Strategies for Sustainable Substitution of Livestock Meat
Abstract
:1. Introduction
2. Plant-Derived Meat Replacers (Imitation Meat)
2.1. Technological Feasibility
2.2. Environmental Impact
2.3. Consumer Acceptance
3. In-Vitro/Cultured Meat
3.1. Technological Feasibility
3.2. Environmental Impact
3.3. Consumer Acceptance
4. Mini-Livestock (Muscle and Non-Muscle Meat)
4.1. Animal Production and Sustainability
4.1.1. Rodents
4.1.2. Rabbits
4.1.3. Insects
4.2. Environmental Impact
4.3. Consumer Acceptance
5. Exploitation of Meat Processing Waste/Byproducts
5.1. Technological Feasibility
5.2. Environmental Impact
5.3. Energy Generation
5.4. Consumer Acceptance
6. Policy Measures
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; Willett, W. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- McMichael, A.J.; Powles, J.W.; Butler, C.D.; Uauy, R. Food, livestock production, energy, climate change, and health. Lancet 2007, 370, 1253–1263. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land: Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_Microsite_FINAL.pdf (accessed on 23 September 2019).
- Gerber, P.J.H.; Steinfeld, B.; Henderson, A.; Mottet, C.; Opio, J.; Dijkman, A.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Eshel, G.; Shepon, A.; Makov, T.; Milo, R. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 11996–12001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, B.; Lee-Woolf, C.; Higginson, F.; Wallace, J.; Agathou, N. Strategies for Reducing the Climate Impacts of Red Meat/Dairy Consumption in the UK; WWF Imperial College: London, UK, 2009; pp. 1–84. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Global Livestock Environmental Assessment Model (GLEAM); FAO: Rome, Italy, 2017. [Google Scholar]
- Stehfest, E.; Bouwman, L.; van Vuuren, D.P.; den Elzen, M.G.J.; Eickhout, B.; Kabat, P.J.C.C. Climate benefits of changing diet. Clim. Chang. 2009, 95, 83–102. [Google Scholar] [CrossRef]
- Smetana, S.; Mathys, A.; Knoch, A.; Heinz, V. Meat alternatives: Life cycle assessment of most known meat substitutes. Int. J. Life Cycle Assess. 2015, 20, 1254–1267. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harwatt, H. Including animal to plant protein shifts in climate change mitigation policy: A proposed three-step strategy. Clim. Policy 2019, 19, 533–541. [Google Scholar] [CrossRef]
- Lynch, J.; Pierrehumbert, R. Climate impacts of cultured meat and beef cattle. Front. Sustain. Food Syst. 2019, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Apostolidis, C.; McLeay, F. Should we stop meating like this? Reducing meat consumption through substitution. Food Policy 2016, 65, 74–89. [Google Scholar] [CrossRef] [Green Version]
- Allied, M.R. Meat Substitute Market by Product Type, Source and Category: Global Opportunity Analysis and Industry Forecast, 2018–2025. Available online: https://www.alliedmarketresearch.com/press-release/global-meat-substitute-market.html (accessed on 25 December 2019).
- Stephens, N.; Di Silvio, L.; Dunsford, I.; Ellis, M.; Glencross, A.; Sexton, A. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 2018, 78, 155–166. [Google Scholar] [CrossRef]
- Roos, E.; Sundberg, C.; Tidåker, P.; Strid, I.; Hansson, P.A. Can carbon footprint serve as an indicator of the environmental impact of meat production? Ecol. Ind. 2013, 24, 573–581. [Google Scholar] [CrossRef]
- Hamerschlag, H.; Venkat, K. Meat Eater’s Guide to Climate Change and Health–Life-Cycle Assessments, Methodology and Results; Environmental Working Group: Washington, DC, USA, 2011. [Google Scholar]
- Asgar, M.A.; Fazilah, A.; Huda, N.; Bhat, R.; Karim, A.A. Nonmeat protein alternatives as meat extenders and meat analogs. Compr. Rev. Food Sci. Food Saf. 2010, 9, 513–529. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.; Schösler, H.; Aiking, H. “Meatless days” or “less but better”? Exploring strategies to adapt Western meat consumption to health and sustainability challenges. Appetite 2014, 76, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Mcilveen, H.; Abraham, C.; Armstrong, G. Meat avoidance and the role of replacers. Food Sci. Nutr. 1999, 99, 29–36. [Google Scholar] [CrossRef]
- Bohrer, B.M. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci. Hum. Well. 2019, 8, 320–329. [Google Scholar] [CrossRef]
- Schreuders, F.K.G.; Dekkers, B.L.; Bodnár, I.; Erni, P.; Boom, R.M.; van der Goot, A.J. Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation. J. Food Eng. 2019, 261, 32–39. [Google Scholar] [CrossRef]
- Jallinoja, P.; Niva, M.; Latvala, T. Future of sustainable eating? Examining the potential for expanding bean eating in a meat-eating culture. Futures 2016, 83, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Malav, O.P.; Talukder, S.; Gokulakrishnan, P.; Chand, S. Meat analog: A review. Crit. Rev. Food Sci Nutr. 2015, 55, 1241–1245. [Google Scholar] [CrossRef]
- Su, G.; Chang, K.C. Trypsin inhibitor activity in vitro digestibility and sensory quality of meat-like yuba products as affected by processing. J. Food Sci. 2002, 67, 1260–1266. [Google Scholar] [CrossRef]
- Dekkers, B.L.; Boom, R.M.; van der Goot, A.J. Structuring processes for meat analogues. Trends Food Sci. Technol. 2018, 81, 25–36. [Google Scholar] [CrossRef]
- Hoek, A.C.; Luning, P.A.; Weijzen, P.; Engels, W.; Kok, F.J.; de Graaf, C. Replacement of meat by meat substitutes. A survey on person-and product-related factors in consumer acceptance. Appetite 2011, 56, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Featherstone, S. Ingredients Used in the Preparation of Canned Foods. In A Complete Course in Canning and Related Processes, 14th ed.; Featherstone, S., Ed.; Woodhead Publishing: Oxford, UK, 2015; pp. 147–211. [Google Scholar]
- Post, M.J. Cultured meat from stem cells: Challenges and prospects. Meat Sci. 2012, 92, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, D. Recent progress in research and technology on soybeans. Food Sci. Technol. Res. 2001, 7, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Wiebe, M.G. QuornTM myco-protein—Overview of a successful fungal product. Mycologist 2004, 18, 17–20. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Dekkers, B.; van der Goot, A.J. Chapter 6—Plant-based Meat Analogues. In Sustainable Meat Production and Processing; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 103–126. [Google Scholar]
- Wang, L.; Guo, H.; Liu, X.; Jiang, G.; Li, C.; Li, X.; Li, Y. Roles of Lentinula edodes as the pork lean meat replacer in production of the sausage. Meat Sci. 2019, 156, 44–51. [Google Scholar] [CrossRef]
- Stephan, A.; Ahlborn, J.; Zajul, M.; Zorn, H.J.E.F.R. Edible mushroom mycelia of Pleurotus sapidus as novel protein sources in a vegan boiled sausage analog system: Functionality and sensory tests in comparison to commercial proteins and meat sausages. Eur. Food Res. Technol. 2017, 244, 913–924. [Google Scholar] [CrossRef]
- Gullón, B.; Gagaoua, M.; Barba, F.J.; Gullón, P.; Zhang, W.; Lorenzo, J.M. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci. Technol. 2020, 100, 1–18. [Google Scholar] [CrossRef]
- Bryngelsson, D.; Wirsenius, S.; Hedenus, F.; Sonesson, U. How can the EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture. Food Policy 2016, 59, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Mejia, A.; Harwatt, H.; Jaceldo-Siegl, K.; Sranacharoenpong, K.; Soret, S.; Sabaté, J. Greenhouse gas emissions generated by tofu production: A case study. J. Hunger Environ. Nutr. 2018, 13, 131–142. [Google Scholar] [CrossRef]
- Manski, J.M.; van der Goot, A.J.; Boom, R.M. Advances in structure formation of anisotropic protein-rich foods through novel processing concepts. Trends Food Sci. Technol. 2007, 18, 546–557. [Google Scholar] [CrossRef]
- Dekkers, B.L.; Nikiforidis, C.V.; van der Goot, A.J. Shear-induced fibrous structure formation from a pectin/SPI blend. Innov. Food Sci. Emerg. Technol. 2016, 36, 193–200. [Google Scholar] [CrossRef]
- Miyoshi, T.; Toyohara, K.; Minematsu, H. Preparation of ultrafine fibrous zein membranes via electrospinning. Polym. Int. 2005, 54, 1187–1190. [Google Scholar] [CrossRef]
- Freitas, D.; Almeida, H.A.; Bártolo, H.; Bártolo, P.J.J.P. Sustainability in extrusion-based additive manufacturing technologies. Prog. Addit. Manuf. 2016, 1, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Jeswani, H.K.; Burkinshaw, R.; Azapagic, A. Environmental sustainability issues in the food–energy–water nexus: Breakfast cereals and snacks. Sustain. Prod. Consump. 2015, 2, 17–28. [Google Scholar] [CrossRef]
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Ritchie, H.; Reay, D.S.; Higgins, P. Potential of meat substitutes for climate change mitigation and improved human health in high-income markets. Front. Sustain. Food Syst. 2018, 2, 16. [Google Scholar] [CrossRef]
- Smetana, S.; Aganovic, K.; Irmscher, S.; Heinz, V. Agri-food Waste Streams Utilization for Development of More Sustainable Food Substitutes. In Designing Sustainable Technologies, Products and Policies: From Science to Innovation; Springer: Cham, Switzerland, 2018; pp. 145–155. [Google Scholar]
- Gerber, P.J.; Henderson, B.; Makkar, H.P.S. Mitigation of Greenhouse Gas Emissions in Livestock Production: A Review of Technical Options for Non-CO2 Emissions. In FAO Animal Production and Health Paper; 2013; Available online: https://www.cabdirect.org/cabdirect/abstract/20133374225 (accessed on 25 January 2020).
- Kletscher, H.N.; Venner, J.; Jiang, X.; Rosentrater, K.A. Economic and Environmental Analysis of Extrusion Processing of Grains into Foods and Feeds. In Proceedings of the ASABE and CSBE/SCGAB Annual International Meeting, Montreal, QC, Canada, 13–16 July 2014; Volume 1, pp. 1–29. [Google Scholar] [CrossRef]
- Elzerman, J.E.; Hoek, A.C.; van Boekel, M.A.J.S.; Luning, P.A. Consumer acceptance and appropriateness of meat substitutes in a meal context. Food Qual. Prefer. 2011, 22, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Vinnari, M. The future of meat consumption—Expert views from Finland. Technol. Forecast. Soc. Chang. 2008, 75, 893–904. [Google Scholar] [CrossRef]
- Kamani, M.H.; Meera, M.S.; Bhaskar, N.; Modi, V.K. Partial and total replacement of meat by plant-based proteins in chicken sausage: Evaluation of mechanical, physico-chemical and sensory characteristics. J. Food Sci. Technol. 2019, 56, 2660–2669. [Google Scholar] [CrossRef]
- Hocquette, J.F. Is in vitro meat the solution for the future? Meat Sci. 2016, 120, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.S.M.; Verbruggen, S.E.L.; Post, M.J. Alternatives for large-scale production of cultured beef: A review. J. Integr. Agric. 2015, 14, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Datar, I.; Betti, M. Possibilities for an in vitro meat production system. Innov. Food Sci. Emerg. Technol. 2010, 11, 13–22. [Google Scholar] [CrossRef]
- Kanatous, S.B.; Mammen, P.P. Regulation of myoglobin expression. J. Exp. Biol. 2010, 213, 2741–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post, M.J.; Hocquette, J.F. Chapter 16—New Sources of Animal Proteins: Cultured Meat. In New Aspects of Meat Quality; Purslow, P.P., Ed.; Woodhead Publishing: Oxford, UK, 2017; pp. 425–441. [Google Scholar]
- Amit, M.; Chebath, J.; Margulets, V.; Laevsky, I.; Miropolsky, Y.; Shariki, K.; Peri, M.; Blais, I.; Slutsky, G.; Revel, M.; et al. Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev. Rep. 2010, 6, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Eaker, S.; Abraham, E.; Allickson, J.; Brieva, T.A.; Baksh, D.; Heathman, T.R.J.; Mistry, B.; Zhang, N. Bioreactors for cell therapies: Current status and future advances. Cytotherapy 2017, 19, 9–18. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Teixeira de Mattos, M.J. Environmental impacts of cultured meat production. Environ. Sci. Technol. 2011, 45, 6117–6123. [Google Scholar] [CrossRef]
- Mattick, C.S.; Landis, A.E.; Allenby, B.R.; Genovese, N.J. Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environ. Sci. Technol. 2015, 49, 11941–11949. [Google Scholar] [CrossRef]
- Thorrez, L.; Vandenburgh, H. Challenges in the quest for ‘clean meat’. Nat. Biotechnol. 2019, 37, 215–216. [Google Scholar] [CrossRef]
- Pierrehumbert, R.T. Short-lived climate pollution. Annu. Rev. Earth Planet. Sci. 2014, 42, 341–379. [Google Scholar] [CrossRef]
- Van der Weele, C.; Tramper, J. Cultured meat: Every village its own factory? Trends Biotechnol. 2014, 32, 294–296. [Google Scholar] [CrossRef] [PubMed]
- Circus, V.; Robison, R. Exploring perceptions of sustainable proteins and meat attachment. Br. Food J. 2019, 121, 533–545. [Google Scholar] [CrossRef]
- Siegrist, M.; Sütterlin, B.; Hartmann, C. Perceived naturalness and evoked disgust influence acceptance of cultured meat. Meat Sci. 2018, 139, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.; Barnett, J. Consumer acceptance of cultured meat: A systematic review. Meat Sci. 2018, 143, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Hardouin, J. Minilivestock: From gathering to controlled production. Biodivers. Conserv. 1995, 4, 220–232. [Google Scholar] [CrossRef]
- da Rosa, P.P.; Ávila, B.P.; Costa, P.T.; Fluck, A.C.; Scheibler, R.B.; Ferreira, O.G.L.; Gularte, M.A. Analysis of the perception and behavior of consumers regarding capybara meat by means of exploratory methods. Meat Sci. 2019, 152, 81–87. [Google Scholar] [CrossRef]
- Wilson, D.E.; Reeder, D.M. Mammal Species of the World: A Taxonomic and Geographic Reference; Johns Hopkins University Press: Baltimore, MD, USA, 2005. [Google Scholar]
- Hoffman, L.C.; Cawthorn, D.M. What is the role and contribution of meat from wildlife in providing high quality protein for consumption? Anim. Front. 2012, 2, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Gruber, K. Rodent meat—A sustainable way to feed the world?: Using rodents as food has a long tradition in many parts of the world. EMBO Rep. 2016, 17, 630–633. [Google Scholar] [CrossRef]
- Cawthorn, D.M.; Hoffman, L.C. Controversial cuisine: A global account of the demand, supply and acceptance of “unconventional” and “exotic” meats. Meat Sci. 2016, 120, 19–36. [Google Scholar] [CrossRef]
- Hoffman, L.C. The yield and nutritional value of meat from African ungulates, camelidae, rodents, ratites and reptiles. Meat Sci. 2008, 80, 94–100. [Google Scholar] [CrossRef]
- Deutsch, J.; Murakhver, N. They Eat That?: A Cultural Encyclopedia of Eeird and Exotic Food from Around the World; ABC-CLIO: Santa Barbara, CA, USA, 2012. [Google Scholar]
- Petracci, M.; Cavani, C. Rabbit meat processing: Historical perspective to future directions. World Rabbit. Sci. 2013, 21, 217–226. [Google Scholar] [CrossRef]
- Boutron-Ruault, M.C.; Mesrine, S.; Pierre, F. 12—Meat Consumption Health Uutcomes. In Vegetarian and Plant-Based Diets in Health and Disease Prevention; Mariotti, F., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 197–214. [Google Scholar]
- Dalle Zotte, A.; Szendrő, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Combes, S. Nutritional value of rabbit meat: A review. Prod. Anim. 2012, 17, 373–383. [Google Scholar]
- Tan, H.S.G.; Fischer, A.R.H.; Tinchan, P.; Stieger, M.; Steenbekkers, L.P.A.; van Trijp, H. Insects as food: Exploring cultural exposure and individual experience as determinants of acceptance. Food Qual Prefer. 2015, 42, 78–89. [Google Scholar] [CrossRef]
- Melgar-Lalanne, G.; Hernández-Álvarez, A.J.; Salinas-Castro, A. Edible insects processing. Traditional and innovative technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1166–1191. [Google Scholar] [CrossRef] [Green Version]
- Alexander, P.; Brown, C.; Arneth, A.; Dias, C.; Finnigan, J.; Moran, D.; Rounsevell, M.D.A. Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? Glob. Food Secur. Agric. 2017, 15, 22–32. [Google Scholar] [CrossRef]
- Lebas, F.; Coudert, P.; de Rochambeau, H.; Thebault, R.G. The Rabbit: Husbandry Health and Production; Animal Production and Health Series No. 21; FAO: Rome, Italy, 1997. [Google Scholar]
- Cullere, M.; Dalle Zotte, A. Rabbit meat production and consumption: State of knowledge and future perspectives. Meat Sci. 2018, 143, 137–146. [Google Scholar] [CrossRef]
- Park, Y.S.; Choi, Y.S.; Hwang, K.E.; Kim, T.K.; Lee, C.W.; Shin, D.M.; Han, S.G. Physicochemical properties of meat batter added with edible silkworm Pupae (Bombyx mori) and transglutaminase. Korean J. Food Sci. Anim. 2017, 37, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Fombong, F.T.; Van Der Borght, M.; Vanden Broeck, J. Influence of freeze-drying and oven-drying post blanching on the nutrient composition of the edible insect Ruspolia differens. Insects 2017, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Vayssieres, J.; Thevenot, A.; Vigne, M.; Tillard, E.; Lecomte, P. Comparing energy use efficiency and green house gas emissions for livestock products. Adv. Anim. Biosci. 2010, 1, 506–507. [Google Scholar] [CrossRef] [Green Version]
- Cesari, V.; Zucali, M.; Bava, L.; Gislon, G.; Tamburini, A.; Toschi, I. Environmental impact of rabbit meat: The effect of production efficiency. Meat Sci. 2018, 145, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Zucali, M.; Tamburini, A.; Sandrucci, A.; Bava, L. Global warming and mitigation potential of milk and meat production in Lombardy (Italy). J. Clean. Prod. 2017, 153, 474–482. [Google Scholar] [CrossRef]
- Shelomi, M. Why we still don’t eat insects: Assessing entomophagy promotion through a diffusion of innovations framework. Trends Food Sci. Technol. 2015, 45, 311–318. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental impact of the production of mealworms as a protein source for humans—A life cycle assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef] [Green Version]
- APHIS. Biosecurity: Protecting Your Livestock and Poultry, APHIS Veterinary Services Fact Sheet, 2007, USDA. Available online: www.aphis.usda.gov/publications/animal_health/content/printable_version/fs_bio_sec_07.pdf (accessed on 28 January 2020).
- Petracci, M.; Soglia, F.; Leroy, F. Rabbit meat in need of a hat-trick: From tradition to innovation (and back). Meat Sci. 2018, 146, 93–100. [Google Scholar] [CrossRef]
- Verbeke, W. Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Qual. Prefer. 2015, 39, 147–155. [Google Scholar] [CrossRef]
- Dick, A.; Bhandari, B.; Prakash, S. 3D printing of meat. Meat Sci. 2019, 153, 35–44. [Google Scholar] [CrossRef]
- Deroy, O.; Reade, B.; Spence, C. The insectivore’s dilemma, and how to take the West out of it. Food Qual. Prefer. 2015, 44, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Zhou, W.; Min, M.; Ma, X.; Chandra, C.; Doan, Y.T.T.; Ruan, R. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production. Bioresour. Technol. 2015, 198, 189–197. [Google Scholar] [CrossRef]
- United Nations (UN). UNECE Standard Edible Meat Co-Products; UN: Geneva, Switzerland, 2015. [Google Scholar]
- Lynch, S.A.; Mullen, A.M.; O’Neill, E.; Drummond, L.; Álvarez, C. Opportunities and perspectives for utilisation of co-products in the meat industry. Meat Sci. 2018, 144, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Ingrao, C.; Faccilongo, N.; Di Gioia, L.; Messineo, A. Food waste recovery into energy in a circular economy perspective: A comprehensive review of aspects related to plant operation and environmental assessment. J. Clean. Prod. 2018, 184, 869–892. [Google Scholar] [CrossRef]
- Hsieh, Y.H.; Ofori, J.A. Blood-derived products for human consumption. Rev. Sci. 2011, 1, 14–21. [Google Scholar]
- Okoro, O.V.; Sun, Z.; Birch, J. Meat processing waste as a potential feedstock for biochemicals and biofuels. —A review of possible conversion technologies. J. Clean. Prod. 2017, 142, 1583–1608. [Google Scholar] [CrossRef]
- Alvarez, C.; Drummond, L.; Mullen, A.M. Protein recovered from meat co-products and processing streams as pork meat replacers in Irish breakfast sausages formulations. LWT Food Sci. Technol. 2018, 96, 679–685. [Google Scholar] [CrossRef]
- Winkler, T.; Aschemann, R. Decreasing Greenhouse Gas Emissions of Meat Products Through Food Waste Reduction. A Framework for a Sustainability Assessment Approach. In Food Waste Reduction and Valorisation; Springer: Cham, Switzerland, 2017; pp. 43–67. [Google Scholar] [CrossRef]
- Ghosh, S.; Gillis, A.; Sheviryov, J.; Levkov, K.; Golberg, A. Towards waste meat biorefinery: Extraction of proteins from waste chicken meat with non-thermal pulsed electric fields and mechanical pressing. J. Clean. Prod. 2019, 208, 220–231. [Google Scholar] [CrossRef]
- Franke-Whittle, I.H.; Insam, H. Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: A review. Crit. Rev. Microbiol. 2013, 39, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Bujak, J.W. New insights into waste management—Meat industry. Renew. Energy 2015, 83, 1174–1186. [Google Scholar] [CrossRef]
- Ware, A.; Power, N. Biogas from cattle slaughterhouse waste: Energy recovery towards an energy self-sufficient industry in Ireland. Renew. Energy 2016, 97, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Ombregt, J.P.; Bambridge, M. Meat processing: Green energy from wastewater. Filtr Sep. 2012, 49, 44–45. [Google Scholar] [CrossRef]
- Billen, P.; Costa, J.; Van der Aa, L.; Van Caneghem, J.; Vandecasteele, C. Electricity from poultry manure: A cleaner alternative to direct land application. J. Clean. Prod. 2015, 96, 467–475. [Google Scholar] [CrossRef]
- Kirubakaran, M.; Selvan, V.A.M. A comprehensive review of low cost biodiesel production from waste chicken fat. Renew. Sustain. Energy Rev. 2018, 82, 390–401. [Google Scholar] [CrossRef]
- Andersen, O.; Weinbach, J.E. Residual animal fat and fish for biodiesel production potentials in Norway. Biomass Bioenerg. 2010, 34, 1183–1188. [Google Scholar] [CrossRef]
- Bhatti, H.N.; Hanif, M.A.; Qasim, M.; Rehman, A.U. Biodiesel production from waste tallowc. Fuel 2008, 87, 2961–2966. [Google Scholar] [CrossRef]
- Yahyaee, B.; Ghobadian, R.; Najafi, G. Waste fish oil biodiesel as a source of renewable. Renew. Sustain. Energy Rev. 2013, 17, 312–319. [Google Scholar] [CrossRef]
- Henchion, M.; McCarthy, M.; O’Callaghan, J. Transforming beef by-products into valuable ingredients: Which spell/recipe to use? Front. Nutr. 2016, 3, 53. [Google Scholar] [CrossRef] [Green Version]
- Kubberod, E.; Ueland, O.; Tronstad, A.; Risvik, E. Attitudes towards meat and meat-eating among adolescents in Norway: A qualitative study. Appetite 2002, 38, 53–62. [Google Scholar] [CrossRef]
- Alao, B.O.; Falowo, A.B.; Chulayo, A.; Muchenje, V. Consumers’ preference and factors influencing offal consumption in amathole district Eastern Cape, South Africa. Sustainability 2018, 10, 3323. [Google Scholar] [CrossRef] [Green Version]
- Roos, E.; Ekelund, L.; Tjärnemo, H. Communicating the environmental impact of meat productionchallenges in the development of a Swedish meat guide. J. Clean. Prod. 2014, 73, 54–164. [Google Scholar] [CrossRef]
- Dagevos, H.; Voordouw, J. Sustainability and meat consumption: Is reduction realistic? Sustainability: Science. Pract. Policy 2013, 9, 60–69. [Google Scholar] [CrossRef]
Meat Production Type | kg of CO2 per kg of Product | References |
---|---|---|
Bovine | 14–39 kg | [13,16,17] |
Ovine (lamb) | 39–52 kg | [13,16,17] |
Porcine | 4–9 kg | [13,17] |
Poultry (Turkey) | 4–11 kg | [13,17] |
Without Meat | 2–7 kg | [16,17] |
Product Name | Compositional Profile | Origin/First Reported Introduction | Energy (Kcal per 100 g) | Protein Content (g/100 g) | Total Fat (g/100 g) | Reference |
---|---|---|---|---|---|---|
QuornTM | Mycoproteins derived from fungi. | 1st introduced in Europe (1984) and the USA (2002) | 141 | 14.0 | 2.6 | [13,19,32] |
Seitan | Comprises of Hydrated wheat gluten | 1st use dated to 6th century as an ingredient in Chinese noodles preparation | 118 | 22.1 | 0.2 | [19,22,25] |
Wheat Pro TM | Mainly comprised of wheat proteins such as gluten | First reported use was recorded in 1992 | 408 | 68 | 4.0 | [19,22,25] |
Tempeh | Fermented product made from soy cake | Indonesian product introduced in 1851 | 180 | 12 | 8.3 | [19,22,25] |
Tofu | Curd derived from soybeans | Dietary staple for >4000 years in china. | 120 | 8.0 | 4.5 | [19,22,25] |
Bioreactor | Cell Type | Cell Density per mL Medium | References |
---|---|---|---|
Packed bed reactor | CHO (Chinese hamster ovary) | 2 × 107 | [53,58] |
Wave bioreactor (Perfusion based) | CHO | 2 × 108 | [53,58] |
Spinner flask | Bovine myoblast | 1 × 106 | [53,57,58] |
CellTank (fixed bed reactor) | CHO | 2 × 108 | [53,57,58] |
Fed batch reactor | CHO | 1 × 106 | [53,57,58] |
Mini-Livestock Animal | Prospects | Challenges | References |
---|---|---|---|
Rodent (Capybara) | -High reproduction rates -High carcass yield -High nutritive value -Low cost production -Improved food security | -Safety concerns: dirty meat, carrier of disease -Legal issues with some species -Insufficient knowledge about some species | [67,68,69,73] |
Rabbit (Leporidae) | -High growth rates -White meat: No adverse health effects -Low cholesterol | -Non-competitive Prices -Lack of deboned meat - Perceived as a pet | [76,77,78] |
Insects (e.g., Mealworm larvae and adult crickets) | -High quality protein/nutritive value -Tasty delicacy in some localities -Low cost and space requirements -Short lifecycles | -Negative perception: -Filthy, unsavory food source -Safety concerns (Carriers of diseases and unhygienic meat) | [79,80,81] |
Meat Substitution Strategy | Prospects | Challenges | References |
---|---|---|---|
Cultured meat/ in vitro meat | -Animal rearing Slaughtering of animals not required -Less water and land required -Preclusion of antibiotics, zoonotic disease and fecal matter | -Low quantities/lack of fat, nerves and blood -Lack of meat tenderization -Perceived as unnatural -Energy intensive -Lack of price competitiveness | [30,52,53] |
Meat processing wastes and by-products | -Re-use in non-food products (e.g., textile and glue) -Re-use in pet food and pharmaceuticals -Reformulated meat products (e.g., sausages and patties) -Biofuel production -Decreased disposal of wastes | -Safety concerns: pathogens -Lower biological stability -Unappealing sensory properties -Energy usage for extraction of valuable components -Animal suffering not mitigated | [12,96,97,102] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, G.; Ameer, K.; Kim, H.; Lee, E.-J.; Ramachandraiah, K.; Hong, G.-P. Strategies for Sustainable Substitution of Livestock Meat. Foods 2020, 9, 1227. https://doi.org/10.3390/foods9091227
Jiang G, Ameer K, Kim H, Lee E-J, Ramachandraiah K, Hong G-P. Strategies for Sustainable Substitution of Livestock Meat. Foods. 2020; 9(9):1227. https://doi.org/10.3390/foods9091227
Chicago/Turabian StyleJiang, Guihun, Kashif Ameer, Honggyun Kim, Eun-Jung Lee, Karna Ramachandraiah, and Geun-Pyo Hong. 2020. "Strategies for Sustainable Substitution of Livestock Meat" Foods 9, no. 9: 1227. https://doi.org/10.3390/foods9091227
APA StyleJiang, G., Ameer, K., Kim, H., Lee, E. -J., Ramachandraiah, K., & Hong, G. -P. (2020). Strategies for Sustainable Substitution of Livestock Meat. Foods, 9(9), 1227. https://doi.org/10.3390/foods9091227