | ||
Water | 126 | 900–1700 | PLSR | 0.88 | [90] | ||
Water | 126 | 1021–1396 | MLR | 0.91 | [91] | ||
Fat | 126 | 900–1700 | PLSR | 0.91 | [90] | ||
Fat | 126 | 1021–1396 | MLR | 0.95 | [91] | ||
IMF% | 1020 | 550–1700 | PLSR | 0.67 | [93] | ||
SFA | 1020 | 550–1700 | PLSR | 0.68 | [93] | ||
MUFA | 1020 | 550–1700 | PLSR | 0.70 | [93] | ||
FPUFA | 1020 | 550–1700 | PLSR | 0.53 | [93] | ||
Technological | pH | 42 | 900–1700 | PLSR | 0.65 | [94] | |
pH | 80 | 400–863 | PCA. SVM | 0.38 | [88] | ||
pH | 2406 | 550–1700 | PLSR | 0.71 | [93] | ||
MIRINZ SF | 80 | 400–863 | PCA. SVM | 0.41 | [88] | ||
WBSF | 100 | 900–1700 | PLSR. MLR. SPA | 0.84 | [89] | ||
WBSF | 128 | 400–1000 | PLSR | 0.89 | [97] | ||
WHC | 42 | 900–1700 | PLSR | 0.77 | [94] | ||
WHC | 81 | 400–1000 | PLSR. LS-SVM | 0.92 | [95] | ||
Adulteration | Minced lamb meat | 200 | 900–1700 | PCA. PLSR. MLR | 0.98 | [98] | |
Red-meat products | 75 | 548–1701 | CNN | 94.4 | [99] | ||
Discrimination | Raw meat | 29 | 900–1700 | PCA. PLS-DA | 98.7 | [96] | |
LM, PM, ST, SM | 30 | 380–1028 | PCA. LMS | 96.7 | [100] | ||
LM, PM, ST | 105 | 900–1700 | PCA. LDA | 100.0 | [101] | ||
Raw meat | 61 | 1000–2500 | LDA | 100.0 | [102] | ||
Raw meat | 90 | 1000–2500 | LDA | 87.5 | [103] |
Quality Attributes | n | Muscle | Ageing Time (day) | Multivariable Analysis | R2 | R2CV | RMSE | RMSECV | Reference | |
---|---|---|---|---|---|---|---|---|---|---|
Technological properties | Shear force (N) | 70 | LM | 1 | PLSR | 0.79 | 0.11 | 0.31 | [118] | |
Shear force (N) | 70 | LM | 1 | 0.86 | 0.10 | 0.26 | ||||
Shear force (N) | 80 | LM | 1 | PLSR | 0.06 | 13.60 | [117] | |||
Shear force (N) | 80 | LM | 5 | 10.00 | ||||||
Shear force (N) | 80 | SM | 1 | PLSR | 0.27 | 11.48 | [119] | |||
Shear force (N) | 81 | SM | 5 | 0.17 | 12.20 | |||||
Cooking loss (%) | 70 | LM | 1 | 0.79 | 3.20 | 0.09 | [118] | |||
Cooking loss (%) | 70 | LM | 1 | 0.83 | 0.03 | 0.08 | ||||
Purge loss (%) | 80 | SM | 1 | 0.42 | 0.90 | [120] | ||||
Purge loss (%) | 80 | SM | 5 | 0.33 | 0.94 | |||||
pH24 | 80 | SM | 1 | PLSR | 0.48 | 0.12 | ||||
pHu | 80 | SM | 1 | 0.59 | 0.07 | |||||
L | 80 | SM | 1 | 0.32 | 1.96 | |||||
L | 80 | SM | 5 | 0.22 | 1.87 | |||||
Fatty acids/IMF | PUFA (mg/100 g) | 80 | LM | 1 | PLSR | 0.93 | 0.21 | 46.57 | [121] | |
MUFA (mg/100 g) | 80 | LM | 1 | 0.54 | 0.16 | 400.30 | ||||
SFA (mg/100 g) | 80 | LM | 1 | 0.08 | 0.01 | 358.72 | ||||
PUFA:SFA | 80 | LM | 1 | 0.21 | 0.13 | 0.06 | ||||
IMF (mg/100 g) | 80 | LM | 1 | 0.08 | 0.02 | 1.12 |
Attributes | Techniques | |||||
---|---|---|---|---|---|---|
Imaging | Spectroscopic | |||||
DXA | CT | MRI | NIRS and VIS–NIRS | HSI | Raman | |
Fundamentals | X-ray attenuation coefficients (R value) of a low and of a high energy X-ray spectral level related with soft tissue and bone mineral | Attenuation of X-rays passing an object is transformed into Hounsfield units which are related to a given tissue | A phenomenon called nuclear magnetic resonance is the basic principle in which an atomic nuclei with an odd number of protons or neutrons or both (e.g., hydrogen nucleus) will absorb and re-emit radio waves when placed in a magnetic field. | Food molecules contain functional groups like C-H, N-H and O-H, which are closely related to bands in spectra. The VIS–NIRS ranges from 350–2500 nm and NIRS which measures the absorption of electromagnetic radiation in the near-infrared spectrum (750 to 2500 nm) | The HSI spectral ranges from circa 200 nm (ultraviolet range) to 2500 nm (NIR range). The HSI spectral bands cover most food analysis applications. HSI combines imaging with spectroscopy, which simultaneously provides physical and geometrical features of an object | Raman spectroscopy is based on the inelastic scattering of light that occurs when a sample is exposed to a high-energy monochromatic beam of light such as a laser, which interacts with the sample molecules |
Target object | In vivo; carcass; cuts; meat | In vivo; carcass; cuts; meat | In vivo; carcass; cuts; meat | Carcass; cuts; meat | Cuts; meat | Carcass; cuts; meat |
Potential dependent variables | Tissue and chemical composition; bone density | Tissue and chemical composition; volume and texture | Tissue and chemical composition; volume and texture | Chemical composition; technological parameters; classification | Chemical composition; sensorial and technological parameters; classification | Chemical composition; sensorial and technological parameters; classification |
Accuracy | **** | **** | ***** | **** | **** | ***** |
Speed | *** | ** | * | ***** | *** | **** |
Cost | *** | ** | * | **** | *** | **** |
Portability | ** | * | * | ***** | *** | ***** |
Ease to use | **** | *** | ** | **** | *** | **** |
References | [14,19] | [14,33] | [14,33] | [72,75] | [84] | [82,108] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, S.; Guedes, C.; Rodrigues, S.; Teixeira, A. Non-Destructive Imaging and Spectroscopic Techniques for Assessment of Carcass and Meat Quality in Sheep and Goats: A Review. Foods 2020, 9, 1074. https://doi.org/10.3390/foods9081074
Silva S, Guedes C, Rodrigues S, Teixeira A. Non-Destructive Imaging and Spectroscopic Techniques for Assessment of Carcass and Meat Quality in Sheep and Goats: A Review. Foods. 2020; 9(8):1074. https://doi.org/10.3390/foods9081074
Chicago/Turabian StyleSilva, Severiano, Cristina Guedes, Sandra Rodrigues, and Alfredo Teixeira. 2020. "Non-Destructive Imaging and Spectroscopic Techniques for Assessment of Carcass and Meat Quality in Sheep and Goats: A Review" Foods 9, no. 8: 1074. https://doi.org/10.3390/foods9081074
APA StyleSilva, S., Guedes, C., Rodrigues, S., & Teixeira, A. (2020). Non-Destructive Imaging and Spectroscopic Techniques for Assessment of Carcass and Meat Quality in Sheep and Goats: A Review. Foods, 9(8), 1074. https://doi.org/10.3390/foods9081074