Using Multiple Sensory Profiling Methods to Gain Insight into Temporal Perceptions of Pea Protein-Based Formulated Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Product Preparation
2.3. Experimental Conditions
2.4. Attribute Selection and Panelist Training
2.5. Static Block Profiling
2.6. Mono-intake Temporal Dominance of Sensations Profiling
2.7. Multi-intake Temporal Dominance of Sensations Profiling
2.8. Statistical Analysis
3. Results
3.1. Panelist Performance
3.2. Impact of Beverage Composition on Perceived Attribute Intensity
3.3. Results of Mono-intake Temporal Dominance of Sensations Profiling
3.4. Results of Multi-intake Temporal Dominance of Sensations Profiling
4. Discussion
4.1. Perception of Texture and Sapidity
4.2. Perception of Aroma and the Interactions of Flavor with Taste and Texture
4.3. The Importance of Employing a Combination of Sensory Profiling Methods
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siddique, K.H.M.; Johansen, C.; Turner, N.C.; Jeuffroy, M.-H.; Hashem, A.; Sakar, D.; Gan, Y.; Alghamdi, S.S. Innovations in agronomy for food legumes. A review. Agron. Sustain. Dev. 2012, 32, 45–64. [Google Scholar] [CrossRef] [Green Version]
- Adebiyi, A.P.; Aluko, R.E. Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chem. 2011, 128, 902–908. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Cases, E.; Chambin, O.; Saurel, R. Interfacial and Emulsifying Characteristics of Acid-treated Pea Protein. Food Biophys. 2009, 4, 273–280. [Google Scholar] [CrossRef]
- Bott, L.; Chambers, E. Sensory characteristics of combinations of chemicals potentially associated with beany aroma in foods. J. Sens. Stud. 2006, 21, 308–321. [Google Scholar] [CrossRef]
- Murat, C.; Bard, M.-H.; Dhalleine, C.; Cayot, N. Characterisation of odour active compounds along extraction process from pea flour to pea protein extract. Food Res. Int. 2013, 53, 31–41. [Google Scholar] [CrossRef]
- Maehashi, K.; Matano, M.; Wang, H.; Vo, L.A.; Yamamoto, Y.; Huang, L. Bitter peptides activate hTAS2Rs, the human bitter receptors. Biochem. Biophys. Res. Commun. 2008, 365, 851–855. [Google Scholar] [CrossRef] [Green Version]
- Meyerhof, W.; Batram, C.; Kuhn, C.; Brockhoff, A.; Chudoba, E.; Bufe, B.; Appendino, G.; Behrens, M. The Molecular Receptive Ranges of Human TAS2R Bitter Taste Receptors. Chem. Senses 2010, 35, 157–170. [Google Scholar] [CrossRef]
- American Society for Testing Materials. Standard Terminology Relating to Sensory Evaluation of Materials and Products; Annual book of ASTM Standards; American Society for Testing Materials: Philadelphia, PA, USA, 1991; pp. 1–3. [Google Scholar]
- Gibbins, H.L.; Carpenter, G.H. Alternative Mechanisms of Astringency—What is the Role of Saliva? Mechanisms of Astringency. J. Texture Stud. 2013, 44, 364–375. [Google Scholar] [CrossRef]
- de Wijk, R.A.; Prinz, J.F.; Janssen, A.M. Explaining perceived oral texture of starch-based custard desserts from standard and novel instrumental tests. Food Hydrocoll. 2006, 20, 24–34. [Google Scholar] [CrossRef]
- Dutcosky, S.D.; Grossmann, M.V.E.; Silva, R.S.S.F.; Welsch, A.K. Combined sensory optimization of a prebiotic cereal product using multicomponent mixture experiments. Food Chem. 2006, 98, 630–638. [Google Scholar] [CrossRef]
- Fontoin, H.; Saucier, C.; Teissedre, P.-L.; Glories, Y. Effect of pH, ethanol and acidity on astringency and bitterness of grape seed tannin oligomers in model wine solution. Food Qual. Prefer. 2008, 19, 286–291. [Google Scholar] [CrossRef]
- Giacalone, D.; Degn, T.K.; Yang, N.; Liu, C.; Fisk, I.; Münchow, M. Common roasting defects in coffee: Aroma composition, sensory characterization and consumer perception. Food Qual. Prefer. 2018. [Google Scholar] [CrossRef] [Green Version]
- Kälviäinen, N.; Roininen, K.; Tuorila, H. Sensoy characterization of texture and flavor of high viscosity gels made with different thickeners. J. Texture Stud. 2000, 31, 407–420. [Google Scholar] [CrossRef]
- Lestringant, P.; Delarue, J.; Heymann, H. 2010–2015: How have conventional descriptive analysis methods really been used? A systematic review of publications. Food Qual. Prefer. 2019, 71, 1–7. [Google Scholar] [CrossRef]
- Padilha, V.M.; Rolim, P.M.; Salgado, S.M.; Livera, A.S.; Andrade, S.A.C.; Guerra, N.B. Perfil sensorial de bolos de chocolate formulados com farinha de yacon (Smallanthus sonchifolius). Ciênc. Tecnol. Aliment. 2010, 30, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Tournier, C.; Sulmont-Rossé, C.; Guichard, E. Flavour perception: Aroma, taste and texture interactions. Food Glob. Sci. Books 2007, 1(2), 246–257. [Google Scholar]
- Weenen, H.; Jellema, R.H.; de Wijk, R.A. Sensory sub-attributes of creamy mouthfeel in commercial mayonnaises, custard desserts and sauces. Food Qual. Prefer. 2005, 16, 163–170. [Google Scholar] [CrossRef]
- Di Monaco, R.; Su, C.; Masi, P.; Cavella, S. Temporal Dominance of Sensations: A review. Trends Food Sci. Technol. 2014, 38, 104–112. [Google Scholar] [CrossRef]
- Canon, F.; Neiers, F.; Guichard, E. Saliva and Flavor Perception: Perspectives. J. Agric. Food Chem. 2018, 66, 7873–7879. [Google Scholar] [CrossRef]
- Friel, E.N.; Taylor, A.J. Effect of Salivary Components on Volatile Partitioning from Solutions. J. Agric. Food Chem. 2001, 49, 3898–3905. [Google Scholar] [CrossRef]
- Muñoz-González, C.; Feron, G.; Canon, F. Main effects of human saliva on flavour perception and the potential contribution to food consumption. Proc. Nutr. Soc. 2018, 77, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Green, B.G. Oral astringency: A tactile component of flavor. Acta Psychol. 1993, 84, 119–125. [Google Scholar] [CrossRef]
- Pineau, N.; Schlich, P.; Cordelle, S.; Mathonnière, C.; Issanchou, S.; Imbert, A.; Rogeaux, M.; Etiévant, P.; Köster, E. Temporal Dominance of Sensations: Construction of the TDS curves and comparison with time–intensity. Food Qual. Prefer. 2009, 20, 450–455. [Google Scholar] [CrossRef]
- Schlich, P. Temporal Dominance of Sensations (TDS): A new deal for temporal sensory analysis. Curr. Opin. Food Sci. 2017, 15, 38–42. [Google Scholar] [CrossRef]
- Labbe, D.; Schlich, P.; Pineau, N.; Gilbert, F.; Martin, N. Temporal dominance of sensations and sensory profiling: A comparative study. Food Qual. Prefer. 2009, 20, 216–221. [Google Scholar] [CrossRef]
- Saint-Eve, A.; Déléris, I.; Panouillé, M.; Dakowski, F.; Cordelle, S.; Schlich, P.; Souchon, I. How Texture Influences Aroma and Taste Perception Over Time in Candies. Chem. Percept. 2011, 4, 32–41. [Google Scholar] [CrossRef]
- Albert, A.; Salvador, A.; Schlich, P.; Fiszman, S. Comparison between temporal dominance of sensations (TDS) and key-attribute sensory profiling for evaluating solid food with contrasting textural layers: Fish sticks. Food Qual. Prefer. 2012, 24, 111–118. [Google Scholar] [CrossRef]
- Dinnella, C.; Masi, C.; Zoboli, G.; Monteleone, E. Sensory functionality of extra-virgin olive oil in vegetable foods assessed by Temporal Dominance of Sensations and Descriptive Analysis. Food Qual. Prefer. 2012, 26, 141–150. [Google Scholar] [CrossRef]
- Charles, M.; Endrizzi, I.; Aprea, E.; Zambanini, J.; Betta, E.; Gasperi, F. Dynamic and static sensory methods to study the role of aroma on taste and texture: A multisensory approach to apple perception. Food Qual. Prefer. 2017, 62, 17–30. [Google Scholar] [CrossRef]
- Oliver, P.; Cicerale, S.; Pang, E.; Keast, R. A Comparison of Temporal Dominance of Sensation (TDS) and Quantitative Descriptive Analysis (QDATM) to Identify Flavors in Strawberries: Comparison of TDS and QDATM. J. Food Sci. 2018, 83, 1094–1102. [Google Scholar] [CrossRef]
- Köster, E.P. The psychology of food choice: Some often encountered fallacies. Food Qual. Prefer. 2003, 14, 359–373. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices. In Food Science Texts Series, 2nd ed.; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-6487-8. [Google Scholar]
- Zorn, S.; Alcaire, F.; Vidal, L.; Giménez, A.; Ares, G. Application of multiple-sip temporal dominance of sensations to the evaluation of sweeteners. Food Qual. Prefer. 2014, 36, 135–143. [Google Scholar] [CrossRef]
- Galmarini, M.V.; Loiseau, A.-L.; Debreyer, D.; Visalli, M.; Schlich, P. Use of Multi-Intake Temporal Dominance of Sensations (TDS) to Evaluate the Influence of Wine on Cheese Perception: Influence of wine on cheese perception. J. Food Sci. 2017, 82, 2669–2678. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; van der Stelt, A.J.; Prokop, J.; Lawlor, J.B.; Schlich, P. Alternating temporal dominance of sensations and liking scales during the intake of a full portion of an oral nutritional supplement. Food Qual. Prefer. 2016, 53, 159–167. [Google Scholar] [CrossRef]
- Lesme, H.; Courcoux, P.; Alleaume, C.; Famelart, M.-H.; Bouhallab, S.; Prost, C.; Rannou, C. Contribution of temporal dominance of sensations performed by modality (M-TDS) to the sensory perception of texture and flavor in semi-solid products: A case study on fat-free strawberry yogurts. Food Qual. Prefer. 2020, 80, 103789. [Google Scholar] [CrossRef] [Green Version]
- van Bommel, R.; Stieger, M.; Boelee, N.; Schlich, P.; Jager, G. From first to last bite: Temporal dynamics of sensory and hedonic perceptions using a multiple-intake approach. Food Qual. Prefer. 2019, 78, 103748. [Google Scholar] [CrossRef]
- Cosson, A.; Delarue, J.; Mabille, A.-C.; Druon, A.; Descamps, N.; Roturier, J.-M.; Souchon, I.; Saint-Eve, A. Block protocol for conventional profiling to sensory characterize plant protein isolates. Food Qual. Prefer. 2020, 83, 103927. [Google Scholar] [CrossRef]
- Jourjon, F.; Symoneaux, R.; Thibault, C.; Reveillere, M. Comparison of different scaling techniques for sensory analysis of wines. OENO One 2005, 39, 23–29. [Google Scholar] [CrossRef]
- Lawless, H.T.; Malone, G.J. Comparison of rating scales: Sensitivity, replicates and relative measurement. J. Sens. Stud. 1986, 1, 155–174. [Google Scholar] [CrossRef]
- Schoumacker, R.; Martin, C.; Thomas-Danguin, T.; Guichard, E.; Le Quéré, J.L.; Labouré, H. Fat perception in cottage cheese: The contribution of aroma and tasting temperature. Food Qual. Prefer. 2017, 56, 241–246. [Google Scholar] [CrossRef]
- Aubes-Dufau, I.; Seris, J.-L.; Combes, D. Production of peptic hemoglobin hydrolyzates: Bitterness demonstration and characterization. J. Agric. Food Chem. 1995, 43, 1982–1988. [Google Scholar] [CrossRef]
- Shinoda, I.; Nosho, Y.; Kouge, K.; Ishibashi, N.; OKAi, H. Variation in Bitterness Potency When Introducing Gly-Gly Residue into Bitter Peptidesf. Agric. Biol. Chem. 1987, 51, 2103–2110. [Google Scholar]
- Charlton, A.J.; Baxter, N.J.; Khan, M.L.; Moir, A.J.G.; Haslam, E.; Davies, A.P.; Williamson, M.P. Polyphenol/Peptide Binding and Precipitation. J. Agric. Food Chem. 2002, 50, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Guo, A.; Zhang, Y.; Wang, H.; Liu, Y.; Li, H. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci. Technol. 2014, 40, 6–19. [Google Scholar] [CrossRef]
- Le Calvé, B.; Saint-Léger, C.; Gaudreau, N.; Cayeux, I. Capturing key sensory moments during biscuit consumption: Using TDS to evaluate several concurrent sensory modalities. J. Sens. Stud. 2019, 34, e12529. [Google Scholar] [CrossRef]
- Salles, C.; Chagnon, M.-C.; Feron, G.; Guichard, E.; Laboure, H.; Morzel, M.; Semon, E.; Tarrega, A.; Yven, C. In-Mouth Mechanisms Leading to Flavor Release and Perception. Crit. Rev. Food Sci. Nutr. 2010, 51, 67–90. [Google Scholar] [CrossRef]
- Engelen, L. The relation between saliva flow after different stimulations and the perception of flavor and texture attributes in custard desserts. Physiol. Behav. 2003, 78, 165–169. [Google Scholar] [CrossRef]
- Appelqvist, I.A.M.; Poelman, A.A.M.; Cochet-Broch, M.; Delahunty, C.M. Impact of model fat emulsions on sensory perception using repeated spoon to spoon ingestion. Physiol. Behav. 2016, 160, 80–86. [Google Scholar] [CrossRef]
- Camacho, S.; van Riel, V.; de Graaf, C.; van de Velde, F.; Stieger, M. Physical and Sensory Characterizations of Oral Coatings of Oil/Water Emulsions. J. Agric. Food Chem. 2014, 62, 5789–5795. [Google Scholar] [CrossRef]
- Adams, S.; Singleton, S.; Juskaitis, R.; Wilson, T. In-vivo visualisation of mouth–material interactions by video rate endoscopy. Food Hydrocoll. 2007, 21, 986–995. [Google Scholar] [CrossRef]
- Brandenstein, C.V.; Busch-Stockfisch, M.; Fischer, M. Sweetness and other sensory properties of model fruit drinks: Does viscosity have an impact? Sweetness and other sensory properties of model fruit drinks. J. Sci. Food Agric. 2015, 95, 809–818. [Google Scholar] [CrossRef]
- Kappes, S.M.; Schmidt, S.J.; Lee, S.-Y. Descriptive Analysis of Cola and Lemon/Lime Carbonated Beverages. J. Food Sci. 2006, 71, S583–S589. [Google Scholar] [CrossRef]
- Yanes, M.; DuraÂn, L.; Costell, E. Effect of hydrocolloid type and concentration on flow behaviour and sensory properties of milk beverages model systemsq. Food Hydrocoll. 2002, 16, 605–611. [Google Scholar] [CrossRef]
- Boland, A.; Delahunty, C.; Vanruth, S. Influence of the texture of gelatin gels and pectin gels on strawberry flavour release and perception. Food Chem. 2006, 96, 452–460. [Google Scholar] [CrossRef]
- Cook, D.J.; Hollowood, T.A.; Linforth, R.S.T.; Taylor, A.J. Perception of taste intensity in solutions of random-coil polysaccharides above and below c∗. Food Qual. Prefer. 2002, 13, 473–480. [Google Scholar] [CrossRef]
- Tournier, C.; Martin, C.; Guichard, E.; Issanchou, S.; Sulmont-Rossé, C. Contribution to the understanding of consumers’ creaminess concept: A sensory and a verbal approach. Int. Dairy J. 2007, 17, 555–564. [Google Scholar] [CrossRef]
- Arancibia, C.; Castro, C.; Jublot, L.; Costell, E.; Bayarri, S. Colour, rheology, flavour release and sensory perception of dairy desserts. Influence of thickener and fat content. LWT Food Sci. Technol. 2015, 62, 408–416. [Google Scholar] [CrossRef]
- Malone, M.E.; Appelqvist, I.A.M.; Norton, I.T. Oral behaviour of food hydrocolloids and emulsions. Part 2. Taste and aroma release. Food Hydrocoll. 2003, 17, 775–784. [Google Scholar] [CrossRef]
- Panouillé, M.; Saint-Eve, A.; de Loubens, C.; Déléris, I.; Souchon, I. Understanding of the influence of composition, structure and texture on salty perception in model dairy products. Food Hydrocoll. 2011, 25, 716–723. [Google Scholar] [CrossRef]
- Saint-Eve, A.; Lauverjat, C.; Magnan, C.; Déléris, I.; Souchon, I. Reducing salt and fat content: Impact of composition, texture and cognitive interactions on the perception of flavoured model cheeses. Food Chem. 2009, 116, 167–175. [Google Scholar] [CrossRef]
- Heng, L.; van Koningsveld, G.A.; Gruppen, H.; van Boekel, M.A.J.S.; Vincken, J.-P.; Roozen, J.P.; Voragen, A.G.J. Protein–flavour interactions in relation to development of novel protein foods. Trends Food Sci. Technol. 2004, 15, 217–224. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Sun, F.; Li, X.; Wang, P.; Sun, J.; Zeng, J.; Wang, C.; Hu, W.; Chang, J.; et al. Tannins improve dough mixing properties through affecting physicochemical and structural properties of wheat gluten proteins. Food Res. Int. 2015, 69, 64–71. [Google Scholar] [CrossRef]
- Chobpattana, W.; Jeon, I.J.; Smith, J.S.; Loughin, T.M. Mechanisms of Interaction Between Vanillin and Milk Proteins in Model Systems. J. Food Sci. 2002, 67, 973–977. [Google Scholar] [CrossRef]
- Damodaran, S.; Kinsella, J.E. Interaction of carbonyls with soy protein: Thermodynamic effects. J. Agric. Food Chem. 1981, 29, 1249–1253. [Google Scholar] [CrossRef]
- Li, Z.; Grun, I.U.; Fernando, L.N. Interaction of Vanillin with Soy and Dairy Proteins in Aqueous Model Systems: A Thermodynamic Study. J. Food Sci. 2000, 65, 997–1001. [Google Scholar] [CrossRef]
- Macqueen, C.E.; Taubert, S.; Cotter, D.; Stevens, S.; Frost, G.S. Which Commercial Thickening Agent Do Patients Prefer? Dysphagia 2003, 18, 46–52. [Google Scholar] [CrossRef]
- Mackley, M.R.; Tock, C.; Anthony, R.; Butler, S.A.; Chapman, G.; Vadillo, D.C. The rheology and processing behavior of starch and gum-based dysphagia thickeners. J. Rheol. 2013, 57, 1533–1553. [Google Scholar] [CrossRef]
- Buettner, A. Influence of Human Salivary Enzymes on Odorant Concentration Changes Occurring in Vivo. 1. Esters and Thiols. J. Agric. Food Chem. 2002, 50, 3283–3289. [Google Scholar] [CrossRef]
- Buettner, A. Observation of the Swallowing Process by Application of Videofluoroscopy and Real-time Magnetic Resonance Imaging--Consequences for Retronasal Aroma Stimulation. Chem. Senses 2001, 26, 1211–1219. [Google Scholar] [CrossRef] [Green Version]
- Linforth, R.; Taylor, A.J. Persistence of Volatile Compounds in the Breath after Their Consumption in Aqueous Solutions. J. Agric. Food Chem. 2000, 48, 5419–5423. [Google Scholar] [CrossRef]
- Mesurolle, J.; Saint-Eve, A.; Déléris, I.; Souchon, I. Impact of Fruit Piece Structure in Yogurts on the Dynamics of Aroma Release and Sensory Perception. Molecules 2013, 18, 6035–6056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labbe, D.; Damevin, L.; Vaccher, C.; Morgenegg, C.; Martin, N. Modulation of perceived taste by olfaction in familiar and unfamiliar beverages. Food Qual. Prefer. 2006, 17, 582–589. [Google Scholar] [CrossRef]
- Oladokun, O.; James, S.; Cowley, T.; Dehrmann, F.; Smart, K.; Hort, J.; Cook, D. Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma. Food Chem. 2017, 230, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Teillet, E.; Schlich, P.; Urbano, C.; Cordelle, S.; Guichard, E. Sensory methodologies and the taste of water. Food Qual. Prefer. 2010, 21, 967–976. [Google Scholar] [CrossRef]
- Cliff, M.; Heymann, H. Development and use of time-intensity methodology for sensory evaluation: A review. Food Res. Int. 1993, 26, 375–385. [Google Scholar] [CrossRef]
- Galmarini, M.V.; Visalli, M.; Schlich, P. Advances in representation and analysis of mono and multi-intake Temporal Dominance of Sensations data. Food Qual. Prefer. 2017, 56, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.; Antúnez, L.; Giménez, A.; Castura, J.C.; Deliza, R.; Ares, G. Sugar reduction in probiotic chocolate-flavored milk: Impact on dynamic sensory profile and liking. Food Res. Int. 2015, 75, 148–156. [Google Scholar] [CrossRef]
- Hetherington, M.; Havermans, R.C. Sensory-specific satiation and satiety. In Satiation, Satiety and the Control of Food Intake; Elsevier: Amsterdam, The Netherlands, 2013; pp. 253–269. ISBN 978-0-85709-543-5. [Google Scholar]
Product Name | Protein Type | Sunflower Oil (%) | Soy Lecithin (%) | Gellan Gum (%) | Salt (%) | Sugar (%) | Pea Protein (%) | Water (%) |
---|---|---|---|---|---|---|---|---|
(P or I) | (F+ or F−) | (G+ or G−) | (S+ or S−) | |||||
I/F−/G−/S− | Isolate | 0.00 | 0.00 | 0.12 | 0.08 | 1.00 | 7.00 | 91.80 |
I/F−/G−/S+ | Isolate | 0.00 | 0.00 | 0.12 | 0.12 | 1.00 | 7.00 | 91.76 |
I/F−/G+/S− | Isolate | 0.00 | 0.00 | 0.50 | 0.08 | 1.00 | 7.00 | 91.42 |
I/F−/G+/S+ | Isolate | 0.00 | 0.00 | 0.50 | 0.12 | 1.00 | 7.00 | 91.38 |
I/F+/G−/S− | Isolate | 1.50 | 0.10 | 0.12 | 0.08 | 1.00 | 7.00 | 90.20 |
I/F+/G−/S+ | Isolate | 1.50 | 0.10 | 0.12 | 0.12 | 1.00 | 7.00 | 90.16 |
I/F+/G+/S− | Isolate | 1.50 | 0.10 | 0.50 | 0.08 | 1.00 | 7.00 | 89.82 |
I/F+/G+/S+ | Isolate | 1.50 | 0.10 | 0.50 | 0.12 | 1.00 | 7.00 | 89.78 |
P/F−/G−/S− | Pellet | 0.00 | 0.00 | 0.12 | 0.08 | 1.00 | 7.00 | 91.80 |
P/F−/G+/S− | Pellet | 0.00 | 0.00 | 0.50 | 0.08 | 1.00 | 7.00 | 91.42 |
P/F+/G−/S− | Pellet | 1.50 | 0.10 | 0.12 | 0.08 | 1.00 | 7.00 | 90.20 |
P/F+/G+/S− | Pellet | 1.50 | 0.10 | 0.50 | 0.08 | 1.00 | 7.00 | 89.82 |
Attributes | Attributes in French | Definition |
---|---|---|
Salty | Salé | A fundamental taste—sodium chloride is a typical example |
Bitter | Amer | The fundamental taste associated with a caffeine solution |
Astringent | Astringent | A sensation of drying out, roughening, and/or puckering that is felt in the mouth, like when consuming red wine or unripe fruit |
Sweet | Sucré | A fundamental taste—sucrose is a typical example |
Fat | Gras | Property relative to the perception of the quantity of fat in the product |
Mouthfeel | Epais | The way a food feels in the mouth in relation to its viscosity |
Overall aromatic intensity | Intensité aromatique globale | Total aroma impressions created by the product in the mouth |
Pea | Pois | The flavor characteristic of beans and bean-based foods |
Almond | Amande | The flavor associated with almonds |
Nuts | Noix | The flavor associated with nuts, like walnuts or hazelnuts |
Broth | Bouillon | The flavor associated with boiled vegetables, soup, or stock |
Panelist ID | Replicate | Product Type | Panelist ID * Replicate | Panelist ID * Product Type | Replicate * Product Type | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | |
Salty | 29.47 | <0.01 | 5.71 | 0.02 | 61.90 | <0.01 | 4.42 | <0.01 | 1.78 | <0.01 | 1.34 | 0.21 |
Bitter | 34.83 | <0.01 | 0.01 | 0.92 | 8.44 | <0.01 | 1.22 | 0.25 | 2.49 | <0.01 | 0.43 | 0.93 |
Astringent | 26.94 | <0.01 | 0.95 | 0.33 | 5.71 | <0.01 | 3.23 | <0.01 | 1.78 | <0.01 | 0.25 | 0.99 |
Sweet | 23.09 | <0.01 | 0.92 | 0.34 | 8.14 | <0.01 | 2.60 | <0.01 | 1.64 | <0.01 | 2.03 | 0.03 |
Fat | 10.11 | <0.01 | 0.49 | 0.49 | 62.77 | <0.01 | 1.98 | 0.02 | 2.38 | <0.01 | 0.91 | 0.53 |
Mouthfeel | 13.79 | <0.01 | 1.07 | 0.30 | 358.24 | <0.01 | 1.58 | 0.07 | 2.00 | <0.01 | 3.77 | <0.01 |
Overall aromatic intensity | 9.17 | <0.01 | 0.17 | 0.68 | 14.71 | < 0.01 | 2.55 | < 0.01 | 1.93 | < 0.01 | 0.87 | 0.57 |
Pea | 29.85 | <0.01 | 4.82 | 0.03 | 2.44 | 0.01 | 1.48 | 0.11 | 2.47 | <0.01 | 1.03 | 0.42 |
Almond | 32.78 | <0.01 | 0.16 | 0.69 | 2.57 | <0.01 | 2.61 | <0.01 | 1.60 | <0.01 | 0.29 | 0.98 |
Nuts | 27.21 | <0.01 | 3.69 | 0.06 | 5.72 | <0.01 | 2.84 | <0.01 | 2.60 | <0.01 | 0.84 | 0.59 |
Broth | 25.34 | <0.01 | 0.04 | 0.83 | 41.96 | <0.01 | 1.01 | 0.45 | 1.76 | <0.01 | 0.21 | 1.00 |
Astringent-P | 52.86 | <0.01 | 1.41 | 0.23 | 9.47 | <0.01 | 3.54 | <0.01 | 1.86 | <0.01 | 1.38 | 0.19 |
Bitter-P | 34.61 | <0.01 | 0.02 | 0.89 | 2.88 | <0.01 | 2.93 | <0.01 | 1.71 | <0.01 | 1.91 | 0.04 |
Fat-P | 79.46 | <0.01 | 3.19 | 0.07 | 26.28 | <0.01 | 1.90 | 0.02 | 2.89 | <0.01 | 1.90 | 0.04 |
Aromatic intensity-P | 57.42 | <0.01 | 11.22 | 0.00 | 4.71 | <0.01 | 1.90 | 0.02 | 1.35 | 0.01 | 1.97 | 0.03 |
Panelist ID | Nose-clip Use | Oil Content | Gellan Gum Content | Salt Content | Protein Type | Oil * Gellan Gum | Gellan gum * Salt | Gellan gum * Protein Type | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | |
Salty | 25.39 | <0.01 | 4.17 | 0.04 | 0.24 | 0.62 | 27.96 | <0.01 | 49.64 | <0.01 | 241,07 | <0.01 | 0,73 | 0,39 | 15,56 | <0.01 | 1,15 | 0,28 |
Bitter | 26.64 | <0.01 | 14.71 | <0.01 | 1.30 | 0.26 | 0.65 | 0.42 | 1.69 | 0.19 | 34.38 | <0.01 | 0.00 | 0.99 | 1.20 | 0.27 | 0.11 | 0.74 |
Astringent | 22.23 | <0.01 | 0.86 | 0.35 | 2.39 | 0.12 | 14.33 | <0.01 | 2.00 | 0.16 | 5.32 | 0.02 | 2.76 | 0.10 | 0.88 | 0.35 | 0.05 | 0.83 |
Sweet | 21.44 | <0.01 | 0.88 | 0.35 | 1.24 | 0.27 | 1.73 | 0.19 | 1.36 | 0.24 | 55.21 | <0.01 | 0.00 | 0.95 | 2.89 | 0.09 | 1.09 | 0.30 |
Fat | 7.71 | <0.01 | 2.53 | 0.11 | 6.45 | 0.01 | 247.75 | <0.01 | 13.13 | 0.00 | 46.78 | <0.01 | 0.33 | 0.57 | 8.18 | <0.01 | 14.18 | <0.01 |
Mouthfeel | 11.39 | <0.01 | 0.52 | 0.47 | 19.10 | <0.01 | 1769.43 | <0.01 | 82.71 | <0.01 | 233.58 | <0.01 | 2.03 | 0.15 | 39.03 | <0.01 | 23.56 | <0.01 |
Overall aromatic intensity | 7.24 | <0.01 | 3.07 | 0.08 | 7.39 | 0.01 | 15.19 | 0.00 | 2.07 | 0.15 | 55.03 | <0.01 | 6.78 | 0.01 | 0.41 | 0.52 | 5.41 | 0.02 |
Pea | 23.19 | <0.01 | 1.95 | 0.16 | 0.01 | 0.94 | 0.90 | 0.34 | 0.00 | 0.99 | 10.48 | <0.01 | 0.36 | 0.55 | 0.98 | 0.32 | 0.47 | 0.49 |
Almond | 29.31 | <0.01 | 1.67 | 0.20 | 9.88 | <0.01 | 6.57 | 0.01 | 0.14 | 0.71 | 1.71 | 0.19 | 0.98 | 0.32 | 0.02 | 0.88 | 0.17 | 0.68 |
Nuts | 20.15 | <0.01 | 1.86 | 0.17 | 12.40 | <0.01 | 0.99 | 0.32 | 0.69 | 0.41 | 8.99 | <0.01 | 6.09 | 0.01 | 1.10 | 0.29 | 3.41 | 0.07 |
Broth | 23.17 | <0.01 | 0.82 | 0.36 | 1.10 | 0.29 | 21.10 | <0.01 | 31.06 | <0.01 | 142.49 | <0.01 | 0.65 | 0.42 | 0.16 | 0.69 | 11.41 | 0.00 |
Astringent-P | 39.99 | <0.01 | 0.68 | 0.41 | 0.03 | 0.87 | 16.27 | <0.01 | 1.36 | 0.24 | 17.26 | <0.01 | 0.00 | 0.97 | 3.59 | 0.06 | 5.01 | 0.03 |
Bitter-P | 29.24 | <0.01 | 0.04 | 0.84 | 2.47 | 0.12 | 0.06 | 0.80 | 0.83 | 0.36 | 8.16 | <0.01 | 0.08 | 0.78 | 3.07 | 0.08 | 0.01 | 0.90 |
Fat-P | 54.04 | <0.01 | 3.77 | 0.05 | 1.91 | 0.17 | 118.24 | <0.01 | 14.35 | <0.01 | 21.24 | <0.01 | 0.00 | 0.96 | 6.11 | 0.01 | 0.02 | 0.89 |
Aromatic intensity-P | 51.62 | <0.01 | 2.82 | 0.09 | 16.59 | <0.01 | 0.15 | 0.70 | 1.25 | 0.26 | 9.73 | <0.01 | 2.12 | 0.15 | 4.00 | 0.05 | 0.52 | 0.47 |
Panelist ID | Replicate | Product Type | Panelist ID * Replicate | Panelist ID * Product Type | Replicate * Product Type | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | |
Time to first swallow | 35.82 | <0.01 | 0.01 | 0.90 | 3.43 | 0.00 | 0.46 | 0.95 | 1.40 | 0.02 | 0.71 | 0.73 |
Total duration of evaluation | 158.70 | <0.01 | 1.03 | 0.31 | 6.51 | <0.01 | 0.84 | 0.63 | 1.98 | <0.01 | 2.31 | 0.01 |
Panelist ID | Product Type | Spoonful ID | Replicate | Panelist ID * Product Type | Panelist ID * Spoonful ID | Panelist ID * Replicate | Product Type * Spoonful ID | Product Type * Replicate | Spoonful ID * Replicate | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | F | p-Value | |
Time to first swallow | 33.07 | <0.01 | 4.70 | 0.03 | 11.48 | <0.01 | 0.06 | 0.81 | 4.29 | <0.01 | 0.85 | 0.68 | 2.98 | <0.01 | 1.94 | 0.15 | 1.06 | 0.31 | 1.24 | 0.29 |
Total duration of evaluation | 61.87 | <0.01 | 2.74 | 0.10 | 7.10 | <0.01 | 10.54 | 0.00 | 2.15 | 0.01 | 1.81 | 0.02 | 3.42 | <0.01 | 0.76 | 0.47 | 0.10 | 0.76 | 0.26 | 0.77 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosson, A.; Souchon, I.; Richard, J.; Descamps, N.; Saint-Eve, A. Using Multiple Sensory Profiling Methods to Gain Insight into Temporal Perceptions of Pea Protein-Based Formulated Foods. Foods 2020, 9, 969. https://doi.org/10.3390/foods9080969
Cosson A, Souchon I, Richard J, Descamps N, Saint-Eve A. Using Multiple Sensory Profiling Methods to Gain Insight into Temporal Perceptions of Pea Protein-Based Formulated Foods. Foods. 2020; 9(8):969. https://doi.org/10.3390/foods9080969
Chicago/Turabian StyleCosson, Audrey, Isabelle Souchon, Julia Richard, Nicolas Descamps, and Anne Saint-Eve. 2020. "Using Multiple Sensory Profiling Methods to Gain Insight into Temporal Perceptions of Pea Protein-Based Formulated Foods" Foods 9, no. 8: 969. https://doi.org/10.3390/foods9080969
APA StyleCosson, A., Souchon, I., Richard, J., Descamps, N., & Saint-Eve, A. (2020). Using Multiple Sensory Profiling Methods to Gain Insight into Temporal Perceptions of Pea Protein-Based Formulated Foods. Foods, 9(8), 969. https://doi.org/10.3390/foods9080969