Volatile Composition and Sensory Properties as Quality Attributes of Fresh and Dried Hemp Flowers (Cannabis sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Drying Methods
2.2.1. Convective Drying (CD)
2.2.2. Vacuum–Microwave Drying (VMD)
2.2.3. Combined Drying Consisting of Convective Pre-Drying Followed by Vacuum–Microwave Finishing Drying (CPD-VMFD)
2.2.4. Modelling of Drying Kinetics
2.3. Color Analysis
2.4. Distillation of Essential Oil (EO)
2.5. GC–MS Analyses
2.6. Sensory Evaluation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Drying Methods
3.2. Color Analysis
3.3. Volatile Constituents of Fresh Cannabis sativa Flowers
3.4. Effects of Different Drying Methods on the Volatile Compound Content in Cannabis sativa
3.5. Sensory Value of Cannabis sativa Flowers According to Various Drying Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B.; Jiang, H.; Li, X.; Sutton, A.; Carboni, A.; del Bianco, F.; Mandolino, G.; Potter, D.J.; Zhao, Y.; Bera, S.; et al. Phytochemical and genetic analyses of ancient cannabis from Central Asia. J. Exp. Bot. 2008, 59, 4171–4182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upton, R.; ElSohly, M.; Pharmacopoeia, A.H. Cannabis Inflorescence: Cannabis Spp.; Standards of Identity, Analysis, and Quality Control; American Herbal Pharmacopoeia: Scotts Valley, CA, USA, 2014. [Google Scholar]
- Taura, F.; Sirikantaramas, S.; Shoyama, Y.; Yukihiro, S.; Morimoto, S. Phytocannabinoids in Cannabis sativa: Recent studies on biosynthetic enzymes. Chem. Biodivers. 2007, 4, 1649–1663. [Google Scholar] [CrossRef]
- Chua, L.Y.W.; Chong, C.H.; Chua, B.L.; Figiel, A. Influence of drying methods on the antibacterial, antioxidant and essential oil volatile composition of herbs: A review. Food Bioprocess Technol. 2019, 12, 450–476. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Figiel, A.; Lech, K.; Szumny, A.; Carbonell-Barrachina, Á.A. Effects of drying methods on the composition of thyme (Thymus vulgaris L.) essential oil. Dry. Technol. 2013, 31, 224–235. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Figiel, A.; Lech, K.; Szumny, A.; Martinez-Tomé, J.; Carbonell-Barrachina, Á.A. Drying methods affect the aroma of Origanum majorana L. analyzed by GC–MS and descriptive sensory analysis. Ind. Crop. Prod. 2015, 74, 218–227. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Lech, K.; Szumny, A.; Figiel, A.; Carbonell-Barrachina, Á.A. Volatile composition of sweet basil essential oil (Ocimum basilicum L.) as affected by drying method. Food Res. Int. 2012, 48, 217–225. [Google Scholar] [CrossRef]
- Figiel, A.; Szumny, A.; Gutiérrez-Ortízac, A.; Carbonell-Barrachina, Á.A. Composition of oregano essential oil (Origanum vulgare) as affected by drying method. J. Food Eng. 2010, 98, 240–270. [Google Scholar] [CrossRef]
- Xing, Y.; Lei, H.; Wang, J.; Wang, Y.; Wang, J.; Xu, H. Effects of different drying methods on the total phenolic, rosmarinic acid and essential oil of purple perilla leaves. J. Essent. Oil Bear. Plants 2017, 20, 1594–1606. [Google Scholar] [CrossRef]
- Figiel, A.; Michalska, A. Overall quality of fruits and vegetables products affected by the drying processes with the assistance of vacuum-microwaves. Int. J. Mol. Sci. 2017, 18, 71. [Google Scholar] [CrossRef] [Green Version]
- Chua, K.J.; Chou, S.K. Chapter 24: Recent advances in hybrid drying technologies. In Emerging Technologies for Food Processing, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Calzolari, D.; Magagnini, G.; Lucini, L.; Grassi, G.; Appendino, G.B.; Amaducci, S. High added-value compounds from Cannabis threshing residues. Ind. Crop. Prod. 2017, 108, 558–563. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.C.; Yin, X.; Calzolari, D.; Musio, S.; Thouminot, C.; Bjelková, M.; Stramkale, V.; Magagnini, G.; Amaducci, S. A comprehensive study of planting density and nitrogen fertilization e_ect on dual-purpose hemp (Cannabis sativa L.) cultivation. Ind. Crop. Prod. 2017, 107, 427–438. [Google Scholar] [CrossRef]
- Welling, M.T.; Liu, L.; Shapter, T.; Raymond, C.A.; King, G.J. Characterisation of cannabinoid composition in a diverse Cannabis sativa L. germplasm collection. Euphytica 2017, 208, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Meier, C.; Mediavilla, V. Factors influencing the yield and the quality of hemp (Cannabis sativa L.) essential oil. J. Int. Hemp Assoc. 1998, 5, 16–20. [Google Scholar]
- Nissen, L.; Zatta, A.; Stefanini, I.; Grandi, S.; Sgorbati, B.; Biavati, B.; Monti, A. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia 2010, 81, 413–419. [Google Scholar] [CrossRef]
- Bedini, S.; Flamini, G.; Cosci, F.; Ascrizzi, R.; Benelli, G.; Conti, B. Cannabis sativa and Humulus lupulus essential oils as novel control tools against the invasive mosquito Aedes albopictus and fresh water snail Physella acuta. Ind. Crop. Prod. 2016, 85, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Górski, R.; Sobieralski, K.; Siwulski, M. The effect of hemp essential oil on mortality Aulacorthum Solani Kalt. And Tetranychus Urticae Koch. Ecol. Chem. Eng. 2016, 23, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Wielgusz, K.; Heller, K.; Byczyńska, M. The assessment of fungistatic effect of hemp essential oil as seed dressing, depending on the composition. J. Res. Appl. Agric. Eng. 2012, 57, 183–187. [Google Scholar]
- Synowiec, A.; Rys, M.; Bocianowski, J.; Wielgusz, K.; Byczyńska, M.; Heller, K.; Kalemba, D. Phytotoxic effect of fiber hemp essential oil on germination of some weeds and crops. J. Essent. Oil Bear. Plants 2016, 19, 262–276. [Google Scholar] [CrossRef]
- Mastinu, A.; Premoli, M.; Ferrari-Toninelli, G.; Tambaro, S.; Maccarinelli, G.; Memo, M.; Bonini, S.A. Cannabinoids in health and disease: Pharmacological potential in metabolic syndrome and neuroinflammation. Horm. Mol. Biol. Clin. Investig. 2018, 227, 300–315. [Google Scholar] [CrossRef]
- Lim, K.; See, Y.M.; Lee, J. A systematic review of the effectiveness of medical cannabis for psychiatric, movement and neurodegenerative disorders. Clin. Psychopharmacol. Neurosci. 2017, 15, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Leizer, C.; Ribnicky, D.; Poulev, A.; Dushenkov, S.; Raskin, I. The composition of hemp seed oil and its potential as an important source of nutrition. J. Nutraceuticals Funct. Med. Foods 2000, 2, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Calín-Sánchez, Á.; Figiel, A.; Wojdyło, A.; Szarycz, M.; Carbonell-Barrachina, Á.A. Drying of garlic slices using convective pre-drying and vacuum-microwave finishing drying: Kinetics, energy consumption, and quality studies. Food Bioprocess Technol. 2014, 7, 398–408. [Google Scholar] [CrossRef]
- The NIST Mass Spectral Search Program for the NIST/EPA/NIH EI and NIST Tandem Spectral Library; Standard Reference Data Program of the National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
- Mondello, L. Mass Spectra of Flavors and Fragrances of Natural and Synthetic Compounds, 3rd ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Lucero, M.; Estell, R.; Tellez, M.; Fredrickson, E. A retention index calculator simplifies identification of plant volatile organic compounds. Phytochem. Anal. 2009, 20, 378–384. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Pub Corp: Carol Stream, IL, USA, 2017. [Google Scholar]
- Politowicz, J.; Lech, K.; Sánchez-Rodríguez, L.; Figiel, A.; Szumny, A.; Grubor, M.; Carbonell-Barrachina, Á.A. Volatile composition and sensory profile of oyster mushroom as affected by drying method. Dry. Technol. 2018, 36, 685–696. [Google Scholar] [CrossRef]
- Calín-Sanchez, Á.; Figiel, A.; Szarycz, M.; Lech, K.; Nuncio-Jáuregui, N.; Carbonell-Barrachina, Á.A. Drying kinetics and energy consumption in the dehydration of pomegranate (Punica Granatum L.) arils and rind. Food Bioprocess Technol. 2014, 7, 2071–2083. [Google Scholar] [CrossRef]
- Thorat, I.D.; Mohapatra, D.; Sutar, R.F.; Kapdi, S.S.; Jagtap, D.D. mathematical modeling and experimental study on thin-layer vacuum drying of ginger (Zingiber Officinale R.) slices. Food Bioprocess Technol. 2012, 5, 1379–1383. [Google Scholar] [CrossRef]
- Sitkei, G. Developments in Agricultural Engineering 8. Mechanics of Agricultural Materials; Akadémiai Kiadó: Budapest, Hungary; Elsevier Science Publishers: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Rafiee, S.; Sharifi, M.; Keyhani, A.; Omid, M.; Jafari, A.; Mohtasebi, S.S.; Mobli, H. Modeling effective moisture diffusivity of orange slice (Thompson Cv.). Int. J. Food Prop. 2010, 13, 32–40. [Google Scholar] [CrossRef]
- Akpinar, E.K.; Bicer, Y.; Yildiz, C. Thin layer drying of red pepper. J. Food Eng. 2003, 59, 99–104. [Google Scholar] [CrossRef]
- Lech, K.; Figiel, A.; Wojdyło, A.; Korzeniowska, M.; Serowik, M.; Szarycz, M. Drying kinetics and bioactivity of beetroot slices pretreated in concentrated chokeberry juice and dried with vacuum microwaves. Dry. Technol. 2015, 33, 1644–1653. [Google Scholar] [CrossRef]
- Łyczko, J.; Jałoszyński, K.; Surma, M.; Masztalerz, K.; Szumny, A. HS-SPME analysis of true lavender (Lavandula Angustifolia Mill.) leaves treated by various drying methods. Molecules 2019, 24, 764. [Google Scholar] [CrossRef] [Green Version]
- Doymaz, İ. Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat Mass Transf. 2017, 53, 25–35. [Google Scholar] [CrossRef]
- Ozgen, F. Experimental investigation of drying characteristics of cornelian cherry fruits (Cornus Mas L.). Heat Mass Transf. 2015, 51, 343–352. [Google Scholar] [CrossRef]
- Chua, L.Y.W.; Chua, B.L.; Figiel, A.; Chong, C.H.; Wojdyło, A.; Szumny, A.; Lech, K. Characterisation of the convective hot-air drying and vacuum microwave drying of Cassia Alata: Antioxidant activity, essential oil volatile composition and quality studies. Molecules 2019, 24, 1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowicka, P.; Wojdyło, A.; Lech, K.; Figiel, A. Chemical composition, antioxidant capacity, and sensory quality of dried sour cherry fruits pre-dehydrated in fruit concentrates. Food Bioprocess Technol. 2015, 8, 2076–2095. [Google Scholar] [CrossRef]
- Taskin, O.; Polat, A.; Izli, N.; Asik, B.B. Intermittent microwave-vacuum drying effects on pears. Pol. J. Food Nutr. Sci. 2019, 69, 101–108. [Google Scholar] [CrossRef]
- Szychowski, P.J.; Lech, K.; Sendra-Nadal, E.; Hernández, F.; Figiel, A.; Wojdyło, A.; Carbonell-Barrachina, Á.A. Kinetics, biocompounds, antioxidant activity, and sensory attributes of quinces as affected by drying method. Food Chem. 2018, 255, 157–164. [Google Scholar] [CrossRef]
- Figiel, A. Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. J. Food Eng. 2010, 98, 461–470. [Google Scholar] [CrossRef]
- Šumić, Z.; Tepić, A.; Vidović, S.; Jokić, S.; Malbaša, R. Optimization of frozen sour cherries vacuum drying process. Food Chem. 2013, 136, 55–63. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Santini, G.; Fiorini, D.; Sut, S.; Dall’Acqua, S.; Canale, A.; Maggi, F. The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind. Crop. Prod. 2018, 122, 308–315. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Lupidi, G.; Nabissi, M.; Landry Stephane, N.; Cappellacci, L.; Fiorini, D.; Sut, S.; Dall’Acqua, S.; Maggi, F. The crop-residue of fiber hemp cv. Futura 75: From a waste product to a source of botanical insecticides. Environ. Sci. Pollut. Res. 2017, 25, 10515–10525. [Google Scholar] [CrossRef]
- Mediavilla, V.; Steinemann, S. Essential oil of Cannabis sativa L. strains. J. Int. Hemp Assoc. 1997, 4, 80–82. [Google Scholar]
- Iseppi, R.; Brighenti, V.; Licata, M.; Lambertini, A.; Sabia, C.; Messi, P.; Pellati, F.; Benvenuti, S. Antibacterial activity of essential oils from fibre-type Cannabis sativa L. (Hemp). Molecules 2019, 24, 2302. [Google Scholar] [CrossRef] [Green Version]
- Vuerich, M.; Ferfuia, C.; Zuliani, F.; Piani, B.; Sepulcri, A.; Mario Baldini, M. Yield and quality of essential oils in hemp varieties in different environments. Agronomy 2019, 9, 356. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.; Liang, Z.; Wang, J.; Xu, W. Essential oil composition of Salvia miltiorrhiza flower. Food Chem. 2009, 113, 592–594. [Google Scholar] [CrossRef]
- Chalchat, J.; Ozcan, M.M. Comparative essential oil composition of flowers, leaves and stems of basil (Ocimum basilicum L.) used as herb. Food Chem. 2008, 110, 501–503. [Google Scholar] [CrossRef]
- Łyczko, J.; Jałoszyński, K.; Surma, M.; García-Garví, J.M.; Carbonell-Barrachina, Á.A.; Szumny, A. Determination of various drying methods’ impact on odour quality of true lavender (Lavandula angustifolia Mill.) flowers. Molecules 2019, 24, 2900. [Google Scholar] [CrossRef] [Green Version]
- Politowicz, J.; Lech, K.; Lipan, L.; Figiel, A.; Carbonell-Barrachina, Á.A. Volatile composition and sensory profile of shiitake mushrooms as affected by drying method. J. Sci. Food Agric. 2017, 98, 1511–1521. [Google Scholar] [CrossRef]
Drying Methods | Parameters | Statistics | Drying Time (min) | TMax (°C) | |||||
---|---|---|---|---|---|---|---|---|---|
a | k1, (min−1) | b | k2, (min−1) | RMSE | R2 | tCD | tVMD | ||
CD50 | 0.54412 | 0.02469 | 0.44193 | 0.00350 | 0.00537 | 0.9997 | 840 | - | 50 |
CD60 | 0.58617 | 0.03623 | 0.40373 | 0.00521 | 0.00692 | 0.9995 | 660 | - | 60 |
CD70 | 0.53544 | 0.06093 | 0.46011 | 0.00912 | 0.00810 | 0.9993 | 510 | - | 70 |
VMD240 | 0.95054 | 0.08296 | 0.11951 | 0.00742 | 0.03445 | 0.9827 | - | 112 | 59 |
VMD360 | 0.91787 | 0.11572 | 0.12779 | 0.01484 | 0.02596 | 0.9903 | - | 78 | 54 |
VMD480 | 1.04449 | 0.12333 | 0.01818 | 0.00014 | 0.03465 | 0.9883 | - | 40 | 61 |
CPD-VMFD | 0.29965 | 0.12680 | 0.06519 | 0.01216 | 0.00785 | 0.9938 | 60 | 54 | 55 |
Drying Method | Color | |||
---|---|---|---|---|
L* | a* | b* | ΔE* | |
Fresh | 20.61 ± 5.37 | −1.98 ± 0.61 | 8.41 ± 2.87 | - |
CD50 | 42.48 ± 1.59 a,b,1 | −4.49 ± 0.83 a,b | 12.06 ± 1.01 a,b | 22.31 |
CD60 | 41.88 ± 0.7 a,c | −4.99 ± 0.6 a | 10.77 ± 0.4 a,c | 21.61 |
CD70 | 41.72 ± 1.26 a,c | −4.82 ± 0.25 a | 11.25 ± 0.72 a,b | 21.49 |
VMD240 | 39.78 ± 0.43 c | −3.57 ± 0.66 b | 9.6 ± 0.34 c | 19.27 |
VMD360 | 43.56 ± 1.28 a,b | −3.5 ± 0.62 b | 11.34 ± 0.61 a,b | 23.19 |
VMD480 | 44.27 ± 0.93 b | −4.83 ± 0.37 a | 12.62 ± 0.57 b | 24.20 |
CPD-VMFD | 42.09 ± 1.09 a,b | −4.59 ± 0.52 a,b | 10.99 ± 1.14 a,c | 21.79 |
Compound | RT (min) | Retention Indices (RI) | Content (%) 5 | |||
---|---|---|---|---|---|---|
RI_lit 1 | RI_lit 2 | RI_lit 3 | RI_exp 4 | |||
Octane | 4.585 | 800 | 800 | 800 | 800 | 0.08 ± 0.01 |
(2E)-2-Hexenal | 6.130 | 855 | 851 | 850 | 855 | tr 6 |
(3Z)-3-Hexen-1-ol | 6.240 | 859 | 857 | 853 | 857 | 0.06 ± 0.02 |
1-Hexanol | 6.705 | 870 | 868 | 867 | 869 | tr |
2-Heptanone | 7.485 | 892 | 891 | 892 | 890 | 0.05 ± 0.01 |
Heptanal | 7.900 | 902 | 901 | 906 | 900 | 0.51 ± 0.12 |
(2E,4E)-2,4-Hexadienal | 8.395 | 909 | 911 | 914 | 909 | tr |
Artemisia triene | 8.620 | 929 | 929 | 922 | 926 | 0.50 ± 0.21 |
α-Thujene | 9.035 | 930 | 929 | 927 | 928 | 0.06 ± 0.08 |
α-Pinene | 9.310 | 939 | 937 | 933 | 932 | 2.16 ± 0.82 |
Fenchene | 9.985 | 952 | 952 | 948 | 953 | 0.25 ± 0.05 |
Benzaldehyde | 10.585 | 960 | 962 | 960 | 960 | tr |
(2E)-2-Hepten-1-ol | 11.025 | 965 | 978 | 964 | 970 | tr |
Sabinene | 11.290 | 975 | 974 | 972 | 976 | tr |
β-Pinene | 11.400 | 979 | 979 | 978 | 976 | 2.51 ± 0.32 |
trans-Isolimonene | 11.815 | 984 | 983 | 984 | 983 | tr |
6-Methyl-5-hepten-2-one | 12.115 | 985 | 985 | 986 | 987 | tr |
β-Myrcene | 12.455 | 990 | 991 | 991 | 994 | 26.66 ± 1.79 |
α-Phellandrene | 12.970 | 1002 | 1005 | 1007 | 1004 | 0.13 ± 0.06 |
3-Carene | 13.280 | 1011 | 1011 | 1009 | 1007 | 0.12 ± 0.09 |
α-Terpinene | 13.665 | 1017 | 1017 | 1018 | 1017 | 0.12 ± 0.03 |
o-Cymene | 13.910 | 1026 | 1022 | 1024 | 1021 | tr |
p-Cymene | 14.115 | 1024 | 1030 | 1025 | 1025 | tr |
Limonene | 14.415 | 1029 | 1030 | 1030 | 1030 | 10.45 ± 1.21 |
Sylvestrene | 14.745 | 1030 | 1027 | 1031 | 1035 | tr |
β-cis-Ocimene | 15.055 | 1037 | 1038 | 1035 | 1041 | 0.09 ± 0.03 |
β-trans-Ocimene | 15.660 | 1050 | 1049 | 1046 | 1051 | 1.12 ± 0.14 |
Prenyl isobutyrate | 15.930 | 1052 | 1052 | 1050 | 1052 | tr |
Oct-(3Z)-enol | 16.025 | 1054 | 1059 | 1059 | 1054 | tr |
γ-Terpinene | 16.205 | 1059 | 1060 | 1058 | 1062 | 0.14 ± 0.07 |
cis-Sabinene hydrate | 16.695 | 1070 | 1070 | 1069 | 1071 | 0.14 ± 0.09 |
2-trans-Octenol | 17.285 | 1074 | 1072 | 1073 | 1075 | 0.05 ± 0.01 |
Terpinolene | 18.030 | 1088 | 1088 | 1086 | 1087 | 2.50 ± 0.43 |
6,7-Epoxymyrcene | 18.445 | 1092 | 1090 | 1096 | 1091 | 0.06 ± 0.02 |
trans-Sabinene hydrate | 18.650 | 1094 | 1093 | 1099 | 1096 | tr |
Linalool | 18.895 | 1096 | 1099 | 1101 | 1099 | 0.09 ± 0.11 |
Nonanal | 19.150 | 1100 | 1104 | 1107 | 1105 | 0.32 ± 0.14 |
Fenchol | 19.565 | 1116 | 1113 | 1119 | 1116 | 0.82 ± 0.03 |
trans-Pinene hydrate | 20.025 | 1122 | 1120 | 1121 | 1118 | 0.82 ± 0.21 |
cis-Pinene hydrate | 21.340 | 1143 | 1143 | 1144 | 1139 | 0.11 ± 0.07 |
β-Terpineol | 21.720 | 1144 | 1144 | 1149 | 1145 | 0.06 ± 0.01 |
Ipsdienol | 21.875 | 1145 | 1147 | 1146 | 1147 | 0.1 ± 0.02 |
Myrcenone | 22.000 | 1149 | 1145 | 1149 | 1150 | 0.09 ± 0.10 |
α-Pinene oxide | 22.635 | 1159 | 1157 | 1156 | 1158 | 0.09 ± 0.05 |
3-Thujanol | 23.005 | 1168 | 1167 | 1169 | 1165 | 0.09 ± 0.03 |
Terpinen-4-ol | 23.740 | 1177 | 1177 | 1177 | 1177 | 0.12 ± 0.09 |
Isogeranial | 23.880 | 1180 | 1182 | 1179 | 1177 | tr |
α-Terpineol | 24.670 | 1188 | 1189 | 1195 | 1189 | 0.43 ± 0.12 |
Hexyl butanoate | 25.035 | 1192 | 1192 | 1195 | 1194 | 0.14 ± 0.07 |
trans-4-Caranone | 25.530 | 1196 | 1197 | 1200 | 1196 | tr |
Bornyl acetate | 30.975 | 1285 | 1285 | 1285 | 1282 | tr |
α-Cubebene | 35.095 | 1351 | 1351 | 1349 | 1345 | tr |
α-Ylangene | 36.410 | 1375 | 1372 | 1371 | 1368 | 0.12 ± 0.01 |
α-Copaene | 36.700 | 1376 | 1376 | 1375 | 1373 | tr |
Hexyl hexanoate | 37.405 | 1383 | 1384 | 1387 | 1383 | tr |
7-epi-Sesquithujene | 37.705 | 1391 | 1402 | 1389 | 1387 | 0.07 ± 0.03 |
Isocaryophyllene | 38.610 | 1408 | 1406 | 1405 | 1402 | 0.54 ± 0.12 |
α-Gurjunene | 38.800 | 1409 | 1409 | 1406 | 1404 | tr |
β-(E)-Caryophyllene | 39.480 | 1419 | 1419 | 1424 | 1415 | 17.50 ± 1.75 |
β-Duprezianene | 39.735 | 1422 | 1422 | 1427 | 1420 | 0.09 ± 0.03 |
α-trans-Bergamotene | 40.560 | 1434 | 1435 | 1432 | 1435 | 0.17 ± 0.09 |
β-Humulene | 40.660 | 1438 | 1440 | 1440 | 1435 | 0.11 ± 0.05 |
Guaia-6,9-diene | 40.925 | 1444 | 1443 | 1444 | 1440 | 0.17 ± 0.11 |
α-Humulene | 41.485 | 1454 | 1454 | 1454 | 1453 | 7.26 ± 1.48 |
Khusimene | 41.650 | 1455 | 1451 | 1451 | 1455 | 0.21 ± 0.14 |
β-(E)-Farnesene | 41.870 | 1456 | 1457 | 1452 | 1457 | 0.33 ± 0.21 |
9-epi-(E)-Caryophyllene | 41.985 | 1464 | 1466 | 1464 | 1459 | 0.39 ± 0.18 |
Dodec-(2E)-enal | 42.380 | 1466 | 1468 | 1469 | 1464 | 0.15 ± 0.08 |
γ-Gurjunene | 42.865 | 1474 | 1475 | 1476 | 1473 | 0.10 ± 0.01 |
β-Chamigrene | 43.290 | 1477 | 1476 | 1479 | 1479 | 1.41 ± 0.56 |
γ-Selinene | 43.425 | 1479 | 1479 | 1480 | 1481 | 0.62 ± 0.19 |
α-Selinene | 43.990 | 1496 | 1494 | 1495 | 1490 | 1.65 ± 0.77 |
α-Zingiberene | 44.330 | 1498 | 1495 | 1496 | 1495 | 0.31 ± 0.16 |
δ-Amorphene | 44.785 | 1504 | 1505 | 1506 | 1499 | 0.38 ± 0.09 |
(E,E)-α-Farnesene | 45.100 | 1505 | 1508 | 1504 | 1509 | 1.80 ± 0.64 |
Pseudowiddrene | 45.385 | 1509 | 1510 | 1510 | 1512 | 1.24 ± 0.57 |
δ-Cadinene | 45.755 | 1523 | 1524 | 1518 | 1514 | 0.21 ± 0.03 |
γ-Cuprenene | 46.320 | 1533 | 1532 | 1530 | 1532 | 0.56 ± 0.12 |
Selina-4(15),7(11)-diene | 46.575 | 1546 | 1542 | 1540 | 1533 | 2.13 ± 0.86 |
α-Cadinene | 46.705 | 1538 | 1538 | 1538 | 1538 | 0.82 ± 0.31 |
(E)-α-Bisabolene | 47.025 | - | 1512 | 1540 | 1538 | 0.28 ± 0.16 |
cis-Muurol-5-en-4-β-ol | 47.300 | 1551 | 1549 | 1548 | 1548 | 0.07 ± 0.03 |
Germacrene B | 47.555 | 1561 | 1557 | 1557 | 1551 | 0.16 ± 0.05 |
Lippifoli-1(6)-en-5-one | 47.995 | 1552 | 1553 | 1551 | 1557 | 0.69 ± 0.32 |
epi-Longipinanol | 48.310 | 1563 | 1566 | 1558 | 1564 | 0.44 ± 0.11 |
Caryophyllene oxide | 49.055 | 1583 | 1581 | 1581 | 1576 | 3.79 ± 0.44 |
Humulene epoxide I | 49.965 | - | 1604 | 1604 | 1590 | 0.18 ± 0.05 |
Humulene epoxide II | 50.540 | 1608 | 1606 | 1613 | 1607 | 1.25 ± 0.14 |
1,10-di-epi-Cubenol | 51.115 | 1619 | 1615 | 1614 | 1612 | 0.62 ± 0.23 |
epi-γ-Eudesmol | 51.455 | 1623 | 1622 | 1624 | 1623 | 0.64 ± 0.45 |
α-Acorenol | 51.935 | 1633 | 1631 | 1632 | 1633 | 0.14 ± 0.04 |
Caryophylla-4(12),8(13)-dien-5α-ol | 52.350 | 1640 | 1637 | 1642 | 1646 | 0.80 ± 0.23 |
α-Bisabolol | 54.140 | 1685 | 1684 | 1688 | 1686 | 0.44 ± 0.13 |
Compound | Drying Method | |||||||
---|---|---|---|---|---|---|---|---|
Fresh 1 | CD 50 °C | CD 60 °C | CD 70 °C | VMD 240 W | VMD 360 W | VMD 480 W | CPD-VMFD | |
Content (%) | ||||||||
α-Pinene | 2.16 a,3 | 10.79 g | 7.16 e | 8.27 e | 3.67 b | 5.86 d | 9.58 f | 11.13 g |
β-Pinene | 2.51 a | 4.47 a | 3.49 c | 4.43 d | 2.17 a | 2.89 b | 4.96 e | 5.12 e |
β-Myrcene | 26.66 a | 9.95 f | 10.34 e | 19.27 b | 10.78 e | 7.54 g | 13.03 d | 16.88 c |
Limonene | 10.45 a | 2.17 e | 2.16 e | 4.13 b | 3.55 c | 1.58 g | 2.02 f | 2.77 d |
β-trans-Ocimene | 1.12 a | 0.80 d | 0.62 e | 0.99 b | 0.50 f | 0.78 d | 0.68 e | 0.92 c |
Terpinolene | 2.50 a | 0.97 e | 1.60 b | 1.66 b | 0.69 f | 0.29 g | 1.25 c | 1.29 c |
β-(E)-Caryophyllene | 17.50 a | 25.35 e | 23.41 c | 17.91 a | 24.26 d | 22.62 b | 16.92 a | 24.24 d |
α-Humulene | 7.26 a | 11.51 e | 9.62 c | 7.22 a | 9.23 c | 8.90 b | 8.41 b | 10.32 d |
(E,E)-α-Farnese | 1.80 a | 1.82 a | 0.58 e | 1.05 d | 1.14 c | 1.44 b | 1.48 b | 1.03 d |
Selina-4(15),7(11)-diene | 2.13 a | 1.21 f | 1.20 f | 1.35 e | 1.96 b | 1.43 d | 1.52 c | 1.47 d |
Caryophyllene oxide | 3.79 a | 4.96 b | 7.82 c | 10.71 e | 11.04 e | 8.65 d | 12.16 f | 5.84 b |
EO yield 2 | 0.21 a | 0.16 c | 0.14 d | 0.12 e | 0.18 b | 0.15 d | 0.15 d | 0.11 e |
% recovery of EO | 100 | 76.19 | 66.67 | 57.14 | 85.71 | 71.42 | 71.42 | 52.38 |
Aroma Description | Drying Method | ||||||
---|---|---|---|---|---|---|---|
CD 50 °C | CD 60 °C | CD 70 °C | VMD 240 W | VMD 360 W | VMD 480 W | CPD-VMFD | |
Hemp ID | 3.0 c,† | 2.0 c,d | 1.0 d | 7.0 a | 2.0 c,d | 2.5 c,d | 3.0 c |
Fresh vegetable | 4.5 c | 3.5 c | 1.0 d,e | 7.5 a | 2.0 d | 4.0 c | 3.5 c |
Citrus | 3.5 b,c | 2.0 d | 1.0 e | 5.5 a | 2.0 d | 3.0 c | 2.5 c,d |
Balsamic (rosemary) | 2.5 c | 2.0 c,d | 1.5 d,e | 5.5 a | 1.5 d,e | 2.5 c | 2.0 c,d |
Spicy (black pepper) | 2.0 b,c | 1.5 c,d | 1.0 d | 3.5 a | 1.5 c,d | 1.5 c | 1.5 c,d |
Anise | 2.5 b | 2.5 b | 1.5 c | 4.5 a | 1.5 c | 2.0 b,c | 1.0 c,d |
Cooked | 0 c | 0 c | 0 c | 0 c | 0 c | 0 c | 0.5 b |
Hay-woody | 1.0 c | 2.5 b | 2.5 b | 1.0 c | 3.0 b | 2.0 b,c | 2.0 b,c |
Camomile | 1.0 c | 2.5 a,b | 2.5 a,b | 1.0 c | 2.5 a,b | 2.0 b | 2.0 b |
Earthy | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Burnt | 0 b | 0 b | 0 b | 0 b | 0 b | 0 b | 0 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwaśnica, A.; Pachura, N.; Masztalerz, K.; Figiel, A.; Zimmer, A.; Kupczyński, R.; Wujcikowska, K.; Carbonell-Barrachina, A.A.; Szumny, A.; Różański, H. Volatile Composition and Sensory Properties as Quality Attributes of Fresh and Dried Hemp Flowers (Cannabis sativa L.). Foods 2020, 9, 1118. https://doi.org/10.3390/foods9081118
Kwaśnica A, Pachura N, Masztalerz K, Figiel A, Zimmer A, Kupczyński R, Wujcikowska K, Carbonell-Barrachina AA, Szumny A, Różański H. Volatile Composition and Sensory Properties as Quality Attributes of Fresh and Dried Hemp Flowers (Cannabis sativa L.). Foods. 2020; 9(8):1118. https://doi.org/10.3390/foods9081118
Chicago/Turabian StyleKwaśnica, Andrzej, Natalia Pachura, Klaudia Masztalerz, Adam Figiel, Aleksandra Zimmer, Robert Kupczyński, Katarzyna Wujcikowska, Angel A. Carbonell-Barrachina, Antoni Szumny, and Henryk Różański. 2020. "Volatile Composition and Sensory Properties as Quality Attributes of Fresh and Dried Hemp Flowers (Cannabis sativa L.)" Foods 9, no. 8: 1118. https://doi.org/10.3390/foods9081118
APA StyleKwaśnica, A., Pachura, N., Masztalerz, K., Figiel, A., Zimmer, A., Kupczyński, R., Wujcikowska, K., Carbonell-Barrachina, A. A., Szumny, A., & Różański, H. (2020). Volatile Composition and Sensory Properties as Quality Attributes of Fresh and Dried Hemp Flowers (Cannabis sativa L.). Foods, 9(8), 1118. https://doi.org/10.3390/foods9081118