Heavy Metal Pollution and Source Contributions in Agricultural Soils Developed from Karst Landform in the Southwestern Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Pretreatment
2.3. Sample Analysis and Quality Assurance
2.4. Contamination Assessment of Heavy Metals in Soils
2.4.1. Geo-Accumulation Index
2.4.2. Ecological Risk Index
2.4.3. Health Risk Assessment
2.5. Positive Matrix Factorization Analysis (PMF)
2.6. Data Analysis and Statistics
3. Results and Discussion
3.1. The Overview of Soil HMs and Geochemical Indices in the Study Area
3.2. Assessment of Heavy Metals Pollution
3.2.1. Geo-Accumulation Index Assessment
3.2.2. Ecological Risk Assessment
3.2.3. Health Risk Assessment
3.3. Source Apportionment of Heavy Metals
3.4. Influencing Factors of Heavy Metals Enrichment
3.4.1. Influence of Parent Materials on Heavy Metals
3.4.2. Effects of Topographic Factors on Heavy Metals
3.4.3. Impacts of Soil Chemical on Heavy Metals
4. Conclusions
- (1)
- The concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in soils of the study area were significantly enriched. Moreover, their distributions were inhomogeneous, and there might be point sources of pollution.
- (2)
- The Igeo and RI indexes showed that Cd was the most hazardous element in the study area. The results of a human health risk assessment showed that only the As element had non-carcinogenic risks for adults and other element risks were acceptable, whereas the carcinogenic risks in the study area were more serious. Cr and Ni had carcinogenic risks in both children and adults, and As had carcinogenic risks in children.
- (3)
- Traceability analysis by PMF found four heavy metal pollution sources, namely geological sources (factor 1 and factor 3), atmospheric deposition sources (factor 2), sources from mining activities (factor 4) and agricultural sources (factor 5).
- (4)
- In different parent-material areas, the enrichment characteristic of heavy metals was different except the distribution of Cr, which was weakly affected by parent materials; Cd, Cu, Hg, Ni, Pb and Zn were enriched in the parent-materials area of the carbonate zone, while As was enriched in the clastic rocks area; almost all heavy metals were depleted in the shale area and enriched in the quaternary, but their enrichment degrees were weaker than that in the carbonate area.
- (5)
- The results of the one-way ANOVA showed that topographic factors play an essential role in the accumulation of heavy metals in soils. The content of Cd, Cr, Cu, Ni and Zn gradually decreased with the increase in altitude, and the decreased amplitude was similar in different altitude intervals. The content of As and Pb increased with the increase in altitude, and the contents were higher at high altitude.
- (6)
- In the study area, Mn-oxide was an important factor influencing the enrichment of Cu and Zn, while SOC and K2O had little influence on the accumulation of heavy metals. In addition, pH had no significant effect on heavy metals accumulation.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pourret, O.; Bollinger, J.C.; Hursthouse, R. Heavy metal: A misused term? Acta Geochim. 2021, 40, 466–471. [Google Scholar] [CrossRef]
- Cheng, S.P. Heavy metal pollution in China: Origin, pattern and control. Environ. Sci. Pollut. Res. Int. 2003, 10, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.J.; Zhou, J.; Feng, R.G. Status of China’s Heavy Metal Contamination in Soil and Its Remediation Strategy. Remediat. Heavy Met. Pollut. Soil 2014, 29, 315–320, 350. [Google Scholar]
- Davidson, C.M.; Duncan, A.L.; Littlejohn, D.; Ure, A.M.; Garden, L.M. A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Anal. Chim. Acta 1998, 363, 45–55. [Google Scholar] [CrossRef]
- Wong, S.C.; Li, X.D.; Zhang, G.; Qi, S.H.; Min, Y.S. Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ. Pollut. 2002, 119, 33–44. [Google Scholar] [CrossRef]
- Golia, E.E.; Dimirkou, A.; Floras, S.A. Spatial monitoring of arsenic and heavy metals in the Almyros area, Central Greece. Statistical approach for assessing the sources of contamination. Environ. Monit. Assess. 2015, 187, 399. [Google Scholar] [CrossRef]
- Huang, J.H.; Guo, S.T.; Zeng, G.M.; Li, F.; Gu, Y.L.; Shi, Y.H.; Shi, L.X.; Liu, W.C.; Peng, S.Y. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environ. Pollut. 2018, 243, 49–58. [Google Scholar] [CrossRef]
- Yang, J.Z.; Sun, Y.L.; Wang, Z.L.; Gong, J.J.; Gao, J.W.; Tang, S.X.; Ma, S.M.; Duan, Z. Heavy metal pollution in agricultural soils of a typical volcanic area: Risk assessment and source appointment. Chemosphere 2022, 304, 135340. [Google Scholar] [CrossRef]
- Duan, Y.L.; Li, Q.; Zhang, L.; Huang, Z.P.; Zhao, Z.M.; Zhao, H.; Du, J.; Zhou, J. Toxic Metals in a Paddy Field System: A Review. Toxics 2022, 10, 249. [Google Scholar] [CrossRef]
- MEP. National Soil Pollution Investigation Bulletin. Ministry of Environmental Protection of China. 2014. Available online: http://www.mep.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm (accessed on 10 December 2021).
- Xie, X.J.; Ren, T.X.; Sun, H.Z. Geochemical Atlas of China; Geological Publishing House: Beijing, China, 2012; pp. 1–120. [Google Scholar]
- Cheng, H.X.; Peng, M.; Zhao, C.D.; Han, W.; Wang, H.Y.; Wang, Q.L.; Yang, F.; Zhang, F.G.; Wang, C.W.; Liu, F.; et al. Epigenetic geochemical dynamics and driving mechanisms of distribution patterns of chemical elements in soil, Southwest China. Earth Sci. Front. 2019, 26, 159–191. [Google Scholar]
- Chen, H.Y.; Teng, Y.G.; Lu, S.J.; Wang, Y.Y.; Wang, J.S. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512–513, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, F.F.; Huang, C.M. Heavy metal distribution in particle size fractions of floodplain soils from Dongchuan, Yunnan Province, Southwest China. Environ. Monit. Assess. 2021, 193, 54. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.P.; Wu, Y.; Sun, Y.; Ren, B.Z.; Song, L. Pollution Characteristics and Spatial Distribution of Heavy Metals in Coal-Bearing Sandstone Soil: A Case Study of Coal Mine Area in Southwest China. Int. J. Environ. Res. Public Health 2022, 19, 6493. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.B.; Li, W.; Yang, Z.F.; Zhang, Q.Z.; Ji, J.F. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 2020, 245, 125620. [Google Scholar] [CrossRef]
- Liu, P.F.; Wu, Z.Q.; Luo, X.R.; Wen, M.L.; Huang, L.L.; Chen, B.; Zheng, C.J.; Zhu, C.; Liang, R. Pollution assessment and source analysis of heavy metals in acidic farmland of the karst region in southern China-A case study of Quanzhou County. Appl. Geochem. 2020, 123, 104764. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, W.; Wang, L.; Zhang, X.K.; Wen, Y.B.; Bostick, B.C.; Wen, Y.L.; He, X.H.; Zhang, L.Y.; Zhuo, X.X.; et al. New strategy for exploring the accumulation of heavy metals in soils derived from different parent materials in the karst region of southwestern China. Geoderma 2022, 417, 115806. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.F.; Filippelli, G.M.; Ji, J.F.; Ji, W.B.; Liu, X.; Wang, L.; Yu, T.; Wu, T.S.; Zhuo, X.X.; et al. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China. Chem. Geol. 2021, 567, 120081. [Google Scholar] [CrossRef]
- Jia, Z.Y.; Wang, J.X.; Zhou, X.D.; Zhou, Y.J.; Li, Y.; Li, B.J.; Zhou, S.L. Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, Southwest China. Environ. Pollut. 2020, 256, 113505. [Google Scholar] [CrossRef]
- Zhang, L.; McKinley, J.; Cooper, M.; Peng, M.; Wang, Q.L.; Song, Y.T.; Cheng, H.X. A regional soil and river sediment geochemical study in Baoshan area, Yunnan province, southwest China. J. Geochem. Explor. 2020, 217, 166557. [Google Scholar] [CrossRef]
- Yang, H.; Lu, M.G.; Cao, J.H. Trace elements of the soil-plant systems in subtropical karst and clasolite areas in Guilin, Guangxi, China. Environ. Earth Sci. 2015, 73, 6259–6269. [Google Scholar] [CrossRef]
- Deng, Q.C.; Wei, Y.P.; Yin, J.; Chen, L.J.; Peng, C.; Wang, X.F.; Zhu, K.X. Ecological risk of human health in sediments in a karstic river basin with high longevity population. Environ. Pollut. 2020, 265, 114418. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.Q.; Liu, X.J.; Peng, M.; Yang, Z.; Ma, H.H.; Guo, F.; Yang, K.; Liu, F.; Li, K. Influencing factors on transfer and bioaccumulation of soil cadmium and assessment of its environmental risk in a typical karst area, China. Chem. Ecol. 2021, 37, 369–383. [Google Scholar] [CrossRef]
- Li, C.; Yang, Z.F.; Yu, T.; Hou, Q.Y.; Liu, X.; Wang, J.; Zhang, Q.Z.; Wu, T.S. Study on safe usage of agricultural land in karst and non-karst areas based on soil Cd and prediction of Cd in rice: A case study of Heng County, Guangxi. Ecotoxicol. Environ. Saf. 2021, 208, 111505. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Meng, W.; Liu, N.T.; Wu, P. Lithological controls on arsenic accumulation in cultivated soils: Observations from typical karst areas in Central Guizhou, Southwest China. Bull. Environ. Contam. Toxicol. 2022, 22, 03564. [Google Scholar] [CrossRef]
- Wang, N.; Li, J.H.; Zhou, Z.X. Landscape pattern optimization approach to protect rice terrace Agroecosystem: Case of GIAHS site Jiache Valley, Guizhou, southwest China. Ecol. Indic. 2021, 129, 107958. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Bi, Z.L.; Yu, Y.; Shi, P.; Ren, L.J.; Shan, Z.X. The impact of land use changes and erosion process on heavy metal distribution in the hilly area of the Loess Plateau, China. Sci. Total Environ. 2020, 718, 137305. [Google Scholar] [CrossRef]
- Gao, Y.J.; Jia, J.L.; Xi, B.D.; Cui, D.Y.; Tan, W.B. Divergent response of heavy metal bioavailability in soil rhizosphere to agricultural land use change from paddy fields to various drylands. Environmental science. Process. Impacts 2021, 23, 417–428. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Zou, D.S.; Zeng, X.Y.; Li, L.C.; Wang, A.D.; Liu, F.; Wang, H.; Zeng, Q.R.; Xiao, Z.H. Effect of the direct use of biomass in agricultural soil on heavy metals—Activation or immobilization? Environ. Pollut. 2021, 272, 115989. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Z.H.; Wang, T.; Zhang, L.; Zhou, G.M.; Sun, B.T.; Wang, Y. Characteristic and processes of hydrogeochemical evolution induced by long-term mining activities in karst aquifers, southwestern China. Environ. Sci. Pollut. Res. Int. 2019, 26, 30055–30068. [Google Scholar] [CrossRef]
- Zhang, L.; Han, W.; Peng, M.; Liu, F.; Song, Y.T.; Liu, X.J.; Wang, Q.L.; Li, K.; Zhao, D.J.; Yang, F.; et al. Geochemical characteristic of rare earth elements in soils developed on different parent materials, in the Baoshan area, Yunnan Province, Southwest China. Geochem. Explor. Environ. Anal. 2021, 21, geochem2019-082. [Google Scholar] [CrossRef]
- Xia, X.Q.; Ji, J.F.; Zhang, C.S.; Yang, Z.F.; Shi, H.D. Carbonate bedrock control of soil Cd background in Southwestern China: Its extent and influencing factors based on spatial analysis. Chemosphere 2022, 290, 133390. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, C.S.; Yu, T.; Liu, X.; Yang, Y.Y.; Hou, Q.Y.; Yang, Z.F.; Ma, X.D.; Wang, L. Use of artificial neural network to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values. Environ. Pollut. 2022, 304, 119234. [Google Scholar] [CrossRef] [PubMed]
- Thurston, G.D.; Spengler, J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Simcik, M.F.; Eisenreich, S.J.; Lioy, P.J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos. Environ. 1999, 33, 5071–5079. [Google Scholar] [CrossRef]
- Habeebullah, T.M.; Munir, S.; Jahan, Z.; Morsy, E.A. Source Apportionment of Atmospheric PM10 in Makkah Saudi Arabia by Modelling Its Ion and Trace Element content with Positive Matrix Factorization and Generalised Additive Model. Toxics 2022, 10, 119. [Google Scholar] [CrossRef]
- Pierre, F.; Laurence, M.H.; Su, X.D. Alkanes and hopanes for pollution source apportionment in coking plant soils. Environ. Chem. Lett. 2007, 5, 41–46. [Google Scholar]
- Li, Y.X.; Gao, H.C.; Mo, L.; Kong, Y.H.; Lou, I. Quantitative assessment and source apportionment of metal pollution in soil along Chao River. Desalination Water Treat. 2013, 51, 4010–4018. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Tian, Y.; Shen, M.C.; Zeng, G.M. Heavy metals in soils and sediments from Dongting Lake in China: Occurrence, sources, and spatial distribution by multivariate statistical analysis. Environ. Sci. Pollut. Res. Int. 2018, 25, 13687–13696. [Google Scholar] [CrossRef]
- Cai, L.M.; Wang, Q.S.; Wen, H.H.; Luo, J.; Wang, S. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicol. Environ. Saf. 2019, 168, 184–191. [Google Scholar] [CrossRef]
- Guan, Q.Y.; Zhao, R.; Pan, N.H.; Wang, F.F.; Yang, Y.Y.; Luo, H.P. Source apportionment of heavy metals in farmland soil of Wuwei, China: Comparison of three receptor models. J. Clean. Prod. 2019, 237, 117792. [Google Scholar] [CrossRef]
- Wang, Y.M.; Zhang, L.X.; Wang, J.N.; Lv, J.S. Identifying quantitative sources and spatial distributions of potentially toxic elements in soils by using three receptor models and sequential indicator simulation. Chemosphere 2020, 242, 125266. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.W.; Jin, Y.L.; Weiss, D.J.; Schleicher, N.J.; Wilcke, W.; Wu, L.H.; Guo, Q.J.; Chen, J.B.; O’Connor, D.; Hou, D.Y. Possible application of stable isotope compositions for the identification of metal sources in soil. J. Hazard. Mater. 2021, 407, 124812. [Google Scholar] [CrossRef] [PubMed]
- Paatero, P.; Tapper, U. Analysis of different modes of factor analysis as least squares fit problems. Chemom. Intell. Lab. Syst. 1993, 18, 183–194. [Google Scholar] [CrossRef]
- Lv, J.S. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environ. Pollut. 2019, 244, 72–83. [Google Scholar] [CrossRef]
- Chen, H.Y.; Teng, Y.G.; Chen, R.H.; Li, J.; Wang, J.S. Contamination characteristic and source apportionment of trace metals in soils around Miyun Reservoir. Environ. Sci. Pollut. Res. 2016, 23, 15331–15342. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine river. Geojournal 1969, 2, 109–118. [Google Scholar]
- Mohammed, A.; Kamal, U.; Hareb, A.J.; Muhammad, R. Ecological and Health Risks Assessment of Potentially Toxic Metals and Metalloids Contaminants: A Case Study of Agricultural Soils in Qatar. Toxics 2021, 9, 20035. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part A); USEPA: Washington, DC, USA, 1989. [Google Scholar]
- USEPA. Exposure Factors Handbook; Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 1997. [Google Scholar]
- Miguel, E.D.; Iribarren, I.; Chacón, E.; Ordoñez, A.; Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Zhang, Y.; Yuan, J.; Peng, Y.; Li, X. Risk assessment, spatial distribution, and source apportionment of heavy metals in Chinese surface soils from a typically tobacco cultivated area. Environ. Sci. Pollut. Res. Int. 2018, 25, 16852–16863. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Guan, Q.; Tian, J.; Lin, J.; Yang, Y.; Yang, L. Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor. Catena 2020, 191, 104573. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111. [Google Scholar] [CrossRef]
- Anttila, P.; Paatero, P.; Tapper, U.; Järvinen, O. Source identification of bulk wet deposition in finland by positive matrix factorization. Atmos. Environ. 1995, 29, 1705–1718. [Google Scholar] [CrossRef]
- USEPA. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. 2014. Available online: https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf (accessed on 1 August 2021).
- Eunhwa, J.; Mohammed, S.A.; Roy, M.H. Source apportionment of polycyclic aromatic hydrocarbons in urban air using positive matrix factorization and spatial distribution analysis. Atmos. Environ. 2013, 79, 271–285. [Google Scholar]
- Guan, Q.Y.; Wang, F.F.; Xu, C.Q.; Pan, N.H.; Lin, J.K.; Zhao, R.; Yang, Y.Y.; Luo, H.P. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 2017, 193, 189–197. [Google Scholar] [CrossRef]
- China Environmental Testing Center. Chinese Soil Element Background Value; China Environmental Science Press: Beijing, China, 1990; pp. 10–490. [Google Scholar]
- Wang, X.Q.; Zhou, J.; Xu, S.F.; Chi, Q.H.; Nie, L.S.; Zhang, B.M.; Yao, W.S.; Wang, W.; Liu, H.L.; Liu, D.S.; et al. China soil geochemical baselines networks: Data characteristic. Geol. China 2016, 43, 1469–1480. [Google Scholar]
- Tang, J.; Tang, H.J.; Sima, W.P.; Wang, H.Y.; Zou, D.B.; Qiu, B.; Qu, J.; Liang, R.; Dong, J.W.; Liao, Y.; et al. Heavy metal pollution level and potential ecological risk assessment of sludge landfill. Environ. Prog. Sustain. Energy 2022, 41, e13795. [Google Scholar] [CrossRef]
- Adimalla, N.; Qian, H.; Wang, H.K. Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: An approach of spatial distribution and multivariate statistical analysis. Environ. Monit. Assess. 2019, 191, 246. [Google Scholar] [CrossRef]
- Zhang, F.G.; Peng, M.; He, L.; Ma, H.H. Sources Identification, Ecological Risk Assessment, and Controlling Factors of Potentially Toxic Elements in Typical Lead-Zinc Mine Area, Guizhou Province, Southwest China. Environ. Sci. 2022, 43, 2081–2093. [Google Scholar]
- Zhong, Y.; Fu, G.Y.; Xiang, R.J.; Yao, F.B.; Xu, Y.Z.; Cheng, Y.X.; Liu, Z.; Wen, T.; Zeng, G.M. Assessment of Heavy Metals and Metalloids Contamination in the Surface Sediments of the Xiangjiang River, Hunan, China. E3S Web Conf. 2018, 53, 04037. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, X.; Wu, D.; Wang, X.; Huang, S. Distribution, source identification, and health risk assessment of heavy metals in the soil-rice system of a farmland protection area in Hubei Province, Central China. Environ. Sci. Pollut. Res. Int. 2021, 28, 68897–68908. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.Y.; Yang, F.; Li, H.P.; Li, Q.B.; Zhang, F.L.; Ba, Y.; Cui, L.X.; Sun, L.L.; Lv, T.C.; Wang, N.; et al. Heavy metal pollution and health risk assessment of agricultural soil near a smelter in an industrial city in China. Int. J. Environ. Health Res. 2019, 30, 174–186. [Google Scholar] [CrossRef]
- Chen, F.; Wang, Q.; Meng, F.L.; Chen, M.; Wang, B. Effects of long-term zinc smelting activities on the distribution and health risk of heavy metals in agricultural soils of Guizhou province, China. Environ. Geochem. Health 2020, 020, s10653. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.Y.; Wu, W.H.; Nel, W.; Ji, J.F. The behavior of metals/metalloids during natural weathering: A systematic study of the mono-lithological watersheds in the upper Pearl River Basin, China. Sci. Total Environ. 2020, 708, 134572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.G.; Peng, M.; Wang, H.Y.; Ma, H.H.; Xu, R.T.; Cheng, X.M.; Hou, Z.L.; Chen, Z.W.; Li, K.; Cheng, H.X. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, Southwestern, China. Environ. Sci. 2020, 41, 4197–4209. [Google Scholar]
- Yu, B.; Yang, L.; Liu, H.W.; Xiao, C.L.; Bu, D.; Zhang, Q.Y.; Fu, J.J.; Zhang, Q.G.; Cong, Z.Y.; Liang, Y.; et al. Tracing the Transboundary Transport of Mercury to the Tibetan Plateau Using Atmospheric Mercury Isotopes. Environ. Sci. Technol. 2022, 56, 1568–1577. [Google Scholar] [CrossRef]
- Ci, Z.; Peng, F.; Xue, X.; Zhang, X. Air-surface exchange of gaseous mercury over permafrost soil: An investigation at a high-altitude (4700 m a.s.l.) and remote site in the central Qinghai-Tibet Plateau. Atmos. Chem. Phys. 2017, 16, 14741–14754. [Google Scholar] [CrossRef]
- Li, F.L.; Yifei, J.X.; Shao, L.Z.; Zhang, G.X.; Wang, J.M.; Jin, Z.F. Delineating the origin of Pb and Cd in the urban dust through elemental and stable isotopic ratio: A study from Hangzhou City, China. Chemosphere 2018, 211, 674–683. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Gui, H.R.; Huang, Y.H.; Yu, H.; Li, J.; Wang, M.C.; Fang, H.X.; Jiang, Y.Q.; Wang, C.L.; Chen, C. Characteristic of Soil Heavy Metal content and Its Source Analysis in Affected Areas of Luning Coal Mine in Huaibei Coalfield. Pol. J. Environ. Stud. 2021, 30, 1465–1476. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Xu, C.Y.; Xiao, M.Y.; Wang, H.; Zhao, C.S.; Zhu, Z.H.; Li, L.J. Study on Fe, Cu mineralization generated in subaqueous carbonatitic volcano-hydrothermal activity and their large insidious ore deposit prospecting in the northward of Lishi, Yimen, Central Yunnan. Acta Petrol. Sin. 2005, 21, 1395–1408. [Google Scholar]
- Opekunov, A.Y.; Opekunova, M.G.; Janson, S.Y.; Bychinskii, V.A.; Somov, V.V.; Kukushkin, S.Y.; Papyan, E.E. Mineral and geochemical characteristic of soils and bottom sediments in the area affected by mining dumps (a case study of the Sibay ore deposit). IOP Conf. Ser. Earth Environ. Sci. 2021, 817, 012078. [Google Scholar] [CrossRef]
- Zhang, Q.C.; Wang, C.C. Natural and Human Factors Affect the Distribution of Soil Heavy Metal Pollution: A Review. Water Air Soil Pollut. 2020, 231, 350. [Google Scholar] [CrossRef]
- Qin, G.W.; Niu, Z.D.; Yu, J.D.; Li, Z.H.; Ma, J.Y.; Xiang, P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Sun, J.T.; Zhu, L.Z. Organophosphorus Pesticides in Greenhouse and Open-Field Soils across China: Distribution Characteristic, Polluted Pathway and Health Risk. Sci. Total Environ. 2021, 765, 142757. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.Q.; Ji, J.F.; Yang, Z.F.; Han, H.J.; Huang, C.L.; Li, Y.; Zhang, W. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock. Chemosphere 2020, 254, 126799. [Google Scholar] [CrossRef]
- Wu, W.H.; Qu, S.Y.; Nel, W.; Ji, J.F. The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds: A comparative study from different regions in China. Chemosphere 2021, 262, 127897. [Google Scholar] [CrossRef]
- Sun, Z.X.; Jiang, Y.Y.; Wang, Q.B.; Owens, P.R. Fe-Mn nodules in a southern Indiana loess with a fragipan and their soil forming signifcance. Geoderma 2018, 313, 92–111. [Google Scholar] [CrossRef]
- Dijkstra, E.F. A micromorphological study on the development of humus profiles in heavy metal polluted and non-polluted forest soils under Scots pine. Geoderma 1998, 82, 341–358. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef]
Class | Igeo Values | Soil Pollution |
---|---|---|
0 | Igeo < 0 | Unpolluted |
1 | 0 ≤ Igeo < 1 | From unpolluted to moderately polluted |
2 | 1 ≤ Igeo < 2 | Moderately contaminated |
3 | 2 ≤ Igeo < 3 | From moderately to strongly polluted |
4 | 3 ≤ Igeo < 4 | Strongly polluted |
5 | 4 ≤ Igeo < 5 | From strongly polluted to extremely polluted |
6 | 5 ≤ Igeo | Extremely polluted |
Class | EI Values | Ecological Hazard | Class | RI Values | Ecological Risk |
---|---|---|---|---|---|
0 | < 40 | Low level | 0 | 150 < RI | Low level |
1 | < 80 | Moderate level | 1 | 150 ≤ RI < 300 | Moderate level |
2 | < 160 | Considerable level | 2 | 300 ≤ RI < 600 | Considerable level |
3 | < 320 | Strongly level | 3 | 600 ≤ RI | Strongly level |
4 | Extremely level |
Parameter | Description | Unit | Adult | Child |
---|---|---|---|---|
CSi | Chemical concentration in soil | mg/kg | - | - |
IRing | Ingestion rate | mg/d | 100 | 200 |
CF | Conversion factor | kg/mg | 10−6 | 10−6 |
EF | Exposure frequency | days/year | 350 | 350 |
ED | Exposure duration | years | 24 | 6 |
BW | Averaging body weight | kg | 56.8 | 15.9 |
AT | Averaging time | days | ED × 365 | ED × 365 |
SA | Skin surface area available for contact | cm2/event | 5700 | 2800 |
AF | Soil to skin adherence factor | mg/cm2 | 0.2 | 0.2 |
ABS | Absorption Factor | unitless | 0.001 | 0.001 |
IRinh | Inhalation rate | m3/days | 14.5 | 7.5 |
ET | Exposure time | hours/day | 24 | 24 |
Heavy Metals | RfD (mg/kg/d) | SF (kg/d/mg) | ||||
---|---|---|---|---|---|---|
Ingestion | Dermal | Inhalation | Ingestion | Dermal | Inhalation | |
As | 3.0 × 10−4 | 1.23 × 10−4 | 4.29 × 10−6 | 1.5 | 1.5 | 1.51 × 101 |
Cd | 1.0 × 10−3 | 2.5 × 10−5 | 2.86 × 10−6 | - | - | 6.3 |
Cr | 3.0 × 10−3 | 3 × 10−5 | - | 5.01 × 10−1 | 2.0 × 101 | 4.2 × 101 |
Cu | 4.0 × 10−2 | 1.2 × 10−2 | - | - | - | - |
Hg | 3.0 × 10−4 | 2.14 × 10−5 | - | - | - | - |
Ni | 2.0 × 10−2 | 5.4 × 10−3 | 9.0 × 10−5 | 1.7 | 4.25 × 101 | 8.4 × 10−1 |
Pb | 1.4 × 10−3 | 5.24 × 10−4 | - | 8.5 × 10−3 | - | 4.2 × 10−2 |
Zn | 3.0 × 10−1 | 6.0 × 10−2 | - | - | - | - |
Elements | n | Me a | Med b | Max c | Min d | CV e | SD f | Yunnan Province Background | China Background | High Background Baseline |
---|---|---|---|---|---|---|---|---|---|---|
As | 787 | 29.56 | 27.48 | 116.5 | 3.386 | 54.65% | 16.15 | 18.4 | 12.1 | 14 |
Cd | 787 | 1.190 | 1.085 | 5.348 | 0.054 | 47.76% | 0.570 | 0.218 | 0.23 | 0.197 |
Cr | 787 | 139.4 | 122.4 | 521.0 | 46.96 | 42.57% | 59.36 | 65.2 | 68.5 | 68 |
Cu | 787 | 96.74 | 57.20 | 355.3 | 14.26 | 81.38% | 78.73 | 43.6 | 27.1 | 27 |
Hg | 787 | 0.081 | 0.074 | 0.394 | 0.023 | 41.97% | 0.034 | 0.058 | 0.087 | 0.056 |
Ni | 787 | 56.97 | 53.79 | 180.3 | 11.15 | 32.91% | 18.75 | 42.5 | 29.6 | 31 |
Pb | 787 | 46.66 | 47.91 | 118.9 | 14.73 | 27.11% | 12.65 | 40.6 | 31.2 | 28 |
Zn | 787 | 130.1 | 124.1 | 387.2 | 20.30 | 32.30% | 42.02 | 89.7 | 79 | 84 |
Mn | 787 | 655.9 | 594.4 | 2260 | 42.44 | 56.90% | 373.19 | 626 | 583 | - |
K2O | 787 | 1.468 | 1.174 | 4.487 | 0.239 | 61.22% | 0.90 | 1.940 | 2.242 | - |
SOC | 787 | 1.961 | 1.944 | 4.930 | 0.216 | 31.35% | 0.61 | 2.256 | - | - |
pH | 787 | - | 5.38 | 8.30 | 4.26 | 12.99% | 0.699 | 5.7 | 6.7 | - |
Location | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | Reference |
---|---|---|---|---|---|---|---|---|---|
This study area | 29.56 | 1.19 | 139.4 | 96.74 | 0.081 | 56.97 | 46.66 | 130.1 | - |
Baoshan City, Yunnan (CHN) | 93 | 0.269 | 128 | 48.7 | 0.178 | 57.9 | 45.2 | 114.8 | [21] |
Qujing City, Yunnan (CHN) | 18.1 | 1.18 | 174.1 | 202.0 | 0.09 | 71.1 | 34.9 | 167.2 | [65] |
Hezhang County, Guizhou (CHN) | 24.6 | 2.25 | 176.4 | 89.6 | 0.15 | 65.7 | 41.2 | 173.0 | [66] |
Fogang County, Guangdong (CHN) | 5.3 | 0.07 | 27.49 | 12.15 | 0.10 | 10.51 | 51.87 | 56.34 | [42] |
Qidong County, Hunan (CHN) | 105.02 | 10.50 | 100.52 | 62.56 | 0.45 | - | 92.70 | 517.20 | [67] |
Zhuxi County, Hubei (CHN) | 14.2 | 2.1 | 78.8 | 49.8 | 0.13 | 58.6 | 26.2 | 178.6 | [68] |
Chengmai County, Hainan (CHN) | 7.06 | 67.51 | 156.88 | 33.43 | 49.09 | 72.47 | 19.48 | 65.57 | [8] |
Madrid (ES) | - | 0.34 | 26.5 | 22.5 | - | 20.9 | 22.8 | 52.8 | [54] |
50Qatar | 27.6 | 0.2 | 85.7 | 25.6 | - | 61.9 | 18.2 | 92.4 | [50] |
Almyros (GR) | 2.1 | 3.3 | 39.2 | 34.8 | 0.9 | 19.8 | 9.8 | 29.8 | [6] |
ADD (Mean) | HQ (Mean) | HI (10−2) | CR (10−4) | ||||||
---|---|---|---|---|---|---|---|---|---|
Ingestion (10−4) | Dermal (10−6) | Inhalation (10−6) | Ingestion (10−2) | Dermal (10−2) | Inhalation (10−2) | ||||
As | Children | 3.560 | 0.998 | 0.870 | 119.0 | 0.812 | 20.30 | 140.0 | 5.490 |
Adults | 0.499 | 0.569 | 0.471 | 16.60 | 0.462 | 11.00 | 28.10 | 0.828 | |
Cd | Children | 0.144 | 0.040 | 0.035 | 1.440 | 0.161 | 1.230 | 2.813 | 0.002 |
Adults | 0.020 | 0.023 | 0.019 | 0.201 | 0.092 | 0.663 | 0.956 | 0.001 | |
Cr | Children | 16.80 | 4.710 | 4.110 | 56.10 | 15.70 | - | 71.80 | 11.10 |
Adults | 2.350 | 2.680 | 2.220 | 7.850 | 8.950 | - | 16.80 | 2.650 | |
Cu | Children | 11.70 | 3.270 | 2.850 | 2.920 | 0.027 | - | 2.940 | - |
Adults | 1.630 | 1.860 | 1.540 | 0.408 | 0.016 | - | 0.424 | - | |
Hg | Children | 0.010 | 0.003 | 0.002 | 0.325 | 0.013 | - | 0.338 | - |
Adults | 0.001 | 0.002 | 0.001 | 0.046 | 0.007 | - | 0.053 | - | |
Ni | Children | 6.870 | 1.920 | 1.680 | 3.440 | 0.036 | 1.860 | 5.340 | 12.50 |
Adults | 0.962 | 1.100 | 0.908 | 0.481 | 0.020 | 1.010 | 1.51 | 2.110 | |
Pb | Children | 5.630 | 1.580 | 1.370 | 40.20 | 0.301 | - | 40.50 | 0.048 |
Adults | 0.788 | 0.898 | 0.744 | 5.630 | 0.171 | - | 5.800 | 0.007 | |
Zn | Children | 15.70 | 4.390 | 3.830 | 0.523 | 0.007 | - | 0.530 | - |
Adults | 2.200 | 2.500 | 2.070 | 0.073 | 0.004 | - | 0.077 | - |
Description | n | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
Parent materials | Clastic Rocks | 182 | 35.57 a | 1.05 bc | 137.82 a | 40.42 c | 0.070 b | 53.43 b | 40.75 b | 99.96 c |
Carbonate Rocks | 422 | 32.58 a | 1.19 b | 140.79 a | 91.93 b | 0.085 a | 57.59 b | 52.89 a | 137.27 b | |
Quaternary Sediments | 158 | 16.00 b | 1.38 a | 141.62 a | 185.37 a | 0.086 a | 63.44 a | 39.15 b | 154.85 a | |
Sand Shale | 25 | 18.96 b | 1.00 c | 127.29 a | 33.26 c | 0.061 b | 35.15 c | 34.03 c | 77.70 d | |
Elevation | 2050–2100 m | 161 | 19.60 c | 1.41 a | 151.78 a | 162.16 a | 0.087 a | 64.54 a | 40.42 c | 151.73 a |
2100–2150 m | 252 | 25.23 b | 1.27 ab | 150.18 a | 111.78 b | 0.081 ab | 59.24 ab | 42.07 c | 127.03 b | |
2150–2200 m | 272 | 37.39 a | 1.08 bc | 132.96 ab | 60.03 c | 0.078 ab | 53.42 bc | 51.15 b | 122.24 b | |
2200–2250 m | 85 | 35.59 a | 0.95 c | 112.09 bc | 55.57 c | 0.074 b | 49.41 cd | 55.97 a | 123.54 b | |
2250–2300 m | 17 | 32.48 a | 0.91 c | 104.21 c | 47.57 c | 0.087 a | 46.20 d | 55.75 a | 129.25 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Zhang, F.; Xue, S.; Ma, T.; Yu, L. Heavy Metal Pollution and Source Contributions in Agricultural Soils Developed from Karst Landform in the Southwestern Region of China. Toxics 2022, 10, 568. https://doi.org/10.3390/toxics10100568
Qin Y, Zhang F, Xue S, Ma T, Yu L. Heavy Metal Pollution and Source Contributions in Agricultural Soils Developed from Karst Landform in the Southwestern Region of China. Toxics. 2022; 10(10):568. https://doi.org/10.3390/toxics10100568
Chicago/Turabian StyleQin, Yuanli, Fugui Zhang, Shandong Xue, Tao Ma, and Linsong Yu. 2022. "Heavy Metal Pollution and Source Contributions in Agricultural Soils Developed from Karst Landform in the Southwestern Region of China" Toxics 10, no. 10: 568. https://doi.org/10.3390/toxics10100568
APA StyleQin, Y., Zhang, F., Xue, S., Ma, T., & Yu, L. (2022). Heavy Metal Pollution and Source Contributions in Agricultural Soils Developed from Karst Landform in the Southwestern Region of China. Toxics, 10(10), 568. https://doi.org/10.3390/toxics10100568