Autonomous Van and Robot Last-Mile Logistics Platform: A Reference Architecture and Proof of Concept Implementation
Abstract
:1. Introduction
2. Contribution and Outline
3. State-of-the-Art: Autonomous Logistics
3.1. Application Fields for Autonomous Vans and Robots
3.2. Existing Approaches, Concepts and Solutions
4. Blueprint Architecture for Autonomous Mobility and Transportation
5. Transformation of the Last Mile Logistics Service Providers
6. Towards an Autonomous Logistics Architecture—The Case BeIntelli
6.1. Autonomous Fulfillment with Vans and Robots—Scenario and Requirements
6.2. Embedding in the Platform Economy for Autonomous Mobility
- 1.
- Hardware: constitutes the vehicles truck, van, delivery robots, and infrastructure components such as the extended road-side-units (computing, communication, sensors)
- 2.
- Middleware: intermediates between the different hardware entities (vehicles/infrastructure) and ADS layer (e.g., HD map, V2X communication)
- 3.
- ADAS or ADS: provides the basic and advanced for autonomous driving
- 4.
- Platform: entails data acquisition, processing, and provision at demanded granularity levels as well as basic and advanced services that are provided to the involved stakeholder
- 5.
- Applications: comprises applications needed for interaction between the actors as well as to execute, manage and monitor vehicle operations
7. Application and Test Pilot of the LML-Architecture in the BeIntelli Project
7.1. The Role of the BeIntelli Real-Laboratory for Developing, Testing and Validating the Van-and-Robot Scenario
- Data acquisition, processing, storage and provision at different granularity levels; e.g., vehicle data
- Provision of development tools (APIs, SDKs) and a runtime for the development, test and validation of solutions
- Provision of services that function as modular components for solutions
7.2. Application of the Reference Architecture Towards the BeIntelli LML Architecture
7.3. Evaluation of the Implemented Architecture
8. Discussion and Future Research
9. Conclusions
- Remote/Tele-Operation can be provided for different vehicles and operators (Teleoperation as a Service)
- Operation can be offered as a LSP for various senders (Autonomous Delivery as a Service)
- A platform can be owned by the vehicle manufacturer to integrate the vehicles into existing operational processes; or multiple platforms can take different responsibilities and tasks for realizing LML
- The ADS could function as a digital driver for different operators (Autonomous Driving as a Service)
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Straube, F.; Figiel, A.; Nitsche, B. Herausforderungen und Lösungen für den städtischen Wirtschaftsverkehr auf der letzten Meile–neue Konsumententrends beeinflussen die Logistik der Zukunft. In Handbuch Kommunale Verkehrsplanung; Wichmann: Berlin, Germany, 2018; p. 1. [Google Scholar]
- Brabänder, C. Die Letzte Meile; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2020. [Google Scholar] [CrossRef]
- Maurer, M.; Gerdes, J.C.; Lenz, B.; Winner, H. (Eds.) Autonomes Fahren; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Straube, F. e-Logistik; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef]
- Lemardelé, C.; Estrada, M.; Pagès, L.; Bachofner, M. Potentialities of drones and ground autonomous delivery devices for last-mile logistics. Transp. Res. Part E Logist. Transp. Rev. 2021, 149, 102325. [Google Scholar] [CrossRef]
- Mitteregger, M.; Bruck, E.M.; Soteropoulos, A.; Stickler, A.; Berger, M.; Dangschat, J.S.; Scheuvens, R.; Banerjee, I. AVENUE21. Politische und Planerische Aspekte der Automatisierten Mobilität; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Straube, F.; Junge, A.L. Smarte Konzepte für zukunftsfähige urbane Logistik- und Verkehrssysteme. Int. Verkehrswesen 2019, 2, 35. [Google Scholar]
- BeIntelli. BeIntelli—Artificial Intelligence in Mobility Based on Platform Economy. 2024. Available online: https://be-intelli.com/ (accessed on 3 February 2024).
- Fläming, H. Autonome Fahrzeuge und autonomes Fahren im Bereich des Gütertransportes. In Autonomes Fahren; Maurer, M., Gerdes, J.C., Lenz, B., Winner, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 377–398. [Google Scholar]
- Maas, J.; Nitsche, B.; Straube, F. Systematization of autonomous vehicles in last mile transportation processes – taxonomy development and clustering of existing concepts. Int. J. Logist. Res. Appl. 2023, 27, 2104–2126. [Google Scholar] [CrossRef]
- Li, F.; Kunze, O. A Comparative Review of Air Drones (UAVs) and Delivery Bots (SUGVs) for Automated Last Mile Home Delivery. Logistics 2023, 7, 21. [Google Scholar] [CrossRef]
- Plank, M.; Lemardelé, C.; Assmann, T.; Zug, S. Ready for robots? Assessment of autonomous delivery robot operative accessibility in German cities. J. Urban Mobil. 2022, 2, 100036. [Google Scholar] [CrossRef]
- Clausen, U.; Stütz, S.; Bernsmann, A.; Heinrichmeyer, H. ZF-ZUKUNFTSSTUDIE 2016: Die letzte Meile. 2016. Available online: https://www.zf.com/master/media/corporate/m_zf_com/company/download_center/company_3/zukunftsstudie_1/zf_zukunftsstudie_2016_gesamt.pdf (accessed on 22 December 2024).
- Boysen, N.; Fedtke, S.; Schwerdfeger, S. Last-mile delivery concepts: A survey from an operational research perspective. OR Spectr. 2021, 43, 1–58. [Google Scholar] [CrossRef]
- WeRide. To Transform Urban Living with Autonomous Driving. 2024. Available online: https://www.weride.ai/ (accessed on 3 February 2024).
- udelv. To Transform Urban Living with Autonomous Driving. 2024. Available online: https://udelv.com/ (accessed on 27 February 2024).
- einride. Einride-Intelligent Movement. 2024. Available online: https://einride.tech/ (accessed on 27 February 2024).
- Loxo. LOXO the Mapless Autonomous Driving Technology from Switzerland. 2024. Available online: https://www.loxo.ch/en/ (accessed on 27 February 2024).
- Clevon. Your On-Demand Autonomous Delivery Solution. 2024. Available online: https://clevon.com/ (accessed on 3 February 2024).
- Nuro. Autonomy Delivered. 2024. Available online: https://www.nuro.ai/ (accessed on 3 February 2024).
- Si, L. Chinese Delivery Giant Meituan Releases New Generation of Autonomous Delivery Vehicle. 2021. Available online: https://pandaily.com/chinese-delivery-giant-meituan-releases-new-generation-of-autonomous-delivery-vehicle/ (accessed on 3 February 2024).
- VanAssist. Projekt VanAssist—Interaktives, Intelligentes System für Autonome fernüBerwachte Kleintransporter in der Paketlogistik. 2024. Available online: https://www.vanassist.de/ (accessed on 27 February 2024).
- Starship. Starshio—Autonomous Robot Delivery. 2024. Available online: https://www.starship.xyz/ (accessed on 27 February 2024).
- VanAssist. Kiwibot—Adorable Autonomous Delivery Robots. 2024. Available online: https://www.kiwibot.com/ (accessed on 27 February 2024).
- Serve, P. Meet Serve. 2024. Available online: https://serve.postmates.com/ (accessed on 27 February 2024).
- Ottonomy. Ottonomy: Level 4 Autonomous Delivery Robots. 2024. Available online: https://ottonomy.io/ (accessed on 27 February 2024).
- Company, F.M. A Smart Little Robot that Can Help Make Deliveries. 2024. Available online: https://corporate.ford.com/articles/research-and-innovation/autonomous-vehicle-robot-delivery.html (accessed on 3 February 2024).
- TaBuLa-LOG. TaBuLa-LOG—Kombinierter Personen- und Warentransport in automatisierten Shuttles. 2021. Available online: https://www.tabulashuttle.de/tabula-log/ (accessed on 3 February 2024).
- LogiSmile. LogiSmile—Last-Mile Logistics for Autonomous Goods Delivery. 2023. Available online: https://www.eiturbanmobility.eu/projects/last-mile-logistics-for-autonomous-goods-delivery/ (accessed on 3 February 2024).
- Jennings, D.; Figliozzi, M. Study of Sidewalk Autonomous Delivery Robots and Their Potential Impacts on Freight Efficiency and Travel. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 317–326. [Google Scholar] [CrossRef]
- Heimfarth, A.; Ostermeier, M.; Hübner, A. A mixed truck and robot delivery approach for the daily supply of customers. SSRN Electron. J. 2021; working paper. [Google Scholar] [CrossRef]
- Boysen, N.; Schwerdfeger, S.; Weidinger, F. Scheduling last-mile deliveries with truck-based autonomous robots. Eur. J. Oper. Res. 2018, 271, 1085–1099. [Google Scholar] [CrossRef]
- Augusto, M.G.; Acar, B.; Soto, A.C.; Sivrikaya, F.; Albayrak, S.; Augusto, M.G. Driving into the Future: A Cross-cutting Analysis of Distributed Artificial Intelligence, CCAM and the Platform Economy. Auton. Intell. Syst. 2024, 4, 1. [Google Scholar] [CrossRef]
- Augusto, M.G.; Masuch, N.; Keiser, J.; Hessler, A.; Albayrak, S. Towards Intelligent Infrastructures and AI-driven Platform Ecosystems for Connected and Automated Mobility Solutions. In Proceedings of the ITS World Congress, Hamburg, Germany, 11–15 October 2021. [Google Scholar]
- Acar, B.; Augusto, M.G.; Sterling, M.; Sivrikaya, F.; Albayrak, S. A Survey on the Use of Container Technologies in Autonomous Driving and the Case of BeIntelli. IEEE Open J. Intell. Transp. Syst. 2023, 4, 800–814. [Google Scholar] [CrossRef]
- Olsson, J.; Hellström, D.; Pålsson, H. Framework of Last Mile Logistics Research: A Systematic Review of the Literature. Sustainability 2019, 11, 7131. [Google Scholar] [CrossRef]
- Wellbrock, W.; Ludin, D.; Knezevic, I. Letzte Meile 4.0: Potenziale innovativer Technologien für die Auslieferung im B2C-Bereich; Essentials, Springer Gabler: Wiesbaden, Germany; Heidelberg, Germany, 2022. [Google Scholar]
- Maas, J.; Kosch, M.; Straube, F. Integration of autonomous delivery solutions in urban logistics—Practical insights from a pilot project. In New Players in Mobility (Unpublished Manuscript); Springer: Berlin/Heidelberg, Germany, 2025. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerreiro Augusto, M.; Maas, J.; Kosch, M.; Henke, M.; Küster, T.; Straube, F.; Albayrak, S. Autonomous Van and Robot Last-Mile Logistics Platform: A Reference Architecture and Proof of Concept Implementation. Logistics 2025, 9, 10. https://doi.org/10.3390/logistics9010010
Guerreiro Augusto M, Maas J, Kosch M, Henke M, Küster T, Straube F, Albayrak S. Autonomous Van and Robot Last-Mile Logistics Platform: A Reference Architecture and Proof of Concept Implementation. Logistics. 2025; 9(1):10. https://doi.org/10.3390/logistics9010010
Chicago/Turabian StyleGuerreiro Augusto, Marc, Julian Maas, Martin Kosch, Manuel Henke, Tobias Küster, Frank Straube, and Sahin Albayrak. 2025. "Autonomous Van and Robot Last-Mile Logistics Platform: A Reference Architecture and Proof of Concept Implementation" Logistics 9, no. 1: 10. https://doi.org/10.3390/logistics9010010
APA StyleGuerreiro Augusto, M., Maas, J., Kosch, M., Henke, M., Küster, T., Straube, F., & Albayrak, S. (2025). Autonomous Van and Robot Last-Mile Logistics Platform: A Reference Architecture and Proof of Concept Implementation. Logistics, 9(1), 10. https://doi.org/10.3390/logistics9010010