Exploring the Typicality, Sensory Space, and Chemical Composition of Swedish Solaris Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Selection
2.2. Sensory Analysis
2.3. Volatile Analyses
2.3.1. Thiol Analyses
2.3.2. Terpenes and Norisoprenoids
2.3.3. Major Volatiles
2.4. Non-Volatile Analyses
2.4.1. Cation Analyses
2.4.2. Organic Acids and Sugars
2.5. Data Analysis
3. Results
3.1. Typicality and Quality of Swedish Solaris Wines
3.2. Sensory Profile of the Wines
3.3. Volatile Composition
3.4. Non-Volatile Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Insel, B. The evolving global wine market. Bus. Econ. 2014, 49, 46–58. [Google Scholar] [CrossRef]
- Glenn, B.; Overton, J. Old world, new world, third world? Reconceptualising the worlds of wine. J. Wine Res. 2010, 21, 57–75. [Google Scholar]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Drappier, J.; Thibon, C.; Rabot, A.; Geny-Denis, L. Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming—Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 14–30. [Google Scholar] [CrossRef]
- Decanter Bordeaux Winemakers Allow New Grapes to Fight Climate Change. Available online: https://www.decanter.com/wine-news/bordeaux-new-wine-grapes-419730/ (accessed on 10 July 2020).
- Föreningen Svenskt vin. Sveriges Vingårdar. 2018. Available online: http://svensktvin.se/om-oss/ (accessed on 1 February 2020).
- Lisek, J. Yielding and healthiness of selected grape Jerz y Lisek. J. Fruit Ornam. Plant Res. 2010, 18, 265–272. [Google Scholar]
- Ruehl, E.; Schmid, J.; Eibach, R.; Töpfer, R. Grapevine Breeding Programmes in Germany; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; ISBN 9781782420804. [Google Scholar]
- Gindro, K.; Pezet, R.; Viret, O. Histological study of the responses of two Vitis vinifera cultivars (resistant and susceptible) to Plasmopara viticola infections. Plant Physiol. Biochem. 2003, 41, 846–853. [Google Scholar] [CrossRef]
- Trouvelot, S.; Varnier, A.L.; Allègre, M.; Mercier, L.; Baillieul, F.; Arnould, C.; Gianinazzi-Pearson, V.; Klarzynski, O.; Joubert, J.M.; Pugin, A.; et al. A β-1,3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HR-like cell death. Mol. Plant-Microbe Interact. 2008, 21, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Observatoire Cépages Resistants Caractérisation Sensorielle et Agronomique des Innovations Variétales Résistantes Européennes Classées en France. Available online: http://observatoire-cepages-resistants.fr/wp-content/uploads/2017/06/Livret_CIVARE-_basse_def.pdf (accessed on 17 May 2020).
- Pedneault, K.; Provost, C. Fungus resistant grape varieties as a suitable alternative for organic wine production: Benefits, limits, and challenges. Sci. Hortic. 2016, 208, 57–77. [Google Scholar] [CrossRef]
- Zhang, S.; Petersen, M.A.; Liu, J.; Toldam-Andersen, T.B.; Ebeler, S.E.; Hopfer, H. Influence of pre-fermentation treatments on wine volatile and sensory profile of the new disease tolerant cultivar solaris. Molecules 2015, 20, 21609–21625. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Arneborg, N.; Toldam-Andersen, T.B.; Zhang, S.; Petersen, M.A.; Bredie, W.L.P. Impact of sequential co-culture fermentations on flavour characters of Solaris wines. Eur. Food Res. Technol. 2017, 243, 437–445. [Google Scholar] [CrossRef]
- Samoticha, J.; Wojdy, A.; Chmielewska, J.; Politowicz, J.; Szumny, A. The effects of enzymatic pre-treatment and type of yeast on chemical properties of white wine. LWT Food Sci. Technol. 2017, 79, 445–453. [Google Scholar] [CrossRef]
- Nordmark, L.; Lindén, J.; Skjöldebrand, C.; Hansson, H. The Nordic Light Terroir. Acta Hortic. 2016, 1115, 189–193. [Google Scholar] [CrossRef]
- Lindén, J. Sensory Profiling of Swedish White Wines and a Contextual Analysis of Swedish Viticulture. Master’s Thesis, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden, 2014. [Google Scholar]
- Liu, J.; Toldam-Andersen, T.B.; Petersen, M.A.; Zhang, S.; Arneborg, N.; Bredie, W.L.P. Instrumental and sensory characterisation of Solaris white wines in Denmark. Food Chem. 2015, 166, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Arrhenius, S.P.; Mccloskey, L.P.; Sylvan, M. Chemical Markers for Aroma of Vitis vinifera Var. Chardonnay. J. Agric. Food Chem. 1996, 44, 1085–1090. [Google Scholar] [CrossRef]
- Rosch, E.; Simpson, C.; Miller, R.S. Structural bases of typicality effects. J. Exp. Psychol. Hum. Percept. Perform. 1976, 2, 491–502. [Google Scholar] [CrossRef]
- Ballester, J.; Patris, B.; Symoneaux, R.; Valentin, D. Conceptual vs. perceptual wine spaces: Does expertise matter? Food Qual. Prefer. 2008, 19, 267–276. [Google Scholar] [CrossRef]
- Perrin, L.; Pagès, J. A methodology for the analysis of sensory typicality judgments. J. Sens. Stud. 2009, 24, 749–773. [Google Scholar] [CrossRef]
- Cadot, Y.; Caillé, S.; Samson, A.; Barbeau, G.; Cheynier, V. Sensory dimension of wine typicality related to a terroir by Quantitative Descriptive Analysis, Just About Right analysis and typicality assessment. Anal. Chim. Acta 2010, 660, 53–62. [Google Scholar] [CrossRef]
- Francesca, N.; Gaglio, R.; Alfonzo, A.; Settanni, L.; Corona, O.; Mazzei, P.; Romano, R.; Piccolo, A.; Moschetti, G. The Wine: Typicality or Mere Diversity? The Effect of Spontaneous Fermentations and Biotic Factors on the Characteristics of Wine. Agric. Agric. Sci. Procedia 2016, 8, 769–773. [Google Scholar] [CrossRef] [Green Version]
- Candelon, M.; Ballester, J.; Uscidda, N.; Blanquet, J.; Le Fur, Y. Sensory methodology developed for the investigation of Sciaccarello wine concept. J. Int. Sci. Vigne Vin. 2004, 38, 147–154. [Google Scholar] [CrossRef]
- Ballester, J.; Dacremont, C.; Le Fur, Y.; Etiévant, P. The role of olfaction in the elaboration and use of the Chardonnay wine concept. Food Qual. Prefer. 2005, 16, 351–359. [Google Scholar] [CrossRef]
- Philipp, C.; Sari, S.; Eder, P.; Patzl-Fischerleitner, E.; Eder, R. Austrian Pinot blanc wines: Typicity, wine styles and the influence of different oenological decisions on the volatile profile of wines. BIO Web Conf. 2019, 15, 02005. [Google Scholar] [CrossRef]
- Gros, J.; Thibaud, F.; Gammacurta, M.; Moine, V.; Dubourdieu, D.; Darriet, P.; Marchal, A. Toward a Molecular Understanding of the Typicality of Chardonnay Wines: Identification of Powerful Aromatic Compounds Reminiscent of Hazelnut. J. Agric. Food Chem. 2017, 65, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Schüttler, A.; Friedel, M.; Jung, R.; Rauhut, D.; Darriet, P. Characterizing aromatic typicality of riesling wines: Merging volatile compositional and sensory aspects. Food Res. Int. 2015, 69, 26–37. [Google Scholar] [CrossRef]
- Valentin, L.; Barroso, L.P.; Barbosa, R.M.; Paulo, G.A. De Chemical typicality of South American red wines classi fi ed according to their volatile and phenolic compounds using multivariate analysis. Food Chem. 2020, 302, 125340. [Google Scholar] [CrossRef]
- Ruiz, J.; Kiene, F.; Belda, I.; Fracassetti, D.; Marquina, D.; Navascués, E.; Calderón, F.; Benito, A.; Rauhut, D.; Santos, A.; et al. Effects on varietal aromas during wine making: A review of the impact of varietal aromas on the flavor of wine. Appl. Microbiol. Biotechnol. 2019, 103, 7425–7450. [Google Scholar] [CrossRef]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine Aroma Compounds in Grapes: A Critical Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Samoticha, J.; Wojdyło, A.; Golis, T. Phenolic composition, physicochemical properties and antioxidant activity of interspecific hybrids of grapes growing in Poland. Food Chem. 2017, 215, 263–273. [Google Scholar] [CrossRef]
- Barnaba, C.; Dellacassa, E.; Nicolini, G.; Giacomelli, M.; Villegas, T.R.; Nardin, T.; Larcher, R. Targeted and untargeted-high resolution mass approach for a putative profiling of glycosylated simple phenols in hybrid grapes. Food Res. Int. 2017, 98, 20–33. [Google Scholar] [CrossRef]
- Ehrhardt, C.; Arapitsas, P.; Stefanini, M. Analysis of the phenolic composition of fungus- resistant grape varieties cultivated in Italy and Germany using UHPLC-MS/MS. J. Mass Spectrom. 2014, 49, 860–869. [Google Scholar] [CrossRef]
- Chenot, C.; Briffoz, L.; Lomartire, A.; Collin, S. Occurrence of Ehrlich-Derived and Varietal Polyfunctional Thiols in Belgian White Wines Made from Chardonnay and Solaris Grapes. J. Agric. Food Chem. 2019. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Williams, S.; Lancaster, B.; Foley, M. Advantages and uses of check-all-that-apply response compared to traditional scaling of attributes for salty snacks. In Proceedings of the 7th Pangborn Sensory Science Symposium, Minneapolis, MN, USA, 16 August 2007; pp. 12–418. [Google Scholar]
- Mafata, M.; Stander, M.; Thomachot, B.; Buica, A. Measuring Thiols in Single Cultivar South African Red Wines Using 4,4-Dithiodipyridine (DTDP) Derivatization and Ultraperformance Convergence Chromatography-Tandem Mass Spectrometry. Foods 2018, 7, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.; Buica, A. Comparison of an offline SPE–GC–MS and online HS–SPME–GC–MS method for the analysis of volatile terpenoids in wine. Molecules 2020, 25, 657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louw, L.; Tredoux, A.G.J.; van Rensburg, P.; Kidd, M.; Naes, T.; Nieuwoudt, H.H. Fermentation-derived aroma compounds in varietal young wines from South Africa. S. Afr. J. Enol. Vitic. 2010, 31, 213–225. [Google Scholar] [CrossRef] [Green Version]
- ICP-MS and XRF Unit. (CAF) Stellenbosch University, C.A.F. ICP-MS and XRF Unit. Available online: http://www.sun.ac.za/english/faculty/science/CAF/Pages/ICP-MS---XRF.aspx (accessed on 15 June 2020).
- Eyéghé-Bickong, H.A.; Alexandersson, E.O.; Gouws, L.M.; Young, P.R.; Vivier, M.A. Optimisation of an HPLC method for the simultaneous quantification of the major sugars and organic acids in grapevine berries. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 885–886, 43–49. [Google Scholar] [CrossRef]
- Ball, S.; Lloyd, L.; Agilent Technologies, Inc. Agilent Application Note 5990-8264. Agilent Scientific Instruments Website. Available online: http://www.chem.agilent.com/Library/applications/5990--8264EN.pdf (accessed on 15 April 2020).
- Charters, S.; Pettigrew, S. The dimensions of wine quality. Food Qual. Prefer. 2007, 18, 997–1007. [Google Scholar] [CrossRef]
- Valentin, D.; Parr, W.V.; Peyron, D.; Grose, C.; Ballester, J. Colour as a driver of Pinot noir wine quality judgments: An investigation involving French and New Zealand wine professionals. Food Qual. Prefer. 2016, 48, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Worley, B.; Powers, R. PCA as a practical indicator of OPLS-DA model reliability. HHS Public Access 2016, 4, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Liu, M.; Qin, N.; Li, S.; Yu, M.; Wang, C.; Ma, Q. Lipidomics coupled with pathway analysis characterizes serum metabolic changes in response to potassium oxonate induced hyperuricemic rats. Lipids Health Dis. 2019, 18, 112. [Google Scholar] [CrossRef] [Green Version]
- Roland, A.; Schneider, R.; Razungles, A.; Cavelier, F. Varietal Thiols in Wine: Discovery, Analysis and Applications. Chem. Rev. 2011, 111, 7355–7376. [Google Scholar] [CrossRef]
- Villamor, R.R.; Ross, C.F. Wine Matrix Compounds Affect Perception of Wine Aromas. Annu. Rev. Food Sci. Technol. 2013, 4, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Coulter, A.; Godde, P.W.; Pretorius, I.S. Succinic Acid—How is it formed, what is its effect on titratable acidity, and what factors influence its concentration in wine? Wine Ind. J. 2004, 19, 16–25. [Google Scholar]
- De Klerk, J.-L. Succinic Acid Production by Wine Yeasts. Master’s Thesis, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa, 2010. [Google Scholar]
- Nicolini, G.; Roman, T.; Flamini, R.; Gardiman, M.; Larcher, R. Thiol precursors in Vitis mould-tolerant hybrid varieties. J. Sci. Food Agric. 2020, 100, 3262–3268. [Google Scholar] [CrossRef] [PubMed]
- Van Wyngaard, E. Volatiles Playing an Important Role in South African Sauvignon Blanc Wines. Master’s Thesis, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa, 2013. [Google Scholar]
- Cabello-Pasini, A.; Macías-Carranza, V.; Siqueiros-Valencia, A.; Huerta-Díaz, M.Á. Concentrations of calcium, magnesium, potassium, and sodium in wines from Mexico. Am. J. Enol. Vitic. 2013, 64, 280–284. [Google Scholar] [CrossRef]
- Muller, K. Grapevine Cation and Anion Transfer: A Perspective from the Soil to Wine Chemical and Sensory Properties. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2017. [Google Scholar]
- Porro, D.; Wolf, M.; Pedò, S. Evaluation of mechanical properties of berries on resistant or tolerant varieties of grapevine. BIO Web Conf. 2019, 13, 01005. [Google Scholar] [CrossRef]
- Roman, T.; Nicolini, G.; Barp, L.; Malacarne, M.; Tait, F.; Larcher, R. Shikimic acid concentration in white wines produced with different processing protocols from fungus-resistant grapes growing in the Alps. Vitis J. Grapevine Res. 2018, 57, 41–46. [Google Scholar]
- Jiang, H.Y.; Li, W.; He, B.J.; Gao, Y.H.; Lu, J.X. Sucrose metabolism in grape (Vitis vinifera L.) branches under low temperature during overwintering covered with soil. Plant Growth Regul. 2014, 72, 229–238. [Google Scholar] [CrossRef]
Cultivar | Country | Vintage | Code |
---|---|---|---|
Solaris | Sweden | 2016 | Sol-SW (1) |
Solaris | Sweden | 2016 | Sol-SW (2) |
Solaris | Sweden | 2016/2017 | Sol-SW (3) |
Solaris | Sweden | 2016 | Sol-SW (4) |
Solaris | Sweden | 2016 | Sol-SW (5) |
Albariño | Spain | 2017 | AL-SP (1) |
Albariño | Spain | 2016 | AL-SP (2) |
Sauvignon blanc | France | 2016 | SB-FR (1) |
Sauvignon blanc | France | 2017 | SB-FR (2) |
Chardonnay | France | 2016 | Cha-FR |
Sauvignon blanc | New Zealand | 2017 | SB-NZ |
Chenin blanc | South Africa | 2018 | ChB-SA |
Typicality Cluster 1 | Typicality Cluster 2 | Typicality Cluster 3 | Quality Cluster 1 | Quality Cluster 2 | |||||
---|---|---|---|---|---|---|---|---|---|
Sol-SW (1) | 69.17 a | AL-SP (2) | 72.82 a | Sol-SW (3) | 51.23 a | SB-FR (2) | 64.44 a | Sol-SW (5) | 74.92 a |
SB-NZ | 66.52 ab | SB-FR (1) | 72.30 a | AL-SP (1) | 47.57 a | AL-SP (1) | 62.57 a | AL-SP (1) | 64.48 ab |
ChB-SA | 64.63 ab | Sol-SW (2) | 59.87 a | ChB-SA | 47.35 a | AL-SP (2) | 62.12 a | ChB-SA | 60.47 ab |
SB-FR (2) | 60.42 ab | SB-NZ | 57.85 a | Sol-SW (4) | 46.92 a | SB-NZ | 61.63 a | Sol-SW (1) | 59.03 ab |
AL-SP (2) | 58.82 ab | Sol-SW (4) | 56.82 a | Sol-SW (2) | 45.33 a | Sol-SW (3) | 61.19 a | SB-FR (2) | 53.98 ab |
AL-SP (1) | 54.88 ab | Sol-SW (5) | 56.07 a | AL-SP (2) | 44.80 a | ChB-SA | 59.74 a | SB-FR | 53.28 ab |
SB-FR (1) | 53.95 ab | ChB-SA | 55.72 a | SB-FR (2) | 43.00 a | SB-FR (1) | 57.92 ab | SB-NZ | 52.60 ab |
Sol-SW (4) | 49.70 ab | Sol-SW (1) | 52.40 a | Cha-FR | 41.52 a | Sol-SW (1) | 55.02 ab | AL-SP (2) | 50.9 5 ab |
Sol-SW (5) | 45.53 ab | Sol-SW (3) | 52.25 a | SB-FR (1) | 39.52 a | Cha-FR | 53.46 ab | Sol-SW (3) | 45.25 b |
Sol-SW (3) | 45.08 ab | Cha-FR | 44.70 a | Sol-SW (1) | 30.15 a | Sol-SW (4) | 51.50 ab | Sol-SW (4) | 45.23 b |
Cha-FR | 38.07 ab | SB-FR (2) | 35.35 a | Sol-SW (5) | 28.23 a | Sol-SW (2) | 47.11 ab | Cha-FR | 44.27 b |
Sol-SW (2) | 29.22 b | AL-SP (1) | 34.17 a | SB-NZ | 25.38 a | Sol-SW (5) | 38.09 b | Sol-SW (2) | 37.47 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido-Bañuelos, G.; Ballester, J.; Buica, A.; Mihnea, M. Exploring the Typicality, Sensory Space, and Chemical Composition of Swedish Solaris Wines. Foods 2020, 9, 1107. https://doi.org/10.3390/foods9081107
Garrido-Bañuelos G, Ballester J, Buica A, Mihnea M. Exploring the Typicality, Sensory Space, and Chemical Composition of Swedish Solaris Wines. Foods. 2020; 9(8):1107. https://doi.org/10.3390/foods9081107
Chicago/Turabian StyleGarrido-Bañuelos, Gonzalo, Jordi Ballester, Astrid Buica, and Mihaela Mihnea. 2020. "Exploring the Typicality, Sensory Space, and Chemical Composition of Swedish Solaris Wines" Foods 9, no. 8: 1107. https://doi.org/10.3390/foods9081107
APA StyleGarrido-Bañuelos, G., Ballester, J., Buica, A., & Mihnea, M. (2020). Exploring the Typicality, Sensory Space, and Chemical Composition of Swedish Solaris Wines. Foods, 9(8), 1107. https://doi.org/10.3390/foods9081107