A Miniaturized QuEChERS Method Combined with Ultrahigh Liquid Chromatography Coupled to Tandem Mass Spectrometry for the Analysis of Pyrrolizidine Alkaloids in Oregano Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents and Standard Solutions
2.2. Samples and Extraction Procedure
2.3. UHPLC-MS/MS Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Optimization of the Chromatographic Separation
3.2. Extraction Procedure
3.3. Method Validation and Analysis of Samples
3.4. Analysis of Samples
- -
- Heliotrine-type: including europine, heliotrine, lasiocarpine and their N-oxides.
- -
- Senecionine-type: including erucifoline, jacobine, retrorsine, senecionine, seneciphylline, senecivernine, their N-oxides and senkirkin.
- -
- Lycopsamine-type: including echimidine, indicine, intermedine, lycopsamine and their N-oxides.
- -
- Monocrotaline-type: including monocrotaline, monocrotaline N-oxide and trichodesmine.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- RASFF—Food and Feed Safety Alerts. Available online: https://webgate.ec.europa.eu/rasff-window/portal/?event=SearchForm&cleanSearch=1 (accessed on 13 July 2020).
- European Food Safety Authority. Scientific Opinion on Pyrrolizidine alkaloids in food and feed. EFSA J. 2011, 9, 1–134. [Google Scholar] [CrossRef]
- Dusemund, B.; Nowak, N.; Sommerfeld, C.; Lindtner, O.; Schäfer, B.; Lampen, A. Risk assessment of pyrrolizidine alkaloids in food of plant and animal origin. Food Chem. Toxicol. 2018, 115, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Liu, Y.; Zhu, L.; Ji, H.; Song, X.; Guo, H.; Yi, T. Determination and regulation of hepatotoxic pyrrolizidine alkaloids in food: A critical review of recent research. Food Chem. Toxicol. 2018, 119, 50–60. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Opinion of the Panel on contaminants in the food chain [CONTAM] related to pyrrolizidine alkaloids as undesirable substances in animal feed. EFSA J. 2007, 447, 1–51. [Google Scholar] [CrossRef]
- Mulder, P.P.; Sánchez, P.L.; These, A.; Preiss-Weigert, A.; Castellari, M. Occurrence of pyrrolizidine alkaloids in food. EFSA Support. Publ. 2015, 12, EN-859. [Google Scholar] [CrossRef]
- European Food Safety Authority. Dietary exposure assessment to pyrrolizidine alkaloids in the European population. EFSA J. 2016, 14, 4572. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA J. 2017, 15, 4908. [Google Scholar] [CrossRef] [Green Version]
- Picron, J.F.; Herman, M.; Van Hoeck, E.; Goscinny, S. Analytical strategies for the determination of pyrrolizidine alkaloids in plant based food and examination of the transfer rate during the infusion process. Food Chem. 2018, 266, 514–523. [Google Scholar] [CrossRef]
- Cramer, L.; Schiebel, H.M.; Ernst, L.; Beuerle, T. Pyrrolizidine alkaloids in the food chain: Development, validation, and application of a new HPLC-ESI-MS/MS sum parameter method. J. Agric. Food Chem. 2013, 61, 11382–11391. [Google Scholar] [CrossRef]
- Kapp, T. Pyrrolizidine Alkaloids in Culinary Herbs—Take Caution with Borage-Containing Herbal Mixes; Report Published on 22 May 2017. CVUA Stuttgart, 2017. Available online: https://www.ua-bw.de/pub/beitrag.asp?subid=1&Thema_ID=2&ID=2485&lang=EN&Pdf=No (accessed on 13 July 2020).
- Kaltner, F.; Rychlik, M.; Gareis, M.; Gottschalk, C. Occurrence and risk assessment of pyrrolizidine alkaloids in spices and culinary herbs from various geographical origins. Toxins 2020, 12, 155. [Google Scholar] [CrossRef] [Green Version]
- Kaltner, F.; Stiglbauer, B.; Rychlik, M.; Gareis, M.; Gottschalk, C. Development of a sensitive analytical method for determining 44 pyrrolizidine alkaloids in teas and herbal teas via LC-ESI-MS/MS. Anal. Bioanal. Chem. 2019, 411, 7233–7249. [Google Scholar] [CrossRef] [PubMed]
- Dübecke, A.; Beckh, G.; Lüllmann, C. Pyrrolizidine alkaloids in honey and bee pollen. Food Addit. Contam. A 2011, 28, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Griffin, C.T.; Danaher, M.; Elliott, C.T.; Kennedy, D.G.; Furey, A. Detection of pyrrolizidine alkaloids in commercial honey using liquid chromatography–ion trap mass spectrometry. Food Chem. 2013, 136, 1577–1583. [Google Scholar] [CrossRef] [PubMed]
- Vaclavik, L.; Krynitsky, A.J.; Rader, J.I. Targeted analysis of multiple pharmaceuticals, plant toxins and other secondary metabolites in herbal dietary supplements by ultra-high performance liquid chromatography–quadrupole-orbital ion trap mass spectrometry. Anal. Chim. Acta 2014, 810, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Martinello, M.; Cristofoli, C.; Gallina, A.; Mutinelli, F. Easy and rapid method for the quantitative determination of pyrrolizidine alkaloids in honey by ultra performance liquid chromatography-mass spectrometry: An evaluation in commercial honey. Food Control 2014, 37, 146–152. [Google Scholar] [CrossRef]
- Valese, A.C.; Molognoni, L.; de Sá Ploêncio, L.A.; de Lima, F.G.; Gonzaga, L.V.; Górniak, S.L.; Daguer, H.; Barreto, F.; Costa, A.C.O. A fast and simple LC-ESI-MS/MS method for detecting pyrrolizidine alkaloids in honey with full validation and measurement uncertainty. Food Control 2016, 67, 183–191. [Google Scholar] [CrossRef]
- Wang, T.; Frandsen, H.L.; Christiansson, N.R.; Rosendal, S.E.; Pedersen, M.; Smedsgaard, J. Pyrrolizidine alkaloids in honey: Quantification with and without standards. Food Control 2019, 98, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Mulder, P.P.; Peijnenburg, A.; Rietjens, I.M. Risk assessment of intake of pyrrolizidine alkaloids from herbal teas and medicines following realistic exposure scenarios. Food Chem. Toxicol. 2019, 130, 142. [Google Scholar] [CrossRef]
- Picron, J.F.; Herman, M.; Van Hoeck, E.; Goscinny, S. Monitoring of pyrrolizidine alkaloids in beehive products and derivatives on the Belgian market. Environ. Sci. Pollut. Res. 2020, 27, 5693–5708. [Google Scholar] [CrossRef]
- Black, C.; Haughey, S.A.; Chevallier, O.P.; Galvin-King, P.; Elliott, C.T. A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach. Food Chem. 2016, 210, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Moreda-Piñeiro, J.; Moreda-Piñeiro, A. Recent advances in combining microextraction techniques for sample pre-treatment. TrAC 2015, 71, 265–274. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Szczepańska, N.; Owczarek, K.; Namieśnik, J. Miniaturized Solid Phase Extraction. In Green Extraction Techniques: Principles, Advances and Applications; Ibañez, E., Cifuentes, A., Eds.; Comprehensive Analytical Chemistry Elsevier: Amsterdam, The Netherlands, 2017; Volume 76, pp. 279–318. [Google Scholar]
- Filippou, O.; Bitas, D.; Samanidou, V. Green approaches in sample preparation of bioanalytical samples prior to chromatographic analysis. J. Chromatogr. B 2017, 1043, 44–62. [Google Scholar] [CrossRef] [PubMed]
- Casado, N.; Gañán, J.; Morante-Zarcero, S.; Sierra, I. New advanced materials and sorbent-based microextraction techniques as strategies in sample preparation to improve the determination of natural toxins in food samples. Molecules 2020, 25, 702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Standards CSN EN 15662:2008. Foods of Plant Origin—Determination of Pesticide Residues Using GC-MS and/or LC-MS/MS Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE—QuEChERS-Method. Available online: https://www.aenor.com/normas-y-libros/buscador-de-normas/bsi?c=000000000030162467 (accessed on 17 September 2020).
- Avula, B.; Sagi, S.; Wang, Y.H.; Zweigenbaum, J.; Wang, M.; Khan, I.A. Characterization and screening of pyrrolizidine alkaloids and N-oxides from botanicals and dietary supplements using UHPLC-high resolution mass spectrometry. Food Chem. 2015, 178, 136–148. [Google Scholar] [CrossRef]
- Chmit, M.S.; Wahrig, B.; Beuerle, T. Quantitative and qualitative analysis of pyrrolizidine alkaloids in liqueurs, elixirs and herbal juices. Fitoterapia 2019, 136, 104172. [Google Scholar] [CrossRef]
- Griffin, C.T.; Gosetto, F.; Danaher, M.; Sabatini, S.; Furey, A. Investigation of targeted pyrrolizidine alkaloids in traditional Chinese medicines and selected herbal teas sourced in Ireland using LC-ESI-MS/MS. Food Addit. Contam. A 2014, 31, 940–961. [Google Scholar] [CrossRef]
- Griffin, C.T.; Mitrovic, S.M.; Danaher, M.; Furey, A. Development of a fast isocratic LC-MS/MS method for the high-throughput analysis of pyrrolizidine alkaloids in Australian honey. Food Addit. Contam. A 2015, 32, 214–228. [Google Scholar] [CrossRef]
- QuEChERS CVUA Stuttgart. A Mini-Multiresidue Method for the Analysis of Pesticide Residues in Low-Fat Products. Available online: https://www.quechers.com/pdf/reality.pdf (accessed on 13 July 2020).
- European Commission SANTE/11813/2017. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 13 July 2020).
- Commission Regulation (EC) No 401/2006. Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R0401&from=ES (accessed on 13 July 2020).
- Kapp, T.; Hägele, F.; Plate, E.M. Oregano—An Aromatic but Loaded Culinary Herb; Part I: Pyrrolizidine Alkaloids; Report Published on 15 August 2019. CVUA Stuttgart, 2019. Available online: https://www.cvuas.de/pesticides/beitrag_en.asp?subid=1&Thema_ID=5&ID=3024&lang=EN&Pdf=No (accessed on 13 July 2020).
- Selmar, D.; Radwan, A.; Nowak, M. Horizontal natural product transfer: A so far unconsidered source of contamination of plant-derived commodities. J. Environ. Anal. Toxicol. 2015, 5, 1000287. [Google Scholar] [CrossRef]
- Selmar, D.; Wittke, C.; Beck-vonWolersdor, I.; Klier, B.; Lewerenz, L.; Kleinwächter, M.; Nowak, M. Transfer of pyrrolizidine alkaloids between living plants: A disregarded source of contaminations. Environ. Pollut. 2019, 248, 456–461. [Google Scholar] [CrossRef]
Analyte | Retention Time (min) | Ionization Mode | Precursor Ion (m/z) | Fragmentation Amplitude | MS2. Product Ions a (m/z) |
---|---|---|---|---|---|
Intermedine | 5.6 | ESI (+) | 299 | 0.70 | 138 *, 120 |
Europine | 5.7 | ESI (+) | 329 | 0.80 | 253 *, 138 |
Lycopsamine | 5.8 | ESI (+) | 299 | 0.70 | 138 *, 120 |
Europine N-oxide | 6.2 | ESI (+) | 345 | 0.80 | 327 *, 171.5 |
Intermedine N-oxide | 6.4 | ESI (+) | 315 | 0.80 | 225, 171.5 * |
Lycopsamine N-oxide | 6.5 | ESI (+) | 315 | 0.80 | 171.5 *, 138 |
Retrorsine | 6.8 | ESI (+) | 351 | 0.80 | 323 *, 275 |
Retrorsine N-oxide | 7.0 | ESI (+) | 367 | 0.90 | 339 *, 245 |
Seneciphylline | 7.2 | ESI (+) | 333 | 0.80 | 305 *, 120 |
Heliotrine | 7.2 | ESI (+) | 313.5 | 0.70 | 138 *, 120 |
Seneciphylline N-oxide | 7.5 | ESI (+) | 350 | 0.80 | 321 *, 118 |
Heliotrine N-oxide | 7.6 | ESI (+) | 329 | 1.00 | 171 *, 136 |
Senecivernine | 7.9 | ESI (+) | 335 | 0.80 | 307 *, 120 |
Senecionine | 7.9 | ESI (+) | 335 | 0.80 | 307 *, 120 |
Senecivernine N-oxide | 8.1 | ESI (+) | 351 | 0.80 | 323 *, 219.5 |
Senecionine N-oxide | 8.3 | ESI (+) | 352 | 1.00 | 220, 118 * |
Echimidine | 8.7 | ESI (+) | 398 | 0.60 | 220, 120 * |
Echimidine N-oxide | 8.7 | ESI (+) | 413 | 0.70 | 395 *, 351 |
Senkirkin | 9.1 | ESI (+) | 365 | 0.80 | 167.5 *, 150 |
Lasiocarpine | 9.8 | ESI (+) | 411 | 0.70 | 335 *, 219.5 |
Lasiocarpine N-oxide | 10.4 | ESI (+) | 428 | 0.80 | 409 *, 352 |
Analytes | Linear Range (µg/kg) | Matrix-Matched Calibration R2/cm | Accuracy | Precision | MDL (µg/kg) | MQL (µg/kg) | ME (%) | ||
---|---|---|---|---|---|---|---|---|---|
Recovery (% ± sd) | Mean Recovery (% ± sd) | Intra-Day Precision (RSD%) | Inter-Day Precision (RSD%) | ||||||
Intermedine | 25.0–500.0 | y = 2035x + 5771 0.999/93 | 78 ± 7 a | 77 ± 3 | 5 a | 6 a | 7.5 | 25.0 | 23 |
74 ± 2 b | 7 b | 10 b | |||||||
80 ± 6 c | 3 c | 3 c | |||||||
Europine | 10.0–500.0 | y = 4482x + 58,782 0.999/98 | 83 ± 4 a | 83 ± 7 | 4 a | 7 a | 3.0 | 10.0 | 23 |
77 ± 2 b | 5 b | 6 b | |||||||
90 ± 11 c | 4 c | 5 c | |||||||
Lycopsamine | 22.0–500.0 | y = 1559x + 8916 0.999/99 | 95 ± 7 a | 90 ± 13 | 7 a | 12 a | 6.7 | 22.0 | 18 |
75 ± 7 b | 5 b | 8 b | |||||||
99 ± 7 c | 1 c | 4 c | |||||||
Europine N-oxide | 7.5–500.0 | y = 6816x + 43,628 0.999/100 | 100 ± 5 a | 88 ± 13 | 6 a | 8 a | 2.2 | 7.5 | 16 |
75 ± 6 b | 5 b | 9 b | |||||||
90 ± 5 c | 3 c | 5 c | |||||||
Intermedine N-oxide | 7.5–500.0 | y = 2111x + 75,308 0.999/93 | 78 ± 3 a | 80 ± 11 | 8 a | 12 a | 2.2 | 7.5 | 17 |
71 ± 2 b | 7 b | 11 b | |||||||
92 ± 4 c | 2 c | 4 c | |||||||
Lycopsamine N-oxide | 12.5–500.0 | y = 2017x + 29,990 0.999/93 | 94 ± 3 a | 86 ± 13 | 5 a | 8 a | 3.7 | 12.5 | 13 |
71 ± 1 b | 4 b | 5 b | |||||||
92 ± 3 c | 7 c | 10 c | |||||||
Retrorsine | 5.5–500.0 | y = 1091x + 12,358 0.999/97 | 91 ± 4 a | 82 ± 9 | 7 a | 11 a | 1.7 | 5.5 | 13 |
73 ± 5 b | 4 b | 12 b | |||||||
82 ± 5 c | 2 c | 4 c | |||||||
Retrorsine N-oxide | 3.5–500.0 | y = 543x + 13,424 0.999/95 | 79 ± 1 a | 83 ± 5 | 6 a | 8 a | 1.0 | 3.5 | 18 |
81 ± 8 b | 3 b | 7 b | |||||||
89 ± 6 c | 5 | 7 | |||||||
Seneciphylline | 2.0–500.0 | y = 2244x + 25,457 0.999/94 | 88 ± 7 a | 90 ± 4 | 7 a | 9 a | 0.7 | 2.0 | 12 |
95 ± 5 b | 3 b | 10 b | |||||||
87 ± 7 c | 4 c | 5 c | |||||||
Heliotrine | 4.0–500.0 | y = 4771x + 9413 0.999/92 | 80 ± 9 a | 91 ± 9 | 3 a | 8 a | 1.3 | 4.0 | 17 |
96 ± 4 b | 7 b | 9 b | |||||||
96 ± 12 c | 2 c | 6 c | |||||||
Seneciphylline N-oxide | 1.0–250.0 | y = 2856x – 29,835 0.999/95 | 95 ± 4 a | 88 ± 10 | 3 a | 4 a | 0.4 | 1.0 | 34 |
77 ± 5 b | 6 b | 9 b | |||||||
93 ± 7 c | 2 c | 7 c | |||||||
Heliotrine N-oxide | 3.0–500.0 | y = 684x + 13,923 0.999/95 | 81 ± 7 a | 87 ± 1 | 8 a | 9 a | 1.0 | 3.0 | 3 |
82 ± 5 b | 8 b | 12 b | |||||||
99 ± 10 c | 5 c | 12 c | |||||||
Senecivernine | 0.5–500.0 | y = 7802x + 480,780 0.999/96 | 98 ± 7 a | 89 ± 13 | 4 a | 6 a | 0.1 | 0.5 | 25 |
74 ± 3 b | 4 b | 9 b | |||||||
95 ± 8 c | 2 c | 4 c | |||||||
Senecionine | 0.5–500.0 | y = 7830x + 339,046 0.999/95 | 99 ± 4 a | 88 ± 12 | 4 a | 7 a | 0.1 | 0.5 | 18 |
76 ± 6 b | 4 b | 7 b | |||||||
90 ± 11 c | 4 c | 6 c | |||||||
Senecivernine N-oxide | 6.0–250.0 | y = 2287x + 4421 0.999/97 | 95 ± 2 a | 96 ± 4 | 6 a | 10 a | 1.8 | 6.0 | 39 |
100 ± 6 b | 6 b | 7 b | |||||||
93 ± 6 c | 4 c | 8 c | |||||||
Senecionine N-oxide | 3.0–500.0 | y = 1208x + 146,398 0.999/98 | 96 ± 8 a | 92 ± 4 | 8 a | 13 a | 0.9 | 3.0 | 28 |
93 ± 8 b | 3 b | 5 b | |||||||
88 ± 5 c | 6 c | 8 c | |||||||
Echimidine | 7.0–500.0 | y = 4704x + 167,863 0.999/94 | 78 ± 4 a | 82 ± 10 | 5 a | 5 a | 2.0 | 7.0 | 17 |
75 ± 2 b | 6 b | 12 b | |||||||
94 ± 11 c | 4 c | 6 c | |||||||
Echimidine N-oxide | 7.5–250.0 | y = 1005x – 48,988 0.999/96 | 87 ± 2 a | 86 ± 2 | 8 a | 12 a | 2.0 | 7.5 | 111 |
86 ± 10 b | 7 b | 9 b | |||||||
84 ± 11 c | 4 c | 12 c | |||||||
Senkirkin | 7.5–500.0 | y = 1327x + 17,984 0.999/97 | 74 ± 5 a | 83 ± 15 | 3 a | 7 a | 2.0 | 7.5 | 8 |
75 ± 3 b | 4 b | 7 b | |||||||
101 ± 2 c | 5 c | 7 c | |||||||
Lasiocarpine | 25.0–500.0 | y = 282x + 4928 0.999/92 | 96 ± 5 a | 94 ± 2 | 7 a | 10 a | 7.5 | 25.0 | 18 |
95 ± 3 b | 3 b | 10 b | |||||||
92 ± 10 c | 5 c | 7 c | |||||||
Lasiocarpine N-oxide | 10.0–500.0 | y = 6252x + 2254 0.999/100 | 101 ± 6 a | 92 ± 10 | 5 a | 12 a | 3.0 | 10.0 | 13 |
93 ± 7 b | 8 b | 10 b | |||||||
82 ± 7 c | 5 c | 5 c |
Analytes (µg/kg) | C-S1 | C-S2 | C-S3 | C-S4 | C-S5 | C-S6 | C-S7 | C-S8 | C-S9 | C-S10 | C-S11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Intermedine | n.d. | n.d. | n.d. | <MQL | <MQL | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
Europine | <MQL | <MQL | <MQL | <MQL | <MQL | <MQL | <MQL | <MQL | <MQL | <MQL | <MQL | |
Lycopsamine | n.d. | n.d. | n.d. | n.d. | <MQL | <MQL | n.d. | <MQL | n.d. | n.d. | n.d. | |
Europine N-oxide | 14 ± 3 | <MQL | <MQL | <MQL | 25 ± 5 | 15 ± 4 | 14 ± 3 | <MQL | 16 ± 6 | 15 ± 4 | 8 ± 2 | |
Intermedine N-oxide | 93 ± 4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 138 ± 4 | 235 ± 5 | n.d. | n.d. | |
Lycopsamine N-oxide | 111 ± 5 | n.d. | <MQL | n.d. | 39 ± 2 | <MQL | <MQL | 165 ± 7 | 261 ± 11 | <MQL | 17 ± 2 | |
Retrorsine | 10 ± 2 | <MQL | n.d. | n.d. | 17 ± 1 | 10 ± 5 | 6.7 ± 0.4 | <MQL | 12 ± 4 | <MQL | <MQL | |
Retrorsine N-oxide | 5 ± 2 | 6 ± 2 | <MQL | n.d. | 41 ± 12 | 12 ± 4 | 55 ± 5 | 19 ± 3 | 10 ± 3 | <MQL | 31 ± 4 | |
Seneciphylline | n.d. | n.d. | n.d. | n.d. | 12 ± 2 | n.d. | <MQL | n.d. | n.d. | 5 ± 4 | n.d. | |
Heliotrine | 5 ± 2 | 5 ± 1 | 7.9 ± 0.3 | <MQL | 22 ± 5 | 8 ± 2 | 36 ± 5 | <MQL | <MQL | 9.3 ± 0.4 | 6.1 ± 0.5 | |
Seneciphylline N-oxide | 18.7 ± 0.8 | 82 ± 3 | 20.5 ± 0.7 | 26 ± 1 | 88 ± 18 | 19 ± 4 | 65 ± 7 | 100 ± 13 | 19 ± 2 | 53 ± 4 | 49 ± 6 | |
Heliotrine N-oxide | 13.2 ± 0.9 | n.d. | n.d. | n.d. | 47 ± 1 | n.d. | 15 ± 6 | 6.6 ± 0.4 | n.d. | n.d. | n.d. | |
Senecivernine | 11 ± 4 | 154 ± 3 | 102 ± 7 | 105 ± 4 | 1027 ± 58 | 385 ± 6 | 66 ± 3 | 6 ± 5 | 6 ± 3 | 225.4 ± 0.4 | n.d. | |
Senecionine | 24 ± 3 | 166 ± 4 | 120 ± 5 | 121 ± 8 | 1103 ± 60 | 385 ± 15 | 81.8 ± 0.8 | 24 ± 5 | 24 ± 3 | 231 ± 1 | 2.4 ± 0.3 | |
Senecivernine N-oxide | 8 ± 1 | 17 ± 3 | 10.9 ± 0.3 | 8 ± 2 | 138 ± 4 | 11 ± 1 | 24 ± 6 | 53 ± 3 | 9 ± 3 | 10.8 ± 0.7 | 70 ± 4 | |
Senecionine N-oxide | n.d. | 16 ± 3 | n.d. | n.d. | 91 ± 9 | n.d. | 9 ± 5 | n.d. | n.d. | n.d. | n.d. | |
Echimidine | <MQL | <MQL | <MQL | <MQL | 19 ± 5 | <MQL | <MQL | <MQL | n.d. | <MQL | n.d. | |
Echimidine N-oxide | 160 ± 2 | 100 ± 6 | 194 ± 2 | 185 ± 2 | 140 ± 4 | 148 ± 1 | 106 ± 7 | 253 ± 6 | 302 ± 7 | 202 ± 11 | 267 ± 10 | |
Senkirkin | 10.32 ± 0.06 | n.d. | 8 ± 2 | n.d. | 27 ± 5 | <MQL | 10 ± 1 | <MQL | <MQL | <MQL | <MQL | |
Lasiocarpine | 81 ± 3 | 45 ± 5 | 76 ± 3 | 36 ± 2 | 66 ± 4 | 47 ± 4 | 57 ± 7 | 50 ± 5 | 65 ± 4 | 72 ± 7 | 55 ± 7 | |
Lasiocarpine N-oxide | 12 ± 1 | 25 ± 5 | 18 ± 2 | 14 ± 1 | 38 ± 3 | 15 ± 4 | 27 ± 6 | 14 ± 2 | 15 ± 4 | 17.9 ± 0.2 | 18 ± 1 | |
Total | 576 ± 10 | 616 ± 12 | 557 ± 10 | 495 ± 10 | 2940 ± 88 | 1055 ± 19 | 573 ± 19 | 829 ± 19 | 974 ± 18 | 841 ± 15 | 524 ± 15 | |
Analytes (µg/kg) | C-S12 | C-S13 | C-S14-A | C-S14-B | C-S15-A | C-S15-B | C-S16-A | C-S16-B | O-S17 | O-S18 | 0-S19 | W-S20 |
Intermedine | <MQL | 47 ± 3 | 27.7 ± 0.8 | <MQL | <MQL | n.d. | <MQL | n.d. | n.d. | <MQL | n.d. | n.d. |
Europine | <MQL | 3142 ± 4 | 170 ± 3 | <MQL | <MQL | 11 ± 2 | <MQL | <MQL | <MQL | 25 ± 6 | <MQL | <MQL |
Lycopsamine | <MQL | 44 ± 5 | 25.4 ± 0.8 | <MQL | <MQL | n.d. | <MQL | n.d. | n.d. | <MQL | n.d. | <MQL |
Europine N-oxide | 9 ± 1 | 118 ± 7 | 737 ± 9 | 12.2 ± 0.2 | 10.5 ± 0.1 | 23 ± 4 | 16.6 ± 0.8 | 11.3 ± 0.2 | 17 ± 1 | 1195 ± 235 | 10.1 ± 0.2 | 10.5 ± 0.7 |
Intermedine N-oxide | n.d. | n.d. | 22.8 ± 0.1 | n.d. | n.d. | n.d. | 152 ± 7 | 206 ± 1 | n.d. | n.d. | 602 ± 8 | 305 ± 10 |
Lycopsamine N-oxide | 24 ± 4 | 18 ± 4 | 78 ± 4 | 104 ± 9 | <MQL | 40 ± 3 | 99 ± 5 | 99 ± 6 | n.d. | 35.1 ± 0.3 | 211 ± 10 | 163 ± 7 |
Retrorsine | 19 ± 2 | 12 ± 2 | 19 ± 2 | 9 ± 3 | 14 ± 2 | 8 ± 2 | 11 ± 2 | 10 ± 3 | <MQL | <MQL | <MQL | <MQL |
Retrorsine N-oxide | 12.8 ± 0.8 | 46 ± 7 | 33 ± 9 | 15 ± 3 | 5.4 ± 0.4 | 4.8 ± 0.8 | 5 ± 1 | n.d. | n.d. | <MQL | n.d. | 7 ± 2 |
Seneciphylline | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Heliotrine | 12 ± 2 | 30 ± 4 | 45 ± 10 | <MQL | 6.2 ± 0.9 | n.d. | 12 ± 1 | 5 ± 1 | 6.6 ± 0.5 | 8.1 ± 0.7 | 7 ± 1 | 17 ± 1 |
Seneciphylline N-oxide | 17 ± 1 | 20 ± 3 | 23 ± 4 | 22 ± 3 | 23 ± 4 | n.d. | 21 ± 2 | 20 ± 4 | 13.7 ± 0.2 | 19 ± 2 | 16 ± 3 | 20 ± 3 |
Heliotrine N-oxide | n.d. | <MQL | 34 ± 4 | n.d. | n.d. | n.d. | <MQL | 6 ± 2 | n.d. | 75 ± 6 | 11 ± 4 | n.d. |
Senecivernine | n.d. | n.d. | 492 ± 78 | 94 ± 5 | n.d. | 8 ± 0.7 | 19 ± 2 | 21 ± 4 | 115 ± 7 | 224 ± 7 | 57 ± 4 | n.d. |
Senecionine | 4 ± 1 | 24 ± 4 | 524 ± 80 | 52 ± 4 | 5 ± 1 | n.d. | 60 ± 6 | 62 ± 4 | 126 ± 8 | 240 ± 6 | 82 ± 5 | 5.7 ± 0.4 |
Senecivernine N-oxide | 7.2 ± 0.6 | 17 ± 2 | 11 ± 2 | 13 ± 2 | 10.8 ± 0.2 | n.d. | 12 ± 2 | 20 ± 5 | <MQL | 6 ± 2 | 13 ± 2 | 29 ± 1 |
Senecionine N-oxide | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Echimidine | n.d. | n.d. | n.d. | n.d. | n.d. | <MQL | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Echimidine N-oxide | 186 ± 3 | 322 ± 7 | 183 ± 11 | 297 ± 5 | 204 ± 4 | 173 ± 29 | 182 ± 9 | 491 ± 11 | 102 ± 7 | 84.6 ± 0.9 | 87 ± 6 | 211 ± 8 |
Senkirkin | <MQL | 9.8 ± 0.8 | 17 ± 2 | 19 ± 3 | 8.6 ± 0.1 | 9 ± 2 | 16 ± 2 | 10 ± 3 | 10.5 ± 0.1 | 105 ± 2 | 13 ± 1 | 30 ± 1 |
Lasiocarpine | 70 ± 11 | 326 ± 1 | 986 ± 98 | 48 ± 4 | 36 ± 5 | 38 ± 9 | 86 ± 3 | 67 ± 2 | 32 ± 4 | 80 ± 13 | 63 ± 10 | 58 ± 2 |
Lasiocarpine N-oxide | 15 ± 3 | 63 ± 6 | 2947 ± 76 | 45 ± 4 | 10 ± 2 | 25 ± 5 | 30 ± 8 | 13 ± 1 | 27 ± 2 | 31 ± 1 | 27 ± 1 | 72 ± 4 |
Total | 376 ± 13 | 4239 ± 17 | 6375 ± 168 | 730 ± 15 | 334 ± 8 | 340 ± 31 | 722 ± 17 | 1041 ± 16 | 450 ± 14 | 2128 ± 236 | 1199 ± 19 | 928 ± 16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izcara, S.; Casado, N.; Morante-Zarcero, S.; Sierra, I. A Miniaturized QuEChERS Method Combined with Ultrahigh Liquid Chromatography Coupled to Tandem Mass Spectrometry for the Analysis of Pyrrolizidine Alkaloids in Oregano Samples. Foods 2020, 9, 1319. https://doi.org/10.3390/foods9091319
Izcara S, Casado N, Morante-Zarcero S, Sierra I. A Miniaturized QuEChERS Method Combined with Ultrahigh Liquid Chromatography Coupled to Tandem Mass Spectrometry for the Analysis of Pyrrolizidine Alkaloids in Oregano Samples. Foods. 2020; 9(9):1319. https://doi.org/10.3390/foods9091319
Chicago/Turabian StyleIzcara, Sergio, Natalia Casado, Sonia Morante-Zarcero, and Isabel Sierra. 2020. "A Miniaturized QuEChERS Method Combined with Ultrahigh Liquid Chromatography Coupled to Tandem Mass Spectrometry for the Analysis of Pyrrolizidine Alkaloids in Oregano Samples" Foods 9, no. 9: 1319. https://doi.org/10.3390/foods9091319
APA StyleIzcara, S., Casado, N., Morante-Zarcero, S., & Sierra, I. (2020). A Miniaturized QuEChERS Method Combined with Ultrahigh Liquid Chromatography Coupled to Tandem Mass Spectrometry for the Analysis of Pyrrolizidine Alkaloids in Oregano Samples. Foods, 9(9), 1319. https://doi.org/10.3390/foods9091319