Croatia’s Economic Integration in EU’s Regional Supply Chains: Panel Data Quantile Regression
Abstract
:1. Introduction
2. Literature Review
- The use of panel data quantile regression (PDQR) in the RVC analysis: in contrast to previous studies that used linear panel models (FMOLS, GMM, PVAR), this study uses PDQR to capture the heterogeneous effects of trade integration at different economic levels.
- Trade integration across business cycles shows how Croatia’s trade integration shifts between low and high economic quantiles, highlighting structural resilience and vulnerability.
- A value-added trade analysis, which differentiates trade patterns between economic quantiles and provides a nuanced view of Croatia’s role in the EU’s RVCs.
- Policy-driven insights on trade resilience: the study goes beyond correlations by linking quantile-specific insights with policy recommendations on diversification, infrastructure, and supply chain resilience.
- Integration intensity with key EU partners, which identifies differences in Croatia’s trade relations with Austria, Germany, Slovenia, and Hungary.
- A regional trade competitiveness policy, which proposes measures for trade diversification, infrastructure, and sectoral investment.
3. Data
4. Methods
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Briguglio, L.; Cordina, G.; Farrugia, N.; Vella, S. Economic Vulnerability and Resilience: Concepts and Measurements. Oxf. Dev. Stud. 2009, 37, 229–247. [Google Scholar] [CrossRef]
- UNCTAD (United Nations Conference on Trade and Development). Trade and Development Report 2021: From Recovery to Resilience—The Development Dimension; United Nations: Geneva, Switzerland, 2021; Available online: https://unctad.org/system/files/official-document/tdr2021_en.pdf (accessed on 18 February 2025).
- Martin, R.; Sunley, P. On the Notion of Regional Economic Resilience: Conceptualization and Explanation. J. Econ. Geogr. 2015, 15, 1–42. [Google Scholar] [CrossRef]
- Gereffi, G.; Fernandez-Stark, K. Global Value Chain Analysis: A Primer, 2nd ed.; Duke CGGC, Duke University: Durham, NC, USA, 2016; pp. 1–34. Available online: https://scholars.duke.edu/display/pub1138337 (accessed on 20 February 2025).
- Koopman, R.; Powers, W.; Wang, Z.; Wei, S.-J. Give Credit Where Credit Is Due: Tracing Value Added in Global Production Chains; National Bureau of Economic Research Working Paper 16426; National Bureau of Economic Research: Cambridge, MA, USA, 2010. [Google Scholar] [CrossRef]
- OECD. 31st OECD/UNCTAD Report on G20 Trade and Investment Measures; OECD Publishing: Paris, France, 2023; Available online: https://www.oecd.org/en/publications/31st-oecd-unctad-report-on-g20-trade-and-investment-measures_ea409cda-en.html (accessed on 20 February 2025).
- United Nations Conference on Trade and Development (UNCTAD). General Profile: Croatia. UNCTADstat. Available online: https://unctadstat.unctad.org/CountryProfile/GeneralProfile/en-GB/191/index.html (accessed on 18 January 2025).
- UNCTAD. Eora Global Multi-Region Input-Output Database (Eora MRIO), 2000–2019; United Nations Conference on Trade and Development: Geneva, Switzerland, 2020; Available online: https://worldmrio.com/unctadgvc/ (accessed on 18 January 2025).
- Miao, X.; Wang, S.; Han, J.; Ren, Z.; Ma, T.; Xie, H. The Regional Heterogeneity of the Impact of Agricultural Market Integration on Regional Economic Development: An Analysis of Pre-COVID-19 Data in China. Sustainability 2024, 16, 1734. [Google Scholar] [CrossRef]
- Duan, D.; Zhang, Y.; Chen, Y.; Du, D. Regional Integration in the Inter-City Technology Transfer System of the Yangtze River Delta, China. Sustainability 2019, 11, 2941. [Google Scholar] [CrossRef]
- Pehlken, A.; Wulf, K.; Grecksch, K.; Klenke, T.; Tsydenova, N. More Sustainable Bioenergy by Making Use of Regional Alternative Biomass? Sustainability 2020, 12, 7849. [Google Scholar] [CrossRef]
- Ascencio, L.M.; González-Ramírez, R.G.; Bearzotti, L.A.; Smith, N.R.; Camacho-Vallejo, J.F. A Collaborative Supply Chain Management System for a Maritime Port Logistics Chain. J. Appl. Res. Technol. 2014, 12, 444–458. [Google Scholar] [CrossRef]
- Tovar, B.; Hernández, R.; Rodríguez-Déniz, H. Container Port Competitiveness and Connectivity: The Canary Islands Main Ports Case. Transp. Policy 2015, 38, 40–51. [Google Scholar] [CrossRef]
- Yeo, G.-T.; Ng, A.K.Y.; Lee, P.T.-W.; Yang, Z. Modelling Port Choice in an Uncertain Environment. Marit. Policy Manag. 2013, 41, 251–267. [Google Scholar] [CrossRef]
- Mensah, P.; Merkuryev, Y. Developing a Resilient Supply Chain. Procedia Soc. Behav. Sci. 2014, 110, 309–319. [Google Scholar] [CrossRef]
- Ponomarov, S.Y.; Holcomb, M.C. Understanding the Concept of Supply Chain Resilience. Int. J. Logist. Manag. 2009, 20, 124–143. [Google Scholar] [CrossRef]
- Negri, M.; Cagno, E.; Colicchia, C.; Sarkis, J. Integrating Sustainability and Resilience in the Supply Chain: A Systematic Literature Review and a Research Agenda. Bus. Strategy Environ. 2021, 30, 7. [Google Scholar] [CrossRef]
- Frankowska, M.; Cheba, K. The Relational Embeddedness as the Differentiator of the Cluster Supply Chain Collaboration—A Multidimensional Comparative Analysis. Compet. Rev. Int. Bus. J. 2021, 32, 59–84. [Google Scholar] [CrossRef]
- Jaehne, D.M.; Li, M.; Riedel, R.; Mueller, E. Configuring and Operating Global Production Networks. Int. J. Prod. Res. 2009, 47, 2013–2030. [Google Scholar] [CrossRef]
- Gao, Y.; Zong, Y. Benefit-Sharing Mechanism in Cross-Regional Agricultural Product Supply Chain: A Grounded Theory Approach. Sustainability 2024, 16, 10842. [Google Scholar] [CrossRef]
- Ferreira, F.C.M.; Biazzin, C.; Hong, P.C. Transition Paths of Brazil from an Agricultural Economy to a Regional Powerhouse: A Global Supply Chain Perspective. Sustainability 2024, 16, 2872. [Google Scholar] [CrossRef]
- Gruchmann, T.; Melkonyan, A.; Krumme, K. Logistics Business Transformation for Sustainability: Assessing the Role of the Lead Sustainability Service Provider (6PL). Logistics 2018, 2, 25. [Google Scholar] [CrossRef]
- Kritchanchai, D.; Senarak, D.; Supeekit, T.; Chanpuypetch, W. Evaluating Supply Chain Network Models for Third Party Logistics Operated Supply-Processing-Distribution in Thai Hospitals: An AHP-Fuzzy TOPSIS Approach. Logistics 2024, 8, 116. [Google Scholar] [CrossRef]
- Lu, H.; Li, L.; Zhao, X.; Cook, D. A Model of Integrated Regional Logistics Hub in Supply Chain. Enterp. Inf. Syst. 2018, 12, 1308–1335. [Google Scholar] [CrossRef]
- De Backer, K.; Miroudot, S. Mapping Global Value Chains; OECD Trade Policy Papers, No. 159; OECD Publishing: Paris, France, 2013. [Google Scholar] [CrossRef]
- Mance, D.; Debelić, B.; Vilke, S. Croatian Regional Export Value-Added Chains. Economies 2023, 11, 202. [Google Scholar] [CrossRef]
- Mance, D.; Vilke, S.; Debelić, B. Impact of ICT on Regional Supply Chains in CEECs. Ekon. Vjesn. 2023, 36, 373–384. [Google Scholar] [CrossRef]
- Gereffi, G.; Fernandez-Stark, K. Global Value Chain Analysis: A Primer; Center on Globalization, Governance & Competitiveness, Duke University: Durham, NC, USA, 2011; Available online: https://gvcc.duke.edu/cggc-briefing-papers (accessed on 20 February 2025).
- Bair, J. Global Capitalism and Commodity Chains: Looking Back, Going Forward. Compet. Change 2005, 9, 153–180. [Google Scholar] [CrossRef]
- Gereffi, G. Global Production Systems and Third World Development. In Global Change, Regional Response: The New International Context of Development; Stallings, B., Ed.; Cambridge University Press: Cambridge, UK, 1995; pp. 100–142. [Google Scholar]
- Gereffi, G. The Organization of Buyer-Driven Global Commodity Chains: How U.S. Retailers Shape Overseas Production Networks. In Commodity Chains and Global Capitalism; Gereffi, G., Korzeniewicz, M., Eds.; Praeger: Westport, CT, USA, 1994; pp. 95–122. [Google Scholar]
- Cumbers, A.; Nativel, C.; Routledge, P. Labour Agency and Union Positionalities in Global Production Networks. J. Econ. Geogr. 2008, 8, 369–387. [Google Scholar] [CrossRef]
- United Nations Conference on Trade and Development (UNCTAD). World Investment Report 2013: Global Value Chains: Investment and Trade for Development; United Nations: Geneva, Switzerland, 2013; Available online: https://unctad.org/system/files/official-document/wir2013_en.pdf (accessed on 18 January 2025).
- Baldwin, R.; Lopez-Gonzalez, J. Supply-Chain Trade: A Portrait of Global Patterns and Several Testable Hypotheses. World Econ. 2013, 36, 1417–1459. [Google Scholar] [CrossRef]
- McKinsey Global Institute (MGI). Globalization in Transition: The Future of Trade and Value Chains; McKinsey & Company: Chicago, IL, USA, 2019; Available online: https://www.mckinsey.com (accessed on 20 February 2025).
- Friesenbichler, K.; Glocker, C.; Hölzl, W.; Kaniovski, S.; Kügler, A.; Reinstaller, A.; Streicher, G.; Siedschlag, I.; Di Ubaldo, M.; Studnicka, Z.; et al. Drivers and Obstacles to Competitiveness in the EU: The Role of Value Chains and the Single Market. WIFO Studies, No. 60837. 2017. Available online: https://ideas.repec.org/b/wfo/wstudy/60837.html (accessed on 20 February 2025).
- OECD. Towards Balanced Regional Development in Croatia; OECD Publishing: Paris, France, 2024; Available online: https://www.oecd.org (accessed on 18 February 2025).
- World Bank. Croatia Country Economic Memorandum: Laying the Foundations—Boosting Productivity to Ensure Future Prosperity; World Bank: Washington, DC, USA, 2023; Available online: https://www.worldbank.org (accessed on 18 February 2025).
- Li, C.; He, Q.; Ji, H.; Yu, S.; Wang, J. Re-examining the Impact of Global Value Chain Participation on Regional Economic Growth: New Evidence Based on a Nonlinear Model and Spatial Spillover Effects with Panel Data from Chinese Cities. Sustainability 2023, 15, 13835. [Google Scholar] [CrossRef]
- Taguchi, H.; Lar, N. Servicification in Global Value Chains in Emerging and Developing Asian Economies. Economies 2024, 12, 125. [Google Scholar] [CrossRef]
- Sada, S.; Ikeda, Y. Regional Economic Integration via Detection of Circular Flow in International Value-Added Network. arXiv 2021, arXiv:2103.08179. Available online: https://arxiv.org/abs/2103.08179 (accessed on 20 February 2025).
- UNCTAD. World Investment Report 2023: Investment and Value Chains in a Post-Pandemic World; United Nations: Geneva, Switzerland, 2023; Available online: https://unctad.org/system/files/official-document/wir2023_en.pdf (accessed on 18 February 2025).
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 5th ed.; South-Western Cengage Learning: Boston, MA, USA, 2010; ISBN 9781111531041. [Google Scholar]
- Dedrick, J.; Kraemer, K.L.; Linden, G. Who Profits from Innovation in Global Value Chains? A Study of the iPod and Notebook PCs. Ind. Corp. Chang. 2010, 19, 81–116. [Google Scholar] [CrossRef]
- Gereffi, G.; Humphrey, J.; Sturgeon, T. The Governance of Global Value Chains. Rev. Int. Polit. Econ. 2005, 12, 78–104. [Google Scholar] [CrossRef]
Study | Model Type | Case Study | Regional Focus | Key Findings |
---|---|---|---|---|
Mance et al. (2023), in: Economies (MDPI). [26] | Panel FMOLS, EGLS; Dumitrescu–Hurlin Causality, Impulse Response Functions | Croatia and EU Trading Partners | CEEC RVCs | The VA of Croatian exports is statistically related to the VA of exports from the main EU trading partners: Croatian RVCs are robust and structured around regional production centres. |
Mance et al. (2023), in: Ekonomski Vjesnik. [27] | Panel GMM (Arellano-Bond Estimator), Spearman Rank Correlation | CEECs | RVCs and ICT Integration | ICT adoption positively correlates with efficiency, logistics performance, and cost-effectiveness in regional value chains. |
Li et al. (2023), in: Sustainability (MDPI). [39] | Non-linear Model and Spatial Spill over Effects with Panel Data | Chinese Cities | GVCs | The non-linear impact of GVC participation on regional economic growth in China. A U-shaped relationship and technological innovation as a mediating factor. |
Taguchi & Lar (2024), in: Economies (MDPI). [40] | Panel Vector Auto-Regressive (PVAR) Model | Emerging and Developing Asian Economies | Servicification in GVCs | Investigated how services integrate into GVCs in Asia, highlighting reciprocal interactions between business services and manufacturing. |
Sada & Ikeda (2021), preprint on arXiv. [41] | Network Science Methods | Global | RVCs | Detected regional communities (Europe and the Pacific Rim) in international value-added networks and evaluated economic integration using network science methods. |
This Study | Panel Data Quantile Regression (PDQR) | Croatia | EU RVCs | Captures heterogeneous trade effects across different economic conditions, showing trade integration shifts across economic cycles. |
At Level | At First Difference | |||||||
---|---|---|---|---|---|---|---|---|
With Constant | With Constant and Trend | With Constant | With Constant and Trend | |||||
t-Statistic | Prob. | t-Statistic | Prob. | t-Statistic | Prob. | t-Statistic | Prob. | |
Croatia | 0.3475 | 0.4049 | 0.7528 | 0.2665 | 0.0010 | 0.0000 | 0.0028 | 0.0002 |
Austria | 0.4611 | 0.0634 | 0.7491 | 0.9395 | 0.0005 | 0.0000 | 0.0014 | 0.0099 |
Belgium | 0.4280 | 0.0676 | 0.8052 | 0.8798 | 0.0003 | 0.0000 | 0.0007 | 0.0042 |
Bulgaria | 0.4194 | 0.3770 | 0.8327 | 0.7956 | 0.0013 | 0.0003 | 0.0032 | 0.0006 |
Cyprus | 0.3604 | 0.3161 | 0.8252 | 0.4043 | 0.0014 | 0.0000 | 0.0031 | 0.0067 |
Czech Republic | 0.5940 | 0.2473 | 0.5679 | 0.4768 | 0.0005 | 0.0000 | 0.0025 | 0.0060 |
Denmark | 0.4203 | 0.2873 | 0.7231 | 0.9523 | 0.0002 | 0.0000 | 0.0007 | 0.0038 |
Estonia | 0.4738 | 0.3872 | 0.7595 | 0.7731 | 0.0012 | 0.0002 | 0.0251 | 0.0066 |
Finland | 0.4243 | 0.3132 | 0.6416 | 0.9570 | 0.0002 | 0.0002 | 0.0007 | 0.0132 |
France | 0.4733 | 0.0940 | 0.6769 | 0.3618 | 0.0002 | 0.0001 | 0.0008 | 0.0004 |
Germany | 0.5538 | 0.2055 | 0.5355 | 0.3674 | 0.0002 | 0.0000 | 0.0009 | 0.0002 |
Greece | 0.4605 | 0.1603 | 0.5690 | 0.0526 | 0.0002 | 0.0000 | 0.0010 | 0.0003 |
Hungary | 0.5129 | 0.3382 | 0.6645 | 0.9514 | 0.0003 | 0.0002 | 0.0011 | 0.0414 |
Ireland | 0.4623 | 0.3454 | 0.9399 | 0.8855 | 0.0072 | 0.0014 | 0.0087 | 0.0208 |
Italy | 0.4143 | 0.4692 | 0.7238 | 0.2551 | 0.0007 | 0.0000 | 0.0020 | 0.0003 |
Latvia | 0.4526 | 0.3061 | 0.8060 | 0.8418 | 0.0016 | 0.0005 | 0.0250 | 0.0094 |
Lithuania | 0.5694 | 0.3325 | 0.5354 | 0.6203 | 0.0003 | 0.0000 | 0.0196 | 0.0072 |
Luxembourg | 0.4751 | 0.3988 | 0.9374 | 0.8120 | 0.0112 | 0.0010 | 0.0192 | 0.0023 |
Malta | 0.3139 | 0.0457 | 0.7319 | 0.0441 | 0.0004 | 0.0146 | 0.0135 | 0.0659 |
Netherlands | 0.4243 | 0.4098 | 0.7572 | 0.9827 | 0.0002 | 0.0001 | 0.0007 | 0.0058 |
Poland | 0.6598 | 0.3446 | 0.3686 | 0.9001 | 0.0002 | 0.0011 | 0.0012 | 0.0179 |
Portugal | 0.4913 | 0.0205 | 0.6199 | 0.0188 | 0.0001 | 0.0000 | 0.0146 | 0.0002 |
Romania | 0.4758 | 0.2859 | 0.6956 | 0.9797 | 0.0004 | 0.0000 | 0.0013 | 0.0297 |
Slovakia | 0.6886 | 0.3300 | 0.3698 | 0.8819 | 0.0003 | 0.0010 | 0.0018 | 0.0243 |
Slovenia | 0.5840 | 0.4572 | 0.5777 | 0.2306 | 0.0003 | 0.0000 | 0.0014 | 0.0089 |
Spain | 0.4935 | 0.1365 | 0.7305 | 0.2349 | 0.0005 | 0.0001 | 0.0014 | 0.0003 |
Sweden | 0.5323 | 0.3395 | 0.6078 | 0.9419 | 0.0004 | 0.0001 | 0.0015 | 0.0266 |
Country | Coef. Tau = 0.05 | Coef. Tau = 0.1 | Coef. Tau = 0.15 | Coef. Tau = 0.2 | Coef. Tau = 0.25 |
---|---|---|---|---|---|
D(Austria) | 0.001607 | 0.001606 | 0.001590 | 0.001585 | 0.001575 |
D(Belgium) | 0.000215 | 0.000195 | 0.000186 | 0.000186 | 0.000193 |
D(Bulgaria) | 0.000893 | 0.000531 | 0.000435 | 0.000448 | 0.000440 |
D(Cyprus) | 0.003744 | 0.001003 | 0.000433 | 0.000348 | 0.000305 |
D(Czech Republic) | 0.000623 | 0.000557 | 0.000538 | 0.000716 | 0.000772 |
D(Denmark) | 0.000239 | 0.000216 | 0.000212 | 0.000206 | 0.000207 |
D(Estonia) | 0.001230 | 0.000307 | 0.000149 | 0.000126 | 0.000115 |
D(Finland) | 0.000158 | 0.000147 | 0.000133 | 0.000129 | 0.000140 |
D(France) | 0.000151 | 0.000148 | 0.000141 | 0.000139 | 0.000156 |
D(Germany) | 0.000348 | 0.000357 | 0.000388 | 0.000385 | 0.000389 |
D(Greece) | 0.000763 | 0.000674 | 0.000566 | 0.000618 | 0.000612 |
D(Hungary) | 0.001582 | 0.001487 | 0.001466 | 0.001460 | 0.001456 |
D(Ireland) | 0.000229 | 0.000141 | 0.000161 | 0.000155 | 0.000188 |
D(Italy) | 0.000865 | 0.000862 | 0.000933 | 0.000930 | 0.000946 |
D(Latvia) | 0.000870 | 0.000205 | 0.000135 | 9.72 × 10−5 | 8.38 × 10−5 |
D(Lithuania) | 0.000907 | 0.000247 | 0.000174 | 0.000155 | 0.000146 |
D(Luxembourg) | 0.000860 | 0.000325 | 0.000224 | 0.000203 | 0.000192 |
D(Malta) | 0.004804 | 0.001232 | 0.000825 | 0.000904 | 0.000931 |
D(Netherlands) | 0.000167 | 0.000155 | 0.000149 | 0.000184 | 0.000180 |
D(Poland) | 0.000348 | 0.000266 | 0.000245 | 0.000246 | 0.000240 |
D(Portugal) | 0.000191 | 6.82 × 10−5 | 4.54 × 10−5 | 4.01 × 10−5 | 3.67 × 10−5 |
D(Romania) | 0.000344 | 0.000265 | 0.000205 | 0.000217 | 0.000209 |
D(Slovakia) | 0.001267 | 0.001051 | 0.001018 | 0.001010 | 0.001045 |
D(Slovenia) | 0.010474 | 0.010636 | 0.010571 | 0.010557 | 0.011085 |
D(Spain) | 0.000150 | 0.000127 | 0.000119 | 0.000123 | 0.000120 |
D(Sweden) | 0.000224 | 0.000190 | 0.000181 | 0.000178 | 0.000174 |
Pseudo R-squared | 0.187522 | 0.184090 | 0.189150 | 0.195003 | 0.200646 |
Adjusted R-squared | 0.181595 | 0.178138 | 0.183235 | 0.189130 | 0.194815 |
Prob(Quasi-LR stat) | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Country | Coef. Tau = 0.3 | Coef. Tau = 0.35 | Coef. Tau = 0.4 | Coef. Tau = 0.45 | Coef. Tau = 0.5 |
---|---|---|---|---|---|
D(Austria) | 0.001571 | 0.001607 | 0.001593 | 0.001585 | 0.001784 |
D(Belgium) | 0.000190 | 0.000194 | 0.000203 | 0.000210 | 0.000205 |
D(Bulgaria) | 0.000437 | 0.000440 | 0.000434 | 0.000429 | 0.000423 |
D(Cyprus) | 0.000308 | 0.000300 | 0.000294 | 0.000287 | 0.000281 |
D(Czech Republic) | 0.000768 | 0.000759 | 0.000822 | 0.000847 | 0.000870 |
D(Denmark) | 0.000204 | 0.000200 | 0.000197 | 0.000193 | 0.000263 |
D(Estonia) | 0.000109 | 0.000122 | 0.000116 | 0.000113 | 0.000108 |
D(Finland) | 0.000137 | 0.000172 | 0.000168 | 0.000164 | 0.000159 |
D(France) | 0.000155 | 0.000177 | 0.000170 | 0.000165 | 0.000168 |
D(Germany) | 0.000393 | 0.000401 | 0.000391 | 0.000413 | 0.000402 |
D(Greece) | 0.000610 | 0.000665 | 0.000661 | 0.000690 | 0.000686 |
D(Hungary) | 0.001539 | 0.001557 | 0.001762 | 0.001778 | 0.002092 |
D(Ireland) | 0.000204 | 0.000248 | 0.000245 | 0.000242 | 0.000259 |
D(Italy) | 0.000945 | 0.001038 | 0.001061 | 0.001057 | 0.001051 |
D(Latvia) | 7.72 × 10−5 | 7.96 × 10−5 | 9.34 × 10−5 | 8.79 × 10−5 | 8.28 × 10−5 |
D(Lithuania) | 0.000162 | 0.000161 | 0.000173 | 0.000193 | 0.000189 |
D(Luxembourg) | 0.000187 | 0.000175 | 0.000166 | 0.000158 | 0.000152 |
D(Malta) | 0.000942 | 0.000946 | 0.000949 | 0.000955 | 0.000986 |
D(Netherlands) | 0.000185 | 0.000175 | 0.000224 | 0.000244 | 0.000240 |
D(Poland) | 0.000256 | 0.000247 | 0.000284 | 0.000275 | 0.000266 |
D(Portugal) | 3.47 × 10−5 | 3.47 × 10−5 | 3.08 × 10−5 | 2.73 × 10−5 | 2.27 × 10−5 |
D(Romania) | 0.000223 | 0.000210 | 0.000200 | 0.000222 | 0.000281 |
D(Slovakia) | 0.001056 | 0.001080 | 0.001215 | 0.001280 | 0.001396 |
D(Slovenia) | 0.011080 | 0.011066 | 0.011742 | 0.011799 | 0.011785 |
D(Spain) | 0.000119 | 0.000113 | 0.000109 | 0.000122 | 0.000148 |
D(Sweden) | 0.000191 | 0.000184 | 0.000179 | 0.000188 | 0.000182 |
Pseudo R-squared | 0.205871 | 0.210892 | 0.215829 | 0.220629 | 0.225338 |
Adjusted R-squared | 0.200077 | 0.205135 | 0.210109 | 0.214943 | 0.219687 |
Prob(Quasi-LR stat) | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Country | Coef. Tau = 0.55 | Coef. Tau = 0.6 | Coef. Tau = 0.65 | Coef. Tau = 0.7 | Coef. Tau = 0.75 |
---|---|---|---|---|---|
D(Austria) | 0.001770 | 0.002026 | 0.002015 | 0.002105 | 0.002152 |
D(Belgium) | 0.000200 | 0.000234 | 0.000223 | 0.000292 | 0.000318 |
D(Bulgaria) | 0.000436 | 0.000500 | 0.000492 | 0.000481 | 0.000468 |
D(Cyprus) | 0.000383 | 0.000372 | 0.000332 | 0.000276 | 0.000320 |
D(Czech Republic) | 0.000850 | 0.000827 | 0.000989 | 0.000977 | 0.000970 |
D(Denmark) | 0.000280 | 0.000265 | 0.000259 | 0.000269 | 0.000259 |
D(Estonia) | 0.000152 | 0.000147 | 0.000148 | 0.000148 | 0.000148 |
D(Finland) | 0.000194 | 0.000174 | 0.000167 | 0.000162 | 0.000156 |
D(France) | 0.000163 | 0.000148 | 0.000173 | 0.000175 | 0.000167 |
D(Germany) | 0.000394 | 0.000496 | 0.000528 | 0.000520 | 0.000515 |
D(Greece) | 0.000687 | 0.000678 | 0.000672 | 0.000748 | 0.000743 |
D(Hungary) | 0.002112 | 0.002079 | 0.002071 | 0.002059 | 0.002049 |
D(Ireland) | 0.000255 | 0.000243 | 0.000239 | 0.000250 | 0.000420 |
D(Italy) | 0.001096 | 0.001073 | 0.001065 | 0.001153 | 0.001262 |
D(Latvia) | 7.52 × 10−5 | 7.40 × 105 | 5.57 × 10−5 | 6.21 × 10−5 | 2.44 × 10−5 |
D(Lithuania) | 0.000186 | 0.000176 | 0.000256 | 0.000259 | 0.000311 |
D(Luxembourg) | 0.000145 | 0.000123 | 0.000135 | 0.000111 | 8.06 × 10−5 |
D(Malta) | 0.000973 | 0.000984 | 0.001282 | 0.001197 | 0.001051 |
D(Netherlands) | 0.000236 | 0.000221 | 0.000204 | 0.000196 | 0.000255 |
D(Poland) | 0.000278 | 0.000250 | 0.000266 | 0.000409 | 0.000400 |
D(Portugal) | 1.92 ∙ 10−5 | 2.52 × 10−5 | 1.91 × 10−5 | 1.70 × 10−5 | 7.17 × 10−6 |
D(Romania) | 0.000297 | 0.000279 | 0.000275 | 0.000260 | 0.000243 |
D(Slovakia) | 0.001723 | 0.001670 | 0.001637 | 0.001761 | 0.001753 |
D(Slovenia) | 0.012971 | 0.012944 | 0.013086 | 0.013071 | 0.013055 |
D(Spain) | 0.000167 | 0.000156 | 0.000154 | 0.000147 | 0.000145 |
D(Sweden) | 0.000236 | 0.000241 | 0.000234 | 0.000229 | 0.000263 |
Pseudo R-squared | 0.229858 | 0.234731 | 0.239445 | 0.243721 | 0.247213 |
Adjusted R-squared | 0.224240 | 0.229149 | 0.233896 | 0.238204 | 0.241721 |
Prob(Quasi-LR stat) | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Country | Coef. Tau = 0.8 | Coef. Tau = 0.85 | Coef. Tau = 0.9 | Coef. Tau = 0.95 | Coef. Tau = 0.99 |
---|---|---|---|---|---|
D(Austria) | 0.002089 | 0.002062 | 0.002054 | 0.002146 | 0.002636 |
D(Belgium) | 0.000292 | 0.000290 | 0.000290 | 0.000332 | 0.000513 |
D(Bulgaria) | 0.000428 | 0.000599 | 0.000762 | 0.001216 | −0.002773 |
D(Cyprus) | 0.000109 | 0.001016 | 0.002018 | 0.006960 | −0.024002 |
D(Czech Republic) | 0.000932 | 0.000858 | 0.000646 | 0.000705 | 0.001378 |
D(Denmark) | 0.000235 | 0.000239 | 0.000259 | 0.000312 | 0.000707 |
D(Estonia) | 7.79 × 10−5 | 0.000146 | 0.000349 | 0.001032 | 0.005707 |
D(Finland) | 0.000132 | 0.000124 | 0.000143 | 0.000203 | 0.000503 |
D(France) | 0.000138 | 0.000130 | 0.000126 | 0.000142 | 0.000197 |
D(Germany) | 0.000610 | 0.000593 | 0.000582 | 0.000592 | 0.000395 |
D(Greece) | 0.000726 | 0.000732 | 0.000783 | 0.001053 | 0.002905 |
D(Hungary) | 0.002038 | 0.002015 | 0.002039 | 0.002324 | 0.002827 |
D(Ireland) | 0.000375 | 0.000333 | 0.000218 | 0.000198 | −0.000658 |
D(Italy) | 0.001380 | 0.001365 | 0.001353 | 0.001317 | 0.001170 |
D(Latvia) | −0.000165 | −0.000185 | −0.000276 | 0.001102 | −0.006205 |
D(Lithuania) | 0.005827 | 0.004153 | 0.000749 | 0.002414 | 0.004107 |
D(Luxembourg) | 2.84 × 105 | −2.02 × 10−5 | 0.000357 | −0.000463 | 0.002673 |
D(Malta) | 0.001408 | 0.001304 | 0.001934 | 0.005026 | −0.025321 |
D(Netherlands) | 0.000212 | 0.000216 | 0.000230 | 0.000238 | 0.000315 |
D(Poland) | 0.000322 | 0.000299 | 0.000308 | 0.000392 | 6.08 × 10−5 |
D(Portugal) | 2.31 × 10−6 | −2.81 × 10−5 | −8.52 × 10−5 | 0.000729 | −0.001174 |
D(Romania) | 0.000210 | 0.000208 | 0.000232 | 0.000392 | −0.001334 |
D(Slovakia) | 0.002642 | 0.006093 | 0.008709 | 0.004902 | 0.003961 |
D(Slovenia) | 0.014314 | 0.014315 | 0.014386 | 0.014833 | 0.017532 |
D(Spain) | 0.000123 | 0.000210 | 0.000237 | 0.000289 | 0.000839 |
D(Sweden) | 0.000225 | 0.000213 | 0.000196 | 0.002146 | 0.000479 |
Pseudo R-squared | 0.249299 | 0.248090 | 0.239587 | 0.208549 | 0.101474 |
Adjusted R-squared | 0.243822 | 0.242604 | 0.234040 | 0.202775 | 0.094919 |
Prob(Quasi-LR stat) | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mance, D.; Šekimić, D.; Debelić, B. Croatia’s Economic Integration in EU’s Regional Supply Chains: Panel Data Quantile Regression. Logistics 2025, 9, 48. https://doi.org/10.3390/logistics9020048
Mance D, Šekimić D, Debelić B. Croatia’s Economic Integration in EU’s Regional Supply Chains: Panel Data Quantile Regression. Logistics. 2025; 9(2):48. https://doi.org/10.3390/logistics9020048
Chicago/Turabian StyleMance, Davor, Dora Šekimić, and Borna Debelić. 2025. "Croatia’s Economic Integration in EU’s Regional Supply Chains: Panel Data Quantile Regression" Logistics 9, no. 2: 48. https://doi.org/10.3390/logistics9020048
APA StyleMance, D., Šekimić, D., & Debelić, B. (2025). Croatia’s Economic Integration in EU’s Regional Supply Chains: Panel Data Quantile Regression. Logistics, 9(2), 48. https://doi.org/10.3390/logistics9020048