Comparative Assessment of Antibiotic Residues Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS) and a Rapid Screening Test in Raw Milk Collected from the North-Central Algerian Dairies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Sampling
2.2. Titratable Acidity and Milk-Fat Level Measurements
2.3. Procedure Applied for the Screening of Antibiotic Residues in Milk
2.4. BetaStar® Combo Screening Method
2.5. Quantitative LC-MS/MS Methodology
2.5.1. Chemicals and Reagents
2.5.2. Preparation of Standards
2.5.3. Milk Samples Preparation
2.5.4. LC-MS/MS Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Detection of Antibiotic Residues by BetaStar® Combo and LC-MS/MS
3.1.1. Antibiotic Residue Screening by BetaStar® Combo
3.1.2. Antimicrobial Residue Detection by LC-MS/MS
3.2. Sensitivity and Specificity of the BetaStar® Combo Test Compared to LC-MS/MS Results
LC-MS/MS Positivity (Total) | Total | Chi-Square Tests Value | Sig. | ||||
---|---|---|---|---|---|---|---|
Negative 1 | Positive 2 | ||||||
BetaStar® Combo total | Negative 1 | within LC-MS/MS | 17 a (65.4%) | 1 b (3.8%) | 18 (34.6%) | 21.75 | 0.000 |
Positive 2 | within LC-MS/MS | 9 a (34.6%) | 25 b (96.2%) | 34 (65.4%) | |||
Total | 26 | 26 | 52 | ||||
Total BetaStar® Combo Sensitivity | 96.2% | ||||||
Total BetaStar® Combo Specificity | 65.4% | ||||||
BetaStar® Combo total in Company A | Negative 1 | within LC-MS/MS | 4 a (57.1%) | 1 a (14.3%) | 5 (35.7%) | 2.80 | 0.094 |
Positive 2 | within LC-MS/MS | 3 a (42.9%) | 6 a (85.7%) | 9 (64.3%) | |||
Total | 7 | 7 | 14 | ||||
Total BetaStar® Combo Sensitivity | 85.7% | ||||||
Total BetaStar® Combo Specificity | 57.1% | ||||||
BetaStar® Combo total in Company B | Negative 1 | within LC-MS/MS | 8 a (100%) | 0 b (0.0%) | 8 (57.1%) | 14.00 | 0.000 |
Positive 2 | within LC-MS/MS | 0 a (0.0%) | 6 b (100%) | 6 (42.9%) | |||
Total | 8 | 6 | 14 | ||||
Total BetaStar® Combo Sensitivity | 100% | ||||||
Total BetaStar® Combo Specificity | 100% | ||||||
BetaStar® Combo total in Company C | Negative 1 | within LC-MS/MS | 5 a (45.5%) | 0 b (0.0%) | 5 (20.8%) | 7.46 | 0.006 |
Positive 2 | within LC-MS/MS | 6 a (54.5%) | 13 b (100%) | 19 (79.2%) | |||
Total | 11 | 13 | 24 | ||||
Total BetaStar® Combo Sensitivity | 100% | ||||||
Total BetaStar® Combo Specificity | 45.5% |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meklati, F.R.; Meribai, A.; Yezli, N.; Ben-Mahdi, M.H. State of Play of the Dairy Sector in Algeria: Between Objectives and Dependencies: An Overview. CAB Rev. 2020, 15, 1–8. [Google Scholar] [CrossRef]
- Hamiroune, M.; Berber, A.; Boubekeur, S. Évaluation de La Qualité Bactériologique Du Lait Cru Bovin à Divers Stades de La Chaîne de Production Laitière Dans Des Fermes En Algérie: -EN- Evaluation of the Bacteriological Quality of Raw Cow’s Milk at Various Stages of the Milk Production Chain on Farms in Algeria —FR—ES— Evaluación de La Calidad Bacteriológica de La Leche Bovina Cruda En Diversas Etapas de La Cadena de Producción Lechera de Explotaciones Argelinas. Rev. Sci. Tech. OIE 2016, 35, 925–946. [Google Scholar] [CrossRef] [Green Version]
- Groot, M.J.; van’t Hooft, K.E. The Hidden Effects of Dairy Farming on Public and Environmental Health in the Netherlands, India, Ethiopia, and Uganda, Considering the Use of Antibiotics and Other Agro-Chemicals. Front. Public Health 2016, 4, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensah, S.E.P.; Koudandé, O.D.; Sanders, P.; Laurentie, M.; Mensah, G.A.; Abiola, F.A. Antimicrobial Residues in Foods of Animal Origin in Africa: Public Health Risks. Rev. Sci. Tech. OIE 2014, 33, 987–996. [Google Scholar]
- Conseil Général de l’Alimentation, de l’Agriculture et des Espaces Ruraux (CGAAER). Jumelage Européen Avec Les Services Vétérinaires Algériens. Available online: https://agriculture.gouv.fr/jumelage-europeen-avec-les-services-veterinaires-algeriens (accessed on 9 April 2021).
- Titouche, Y.; Hakem, A.; Houali, K.; Meheut, T.; Vingadassalon, N.; Ruiz-Ripa, L.; Salmi, D.; Chergui, A.; Chenouf, N.; Hennekinne, J.A.; et al. Emergence of Methicillin-Resistant Staphylococcus Aureus (MRSA) ST8 in Raw Milk and Traditional Dairy Products in the Tizi Ouzou Area of Algeria. J. Dairy Sci. 2019, 102, 6876–6884. [Google Scholar] [CrossRef]
- Menkem, Z.E.; Ngangom, B.L.; Tamunjoh, S.S.A.; Boyom, F.F. Antibiotic Residues in Food Animals: Public Health Concern. Acta Ecol. Sin. 2019, 39, 411–415. [Google Scholar] [CrossRef]
- Darwish, W.S.; Eldaly, E.A.; El-Abbasy, M.T.; Ikenaka, Y.; Nakayama, S.; Ishizuka, M. Antibiotic Residues in Food: The African Scenario. Jpn. J. Vet. Res. 2013, 61, S13–S22. [Google Scholar] [CrossRef]
- Barton, M.D. Antibiotic Use in Animal Feed and Its Impact on Human Healt. Nutr. Res. Rev. 2000, 13, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Fischer, W.J.; Schilter, B.; Tritscher, A.M.; Stadler, R.H. Contaminants of Milk and Dairy Products: Contamination Resulting from Farm and Dairy Practices. In Encyclopedia of Dairy Sciences; Elsevier: Amsterdam, The Netherlands, 2016; pp. 809–821. ISBN 978-0-12-818767-8. [Google Scholar]
- Gajda, A.; Nowacka-Kozak, E.; Gbylik-Sikorska, M.; Posyniak, A. Tetracycline Antibiotics Transfer from Contaminated Milk to Dairy Products and the Effect of the Skimming Step and Pasteurisation Process on Residue Concentrations. Food Addit. Contam. Part A 2018, 35, 66–76. [Google Scholar] [CrossRef]
- Journal Officiel de la Republique Algérienne. Arrêté Interministériel Du 15 Ramadhan 1437 Correspondant Au 20 Juin 2016 Fixant Les Listes Ainsi Que Les Limites Maximales de Résidus de Médicaments Vétérinaires Ou de Substances Pharmacologiquement Actives Tolérées Dans Les Denrées Alimentaires d’origine Animale. Available online: http://www.joradp.dz/FTP/JO-FRANCAIS/2016/F2016068.pdf (accessed on 4 May 2021).
- Codex Alimentarius Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Foods CX/MRL 2-2018. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXM%2B2%252FMRL2e.pdf (accessed on 4 May 2021).
- Debeche, E.H.; Ghozlane, F.; Madani, T. Importance of Some Antibiotic Residues in Cow’s Milk in Algeria. Case of the M’sila Wilaya. Livest. Res. Rural Dev. 2018, 30, 101. [Google Scholar]
- Baazize-Ammi, D.; Dechicha, A.S.; Tassist, A.; Gharbi, I.; Hezil, N.; Kebbal, S.; Morsli, W.; Beldjoudi, S.; Saadaoui, M.R.; Guetarni, D. Recherche et Quantification Des Résidus d’antibiotiques Dans Le Muscle Du Poulet de Chair et Dans Le Lait Dans La Région Centre d’Algérie: -EN- Screening and Quantification of Antibiotic Residues in Broiler Chicken Meat and Milk in the Central Region of Algeria —FR—ES— Detección y Cuantificación de Residuos de Antibióticos En Tejido Muscular de Pollos Asaderos y En Leche de La Región Central de Argelia. Rev. Sci. Tech. OIE 2020, 38, 863–877. [Google Scholar] [CrossRef]
- Aggad, H.; Mahouz, F.; Ammar, Y.A.; Kihal, M. Assessment of Milk Hygienic Quality in Western Algeria. Rev. Méd. Vét. 2009, 160, 590–595. [Google Scholar]
- Mimoune, N.; Seddiki, S.; Baazizi, R.; Saboundji, I.E.; Saidi, R.; Khelef, D.; Kaidi, R. Antibiotic Residues in Cow’s Milk. Vet. Stanica 2021, 52, 499–509. [Google Scholar] [CrossRef]
- Ghidini, S.; Zanardi, E.; Varisco, G.; Chizzolini, R. Residues of β-Lactam Antibiotics in Bovine Milk: Confirmatory Analysis by Liquid Chromatography Tandem Mass Spectrometry after Microbial Assay Screening. Food Addit. Contam. 2003, 20, 528–534. [Google Scholar] [CrossRef]
- Mirecki, S.; Nikolić, N. Influence of Preservative Concentration, PH Value and Fat Content in Raw Milk at Detection Limit of Microbial Inhibitor Tests (Delvotest® Accelerator) for Amoxicillin and Oxytetracycline. Food Anal. Methods 2016, 9, 2864–2871. [Google Scholar] [CrossRef]
- Alija, G.; Hajrulai-Musliu, Z.; Uzunov, R. Development and Validation of Confirmatory LC–MS/MS Method for Multi-Residue Analysis of Antibiotic Drugs in Bovine Milk. SN Appl. Sci. 2020, 2, 1563. [Google Scholar] [CrossRef]
- Schwaiger, B.; König, J.; Lesueur, C. Development and Validation of a Multi-Class UHPLC-MS/MS Method for Determination of Antibiotic Residues in Dairy Products. Food Anal. Methods 2018, 11, 1417–1434. [Google Scholar] [CrossRef] [Green Version]
- Jank, L.; Martins, M.T.; Arsand, J.B.; Hoff, R.B.; Barreto, F.; Pizzolato, T.M. High-Throughput Method for the Determination of Residues of β-Lactam Antibiotics in Bovine Milk by LC-MS/MS. Food Addit. Contam. Part A 2015, 32, 1992–2001. [Google Scholar] [CrossRef]
- Reybroeck, W.; Ooghe, S. Validation of the Βeta-Star Combo for Fast Screening of Raw Milk on the Presence of β-Lactam Antibiotics and Tetracyclines; Board of the EuroResidue Conferences Foundation: Egmond aan Zee, The Netherlands, 2012; pp. 557–562. [Google Scholar]
- Beltrán, M.C.; Althaus, R.L.; Berruga, M.I.; Molina, A.; Molina, M.P. Detection of Antibiotics in Sheep Milk by Receptor-Binding Assays. Int. Dairy J. 2014, 34, 184–189. [Google Scholar] [CrossRef]
- Pazzola, M.; Piras, G.; Noce, A.; Dettori, M.L.; Vacca, G.M. Evaluation of the Rapid Assay Betastar Combo 3.0 for the Detection of Penicillin, Amoxicillin, Cefazolin and Oxytetracycline in Individual Sheep Milk. Small Rumin. Res. 2015, 124, 127–131. [Google Scholar] [CrossRef]
- Beltrán, M.C.; Borràs, M.; Nagel, O.; Althaus, R.L.; Molina, M.P. Validation of Receptor-Binding Assays to Detect Antibiotics in Goat’s Milk. J. Food Prot. 2014, 77, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Association Française de Normalisation (AFNOR Editions). NF V04-206:1969 Milk- Determination of Titratable Acidity. Available online: https://viewerbdc.afnor.org/html/display/TfyHAmZCF1w1 (accessed on 15 January 2016).
- Association Française de Normalisation (AFNOR Editions). NF V04-210: 2000 Milk—Determination of Fat Content—Acido-Butyrometric (Gerber Method). Available online: https://infostore.saiglobal.com/en-us/standards/nfv-04-210-2000-56432_saig_afnor_afnor_121544/ (accessed on 10 January 2016).
- Chen, M.; Wen, F.; Wang, H.; Zheng, N.; Wang, J. Effect of Various Storage Conditions on the Stability of Quinolones in Raw Milk. Food Addit. Contam. Part A 2016, 33, 1147–1154. [Google Scholar] [CrossRef]
- Gbylik-Sikorska, M.; Gajda, A.; Nowacka-Kozak, E.; Posyniak, A. The “Force” of Cloxacillin Residue Will Be with You in Various Dairy Products – The Last Experimental Evidence. Food Control. 2021, 121, 107628. [Google Scholar] [CrossRef]
- Commission Decision 2002/657/EC. Commission Decision of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results. Off. J. Eur. Union 2002, 221, 8–36. [Google Scholar]
- Europe Commission. Regulation 37/2010. Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. Off. J. Eur. Union 2010, 15, 1–72. [Google Scholar]
- Hou, X.-L.; Wu, Y.-L.; Lv, Y.; Xu, X.-Q.; Zhao, J.; Yang, T. Development and Validation of an Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry Method for Determination of 10 Cephalosporins and Desacetylcefapirin in Milk. J. Chromatogr. B 2013, 931, 6–11. [Google Scholar] [CrossRef]
- Dasenaki, M.E.; Thomaidis, N.S. Multi-Residue Determination of 115 Veterinary Drugs and Pharmaceutical Residues in Milk Powder, Butter, Fish Tissue and Eggs Using Liquid Chromatography–Tandem Mass Spectrometry. Anal. Chim. Acta 2015, 880, 103–121. [Google Scholar] [CrossRef] [PubMed]
- Grunwald, L.; Petz, M. Food Processing Effects on Residues: Penicillins in Milk and Yoghurt. Anal. Chim. Acta 2003, 483, 73–79. [Google Scholar] [CrossRef]
- Barreca, S.; Forni, C.; Colzani, L.; Clerici, L.; Daverio, D.; Dellavedova, P. Study on the Stability of Antibiotics, Pesticides and Drugs in Water by Using a Straightforward Procedure Applying HPLC-Mass Spectrometric Determination for Analytical Purposes. Separations 2021, 8, 179. [Google Scholar] [CrossRef]
- Bilandžić, N.; Kolanović, B.S.; Varenina, I.; Scortichini, G.; Annunziata, L.; Brstilo, M.; Rudan, N. Veterinary Drug Residues Determination in Raw Milk in Croatia. Food Control 2011, 22, 1941–1948. [Google Scholar] [CrossRef]
- Pogurschi, E.; Ciric, A.; Zugrav, C.; Patrascu, D. Identification of Antibiotic Residues in Raw Milk Samples Coming from the Metropolitan Area of Bucharest. Agric. Agric. Sci. Procedia 2015, 6, 242–245. [Google Scholar] [CrossRef] [Green Version]
- Ben-Mahdi, M.H.; Ouslimani, S. Mise En Évidence de Résidus d’antibiotiques Dans Le Lait de Vache Produit Dans l’Algérois. Eur. J. Sci. Res. 2009, 36, 357–362. [Google Scholar]
- Titouche, Y.; Houali, K.; Yabrir, B.; Malki, O.; Chergui, A.; Chenouf, N.; Yahiaoui, S.; Labiad, M.; Ghenim, H.; Kechih-Bounar, S. Detection of Antibiotics Residues in Raw Milk Produced in Freha Area (Tizi-Ouzou), Algeria. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Vet. Med. 2013, 70, 83–87. [Google Scholar] [CrossRef]
- Layada, S.; Benouareth, D.-E.; Coucke, W.; Andjelkovic, M. Assessment of Antibiotic Residues in Commercial and Farm Milk Collected in the Region of Guelma (Algeria). Food Contam. 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Riediker, S.; Diserens, J.-M.; Stadler, R.H. Analysis of β-Lactam Antibiotics in Incurred Raw Milk by Rapid Test Methods and Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry. J. Agric. Food Chem. 2001, 49, 4171–4176. [Google Scholar] [CrossRef]
- Chen, J.; Ying, G.-G.; Deng, W.-J. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef] [PubMed]
- Sachi, S.; Ferdous, J.; Sikder, M.; Hussani, S. Antibiotic Residues in Milk: Past, Present, and Future. J. Adv. Vet. Anim Res. 2019, 6, 315. [Google Scholar] [CrossRef] [PubMed]
- Rama, A.; Lucatello, L.; Benetti, C.; Galina, G.; Bajraktari, D. Assessment of Antibacterial Drug Residues in Milk for Consumption in Kosovo. J. Food Drug Anal. 2017, 25, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Cobirka, M.; Tancin, V.; Slama, P. Epidemiology and Classification of Mastitis. Animals 2020, 10, 2212. [Google Scholar] [CrossRef]
- Khanal, B.K.S.; Sadiq, M.B.; Singh, M.; Anal, A.K. Screening of Antibiotic Residues in Fresh Milk of Kathmandu Valley, Nepal. J. Environ. Sci. Health Part B 2018, 53, 57–86. [Google Scholar] [CrossRef]
- Baynes, R.E.; Dedonder, K.; Kissell, L.; Mzyk, D.; Marmulak, T.; Smith, G.; Tell, L.; Gehring, R.; Davis, J.; Riviere, J.E. Health Concerns and Management of Select Veterinary Drug Residues. Food Chem. Toxicol. 2016, 88, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiesa, L.M.; DeCastelli, L.; Nobile, M.; Martucci, F.; Mosconi, G.; Fontana, M.; Castrica, M.; Arioli, F.; Panseri, S. Analysis of Antibiotic Residues in Raw Bovine Milk and Their Impact toward Food Safety and on Milk Starter Cultures in Cheese-Making Process. LWT 2020, 131, 109783. [Google Scholar] [CrossRef]
- Tasci, F.; Canbay, H.S.; Doganturk, M. Determination of Antibiotics and Their Metabolites in Milk by Liquid Chromatography-Tandem Mass Spectrometry Method. Food Control 2021, 127, 108147. [Google Scholar] [CrossRef]
- Al-Mazeedi, H.M.; Abbas, A.B.; Alomirah, H.F.; Al-Jouhar, W.Y.; Al-Mufty, S.A.; Ezzelregal, M.M.; Al-Owaish, R.A. Screening for Tetracycline Residues in Food Products of Animal Origin in the State of Kuwait Using Charm II Radio-Immunoassay and LC/MS/MS Methods. Food Addit. Contam. Part A 2010, 27, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; El Zowalaty, M.E.; Lundkvist, Å.; Järhult, J.D.; Khan Nayem, M.R.; Tanzin, A.Z.; Badsha, M.R.; Khan, S.A.; Ashour, H.M. Residual Antimicrobial Agents in Food Originating from Animals. Trends Food Sci. Technol. 2021, 111, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Han, R.-W.; Yu, Z.-N.; Zhen, T.-Y.; Wang, J. Survey of Veterinary Drug Residues in Raw Milk in Hebei Province, China. J. Food Prot. 2017, 80, 1890–1896. [Google Scholar] [CrossRef]
- Orwa, J.D.; Matofari, J.W.; Muliro, P.S.; Lamuka, P. Assessment of Sulphonamides and Tetracyclines Antibiotic Residue Contaminants in Rural and Peri Urban Dairy Value Chains in Kenya. Food Contam. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.J.; Ongerth, J.E. Estimation of Pharmaceutical Residues in Primary and Secondary Sewage Sludge Based on Quantities of Use and Fugacity Modelling. Water Sci. Technol. 2002, 46, 105–113. [Google Scholar] [CrossRef]
- Barreca, S.; Busetto, M.; Forni, C.; Colzani, L.; Clerici, L.; Daverio, D.; Balzamo, S.; Calabretta, E.; Peleggi, M.; Dellavedova, P. Determination of Antibiotics, Pesticides, Herbicides, Fungicides and Hormones in Water Bodies in Italy in Occurrence with European Watch List Mechanism by Using an UHPLC-MS/MS System: Method Validation, Quantification and Evaluations. Pollutants 2021, 1, 17. [Google Scholar] [CrossRef]
- Arsalan, A.; Ahmad, I.; Ali, S.A. Cefaclor: Clinical, Biochemical, Analytical and Stability Aspects. Adv. Med. Biol. 2017, 123, 1–52. [Google Scholar]
- Neuman, M.G.; Cohen, L.B.; Nanau, R.M. Quinolones-Induced Hypersensitivity Reactions. Clin. Biochem. 2015, 48, 716–739. [Google Scholar] [CrossRef]
- Gemeda, B.A.; Amenu, K.; Magnusson, U.; Dohoo, I.; Hallenberg, G.S.; Alemayehu, G.; Desta, H.; Wieland, B. Antimicrobial Use in Extensive Smallholder Livestock Farming Systems in Ethiopia: Knowledge, Attitudes, and Practices of Livestock Keepers. Front. Vet. Sci. 2020, 7, 55. [Google Scholar] [CrossRef]
- Dognon, S.R.; Antoine-Moussiaux, N.; Douny, C.; Gustin, P.; Moula, N.; Scippo, M.L.; Youssao, A.K.I. The Use of Antibiotics in Cattle in North-East Benin: Pharmaceutical Inventory and Risk Practices of Cattle Breeders. Trop. Anim. Health Prod. 2018, 50, 1683–1699. [Google Scholar] [CrossRef]
- Moats, W.A. Confirmatory Test Results on Milk from Commercial Sources That Tested Positive by SS-Lactam Antibiotics Screening Tests. J. AOAC Int. 1999, 82, 1071–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reybroeck, W.; Ooghe, S.; De Brabander, H.F.; Daeseleire, E. Validation of the Βeta-s.t.a.r. 1 + 1 for Rapid Screening of Residues of β-Lactam Antibiotics in Milk. Food Addit. Contam. Part A 2010, 27, 1084–1095. [Google Scholar] [CrossRef]
- Raspor Lainšček, P.; Biasizzo, M.; Henigman, U.; Dolenc, J.; Kirbiš, A. Implementation of the Bacillus Cereus Microbiological Plate Used for the Screening of Tetracyclines in Raw Milk Samples with STAR Protocol—the Problem with False-Negative Results Solved. Food Addit. Contam. Part A 2014, 31, 1840–1849. [Google Scholar] [CrossRef]
- Neuvonen, P.J. Interactions with the Absorption of Tetracyclines. Drugs 1976, 11, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Heller, D.N.; Kaplan, D.A.; Rummel, N.G.; von Bredow, J. Identification of Cephapirin Metabolites and Degradants in Bovine Milk by Electrospray Ionization−Ion Trap Tandem Mass Spectrometry. J. Agric. Food Chem. 2000, 48, 6030–6035. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.; Jiang, Y.; Du, Z. Rapid and Simultaneous Determination of Amoxicillin, Penicillin G, and Their Major Metabolites in Bovine Milk by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. B 2011, 879, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Tyl, C.; Sadler, G.D. PH and Titratable Acidity. In Food Analysis; Springer: Cham, Switzerland, 2017; pp. 389–406. [Google Scholar]
- Renhe, I.R.T.; Perrone, Í.T.; Tavares, G.M.; Schuck, P.; de Carvalho, A.F. Physicochemical Characteristics of Raw Milk. In Raw milk: Balance Between Hazarads and Benefits; Academic Press: London, UK, 2019; pp. 29–43. [Google Scholar]
- Özkan Gülzari, Ş.; Owade, J.O.; Ndambi, O.A. A Review of Interventions and Parameters Used to Address Milk Quality in Eastern and Southern Africa. Food Control 2020, 116, 107300. [Google Scholar] [CrossRef]
- Nouws, J.F.M.; Loeffen, G.; Schouten, J.; Van Egmond, H.; Keukens, H.; Stegeman, H. Testing of Raw Milk for Tetracycline Residues. J. Dairy Sci. 1998, 81, 2341–2345. [Google Scholar] [CrossRef]
- Ouchene-Khelifi, N.; Ouchene, N.; Khelef, D. Physicochemical Properties of Dairy Cow Feed Rations in Blida, a Region in Northern Algeria. J. Elem. 2018, 23, 447–457. [Google Scholar] [CrossRef]
- Grooms, D.L.; Norby, B.; Grooms, K.E.; Jagodzinski, E.N.; Erskine, R.J.; Halbert, L.W.; Coetzee, J.F.; Wulf, L.; Rice, J.A. Short Communication: Use of the BetaStar Plus Assay for Detection of Ceftiofur Antimicrobial Residues in Milk from Individual Cows Following Intramammary Treatment for Mastitis. J. Dairy Sci. 2015, 98, 6270–6277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | Substance | MRL (µg/kg) * | Limit of Detection Beta Star Combo (µg/kg) ** | Limit of Detection LC-MS/MS (µg/kg) |
---|---|---|---|---|
Penicillins | Penicillin V | – | – | 1 |
Benzylpenicillin | 4 | 4 | 1 | |
Ampicillin | 4 | 4 | 1 | |
Amoxicillin | 4 | 4 | 1 | |
Oxacillin | 30 | 5 | 1 | |
Cloxacillin | 30 | 5 | 1 | |
Dicloxacillin | 30 | 6 | 1.5 | |
Nafcillin | 30 | 12 | – | |
Cefalosporines | Ceftiofur | 100 | 90 | 15 |
Desfuroylceftiofur | 100 | 1000 | – | |
Cefquinome | 20 | 8 | 3.5 | |
Cefazolin | 50 | 40 | 2.5 | |
Cephapirin | 60 | 9 | 5 | |
Desacetylcephapirin | 60 | 3 | – | |
Cefacetrile | 125 | 40 | – | |
Cefoperazone | 50 | 8 | 5 | |
Cefalexin | 100 | 700 | 2 | |
Cefalonium | 20 | 5 | 2 | |
Tetracyclines | Tetracycline | 100 | 100 | 1.7 |
Oxytetracycline | 100 | 100 | 1.7 | |
Chlortetracycline | 100 | 35 | 1.7 | |
Doxycycline | – | 14 | 1.7 |
Algerian Dairy Company | Company A (Algiers) | Company B (Boumerdes) | Company C (Blida) | Total | |||
---|---|---|---|---|---|---|---|
Samples screened by BetaStar® Combo | Total | 186 | 140 | 119 | 445 | ||
Positive | Total | 9 (4.84%) | 6 (4.29%) | 19 (16.0%) | 34 (7.64%) | ||
to β-lactams (Sum) | 9 (100%) | 6 (100%) | 16 * (84.2%) | 31 * (91.2%) | |||
Only to β-lactams | 9 (100%) | 6 (100%) | 12 (63.2%) | 27 (79.4%) | |||
to tetracyclines (Sum) | - | - | 7 * (36.8%) | 7 * (20.6%) | |||
Only to tetracyclines | - | - | 3 (15.8%) | 3 (8.82%) | |||
to β-lactams and tetracyclines | - | - | 4 (21.1%) | 4 (11.8%) | |||
Negative | 177 (95.2%) | 134 (95.7%) | 100 (84.0%) | 411 (92.4%) | |||
Samples screened by BetaStar® Combo and assessed by LC-MS/MS | Total | 14 | 14 | 24 | 52 | ||
Positive ** | 9 (64.3%) | 6 (42.9%) | 19 (79.2%) | 34 (65.4%) | |||
Negative *** | 5 (35.7%) | 8 (57.1%) | 5 (20.8%) | 18 (34.6%) | |||
Samples screened by LC-MS/MS | Residue presence | Total | 14 (100%) | 12 (85.7%) | 21 (87.5%) | 47 (90.4%) | |
Positive (>MRL) | 7 (50.0%) | 6 (50.0%) | 13 (61.9%) | 26 (55.3%) | |||
Negative (≤MRL) | 7 (50.0%) | 6 (50.0%) | 8 (38.1%) | 21 (44.7%) | |||
Residues absence | 0 (0%) | 2 (14.3%) | 3 (12.5%) | 5 (9.62%) | |||
Total screened | 14 (100%) | 14 (100%) | 24 (100%) | 52 (100%) |
ATB Family | Compounds | Total Compounds in All Samples | MRL µg/kg [12,32] | Negative (≤MRL) | Positive (>MRL) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % a | % b | Min–Max µg/kg | n | % a | % b | n | %a | % b | |||
β-lactams | Ampicillin * | 6 | 3.73 | 11.5 | 6.1–309 | 4 | 0 | 0.00 | 0.00 | 6 | 8.82 | 11.5 |
Cefalexin * | 2 | 1.24 | 3.85 | 1.4–111 | 100 | 1 | 1.11 | 1.92 | 1 | 1.47 | 1.92 | |
Cefazolin | 1 | 0.62 | 1.92 | 50 | 50 | 1 | 1.11 | 1.92 | 0 | 0.00 | 0.00 | |
Cefoperazone | 1 | 0.62 | 1.92 | 17 | 50 | 1 | 1.11 | 1.92 | 0 | 0.00 | 0.00 | |
Cloxacillin (M) * | 26 | 16.2 | 50.0 | 4.9–1505 | - | |||||||
Cloxacillin (P) * | 16 | 9.94 | 30.8 | 3.9–1231 | 30 | 5 | 5.56 | 9.62 | 11 | 16.2 | 21.2 | |
Dicloxacillin (M) * | 6 | 3.73 | 11.5 | 1.0–893 | - | |||||||
Dicloxacillin (P) * | 2 | 1.24 | 3.85 | 1.8–413 | 30 | 1 | 1.11 | 1.92 | 1 | 1.47 | 1.92 | |
Oxacillin (M) | 3 | 1.86 | 5.77 | 0.49–1.1 | - | |||||||
Oxacillin (P) * | 2 | 1.24 | 3.85 | 18–36 | 30 | 1 | 1.11 | 1.92 | 1 | 1.47 | 1.92 | |
Penicillin G (M) * | 17 | 10.6 | 32.7 | 4.0–2115 | - | |||||||
Penicillin G (P) * | 10 | 6.21 | 19.2 | 28–2062 | 4 | 0 | 0.00 | 0.00 | 10 | 14.7 | 19.2 | |
Cefaclor ** | 3 | 1.86 | 5.8 | 81–220 | - | |||||||
Total | 95 | 59.0 | 10 | 11.1 | 30 | 44.1 | ||||||
Tetracycline | Chlortetracycline | 2 | 1.24 | 3.85 | 7.9–12 | 100 | 2 | 2.22 | 3.85 | 0 | 0.00 | 0.00 |
Oxytetracycline * | 18 | 11.2 | 34.6 | 5.9–660 | 100 | 16 | 17.8 | 30.8 | 2 | 2.94 | 3.85 | |
Tetracycline * | 2 | 1.24 | 3.85 | 40–2291 | 100 | 1 | 1.11 | 1.92 | 1 | 1.47 | 1.92 | |
Total | 22 | 13.7 | 19 | 21.1 | 3 | 4.41 | ||||||
Fluoroquinolones | Ciprofloxacin | 4 | 2.48 | 7.69 | 3.2–33 | 100 c | 4 | 4.44 | 7.69 | 0 | 0.00 | 0.00 |
Danofloxacin | 1 | 0.62 | 1.92 | 8.5 | 30 | 1 | 1.11 | 1.92 | 0 | 0.00 | 0.00 | |
Enrofloxacin | 8 | 4.97 | 15.4 | 1.5–100 | 100 c | 8 | 8.89 | 15.4 | 0 | 0.00 | 0.00 | |
Flumequine * | 22 | 13.7 | 42.3 | 0.27–52 | 50 | 21 | 23.3 | 40.4 | 1 | 1.47 | 1.92 | |
Marbofloxacin | 2 | 1.24 | 3.85 | 0.89–51 | 75 | 2 | 2.22 | 3.85 | 0 | 0.00 | 0.00 | |
Total | 37 | 23.0 | 36 | 40.0 | 1 | 1.47 | ||||||
Sulfonamide | Sulfachloropyridazine | 1 | 0.62 | 1.92 | 5.70 | 100 d | 1 | 1.11 | 1.92 | 0 | 0.00 | 0.00 |
Sulfadimethoxine | 1 | 0.62 | 1.92 | 6.90 | 100 d | 1 | 1.11 | 1.92 | 0 | 0.00 | 0.00 | |
Sulfadimidine | 1 | 0.62 | 1.92 | 58.0 | 25 [12] | 0 | 0 | 0 | 1 | 1.11 | 1.92 | |
Sulfamerazine | 1 | 0.62 | 1.92 | 0.82 | 100 d | 1 | 1.11 | 1.92 | 0 | 0.00 | 0.00 | |
Sulfapyridine | 1 | 0.62 | 1.92 | 3.60 | 100 d | 1 | 1.11 | 1.92 | 0 | 0.00 | 0.00 | |
Sulfathiazole | 1 | 0.62 | 1.92 | 5.10 | 100 d | 1 | 1.11 | 1.92 | 0 | 0.00 | 0.00 | |
Total | 6 | 3.73 | 6 | 6.67 | ||||||||
Trimethoprim (Diaminopyrimidines) | 1 | 0.62 | 1.92 | 16.0 | 50 | 1 | 1.11 | 1.92 | 0 | 0.00 | 0.00 | |
Total | 161 | 100 a | 72 | 100 a | 34 | 100 a |
Parameters | FL (g/100 mL) | Titratable Acidity (°D) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Companies | Company A | Company B | Company C | Total | Company A | Company B | Company C | Total | ||
N of samples | 14 | 14 | 24 | 52 | 14 | 14 | 24 | 52 | ||
Mean | 3.41 b | 3.15 a,b | 3.71 a,b | 3.48 | 15.1 a,b | 16.4 a,b | 18.9 a,b | 17.2 | ||
Std. Deviation | 0.38 | 0.17 | 0.73 | 0.59 | 1.04 | 1.22 | 1.27 | 2.04 | ||
95% CI for Mean | LowerBound | 3.20 | 3.05 | 3.40 | 3.32 | 14.5 | 15.7 | 18.4 | 16.7 | |
UpperBound | 3.63 | 3.25 | 4.02 | 3.64 | 15.7 | 17.1 | 19.5 | 17.8 | ||
Minimum | 3.00 | 2.80 | 2.70 | 2.70 | 13.00 | 15.0 | 17.0 | 13.0 | ||
Maximum | 4.20 | 3.50 | 6.20 | 6.20 | 16.50 | 18.0 | 23.0 | 23.0 | ||
Reference range 1: Min–Max | 3.5–4 | 3.5–4 | 3.5–4 | 3.5–4 | 14–18 | 14–18 | 14–18 | 14–18 | ||
Sig. of Tukey’s HSD test | Company A | 0.41 | 0.25 | 0.01 * | 0.00 * | |||||
Company B | 0.41 | 0.01 * | 0.01 * | 0.00 * | ||||||
Company C | 0.25 | 0.01 * | 0.00 * | 0.00 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meklati, F.R.; Panara, A.; Hadef, A.; Meribai, A.; Ben-Mahdi, M.H.; Dasenaki, M.E.; Thomaidis, N.S. Comparative Assessment of Antibiotic Residues Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS) and a Rapid Screening Test in Raw Milk Collected from the North-Central Algerian Dairies. Toxics 2022, 10, 19. https://doi.org/10.3390/toxics10010019
Meklati FR, Panara A, Hadef A, Meribai A, Ben-Mahdi MH, Dasenaki ME, Thomaidis NS. Comparative Assessment of Antibiotic Residues Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS) and a Rapid Screening Test in Raw Milk Collected from the North-Central Algerian Dairies. Toxics. 2022; 10(1):19. https://doi.org/10.3390/toxics10010019
Chicago/Turabian StyleMeklati, Fawzi Rostane, Anthi Panara, Ahmed Hadef, Amel Meribai, Meriem H. Ben-Mahdi, Marilena E. Dasenaki, and Nikolaos S. Thomaidis. 2022. "Comparative Assessment of Antibiotic Residues Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS) and a Rapid Screening Test in Raw Milk Collected from the North-Central Algerian Dairies" Toxics 10, no. 1: 19. https://doi.org/10.3390/toxics10010019
APA StyleMeklati, F. R., Panara, A., Hadef, A., Meribai, A., Ben-Mahdi, M. H., Dasenaki, M. E., & Thomaidis, N. S. (2022). Comparative Assessment of Antibiotic Residues Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS) and a Rapid Screening Test in Raw Milk Collected from the North-Central Algerian Dairies. Toxics, 10(1), 19. https://doi.org/10.3390/toxics10010019