Presence of Halogenated Polycyclic Aromatic Hydrocarbons in Milk Powder and the Consequence to Human Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Chemicals
2.3. Sample Extraction and Clean Up
2.4. Quality Assurance and Quality Control
2.5. Assessment of Potential Risks of Consuming Contaminated Milk Powder to Human Health
2.6. Statistical Analysis
3. Results and Discussion
3.1. Concentrations of PAHs and HPAHs in Milk Powder Samples
3.2. Congener Differences in Milk Powder Samples
3.3. Exposure-Based Human Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanagi, M.M.; Loh, S.H.; Wan Ibrahim, W.A.; Hasan, M.N.; Enein, H.Y.A. Determination of polycyclic aromatic hydrocarbons in fresh milk by hollow fiber liquid-phase microextraction-gas chromatography. J. Chromatogr. Sci. 2013, 51, 112–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grova, N.; Feidt, C.; Crépineau, C.; Laurent, C.; Lafargue, P.E.; Hachimi, A.; Rychen, G. Detection of polycyclic aromatic hydrocarbon levels in milk collected near potential contamination sources. J. Agric. Food Chem. 2002, 50, 4640–4642. [Google Scholar] [CrossRef] [PubMed]
- Kishikawa, N.; Wada, M.; Kuroda, N.; Akiyama, S.; Nakashima, K. Determination of polycyclic aromatic hydrocarbons in milk samples by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 789, 257–264. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, J.Y.; Shin, H.S. Evaluation of chemical analysis method and determination of polycyclic aromatic hydrocarbons content from seafood and dairy products. Toxicol. Res. 2015, 31, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Wang, Q.; Tokumura, M.; Miyake, Y.; Amagai, T. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorinated derivatives in grilled foods. Ecotoxicol. Environ. Saf. 2019, 178, 188–194. [Google Scholar] [CrossRef]
- Ohura, T.; Suhara, T.; Kamiya, Y.; Ikemori, F.; Kageyama, S.; Nakajima, D. Distributions and multiple sources of chlorinated polycyclic aromatic hydrocarbons in the air over Japan. Sci. Total Environ. 2019, 649, 364–371. [Google Scholar] [CrossRef]
- Ohura, T.; Fujima, S.; Amagai, T.; Shinomiya, M. Chlorinated polycyclic aromatic hydrocarbons in the atmosphere: Seasonal levels, gas-particle partitioning, and origin. Environ. Sci. Technol. 2008, 42, 3296–3302. [Google Scholar] [CrossRef]
- Wickrama-Arachchige, A.U.K.; Hirabayashi, T.; Imai, Y.; Guruge, K.S.; Dharmaratne, T.S.; Ohura, T. Accumulation of halogenated polycyclic aromatic hydrocarbons by different tuna species, determined by high-resolution gas chromatography Orbitrap mass spectrometry. Environ. Pollut. 2020, 256, 113487. [Google Scholar] [CrossRef]
- Ohura, T.; Sawada, K.I.; Amagai, T.; Shinomiya, M. Discovery of novel halogenated polycyclic aromatic hydrocarbons in urban particulate matters: Occurrence, photostability, and AhR activity. Environ. Sci. Technol. 2009, 43, 2269–2275. [Google Scholar] [CrossRef]
- Horii, Y.; Khim, J.S.; Higley, E.B.; Giesy, J.P.; Ohura, T.; Kannan, K. Relative potencies of individual chlorinated and brominated polycyclic aromatic hydrocarbons for induction of aryl hydrocarbon receptor-mediated responses. Environ. Sci. Technol. 2009, 43, 2159–2165. [Google Scholar] [CrossRef]
- Sakakibara, H.; Ohura, T.; Kido, T.; Yamanaka, N.; Tanimura, N.; Shimoi, K.; Guruge, K.S. Organ-specific distribution of 7-chlorinated benz[a]anthracene and regulation of selected cytochrome P450 genes in rats. J. Toxicol. Sci. 2013, 38, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakakibara, H.; Ohura, T.; Kamiya, Y.; Yamanaka, N.; Shimada, N.; Shimoi, K.; Guruge, K.S. Sex-dependent difference in the hepatic and pulmonary toxicological effects in mice administrated 7-chlorinated benz[a]anthracene. Fundam. Toxicol. Sci. 2014, 1, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Amirdivani, S.; Khorshidian, N.; Ghobadi Dana, M.; Mohammadi, R.; Mortazavian, A.M.; Quiterio de Souza, S.L.; Barbosa Rocha, H.; Raices, R. Polycyclic aromatic hydrocarbons in milk and dairy products. Int. J. Dairy Technol. 2019, 72, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Wu, S.; Gong, G.; Xin, L.; Ge, Y. Simultaneous Determination of Typical Chlorinated, Oxygenated, and European Union Priority Polycyclic Aromatic Hydrocarbons in Milk Samples and Milk Powders. J. Agric. Food Chem. 2021, 69, 3923–3931. [Google Scholar] [CrossRef] [PubMed]
- Wickrama-Arachchige, A.U.K.; Guruge, K.S.; Inagaki, Y.; Tani, H.; Dharmaratne, T.S.; Niizuma, Y.; Ohura, T. Halogenated polycyclic aromatic hydrocarbons in edible aquatic species of two Asian countries: Congener profiles, biomagnification, and human risk assessment. Food Chem. 2021, 360, 130072. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Ni, H.G.; Zeng, H. Parent and halogenated polycyclic aromatic hydrocarbons in rice and implications for human health in China. Environ. Pollut. 2012, 168, 80–86. [Google Scholar] [CrossRef] [PubMed]
- García Londoño, V.A.; Reynoso, C.M.; Resnik, S. Polycyclic aromatic hydrocarbons in milk powders marketed in Uruguay. Food Addit. Contam. Part B Surveill. 2017, 10, 284–291. [Google Scholar] [CrossRef]
- Ni, H.G.; Guo, J.Y. Parent and halogenated polycyclic aromatic hydrocarbons in seafood from South China and implications for human exposure. J. Agric. Food Chem. 2013, 61, 2013–2018. [Google Scholar] [CrossRef] [PubMed]
- Ohura, T.; Morita, M.; Makino, M.; Amagai, T.; Shimoi, K. Aryl hydrocarbon receptor-mediated effects of chlorinated polycyclic aromatic hydrocarbons. Chem. Res. Toxicol. 2007, 20, 1237–1241. [Google Scholar] [CrossRef]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 44, W147–W153. [Google Scholar] [CrossRef]
- Garcia Londoño, V.A.; Garcia, L.P.; Scussel, V.M.; Resnik, S. Polycyclic aromatic hydrocarbons in milk powders marketed in Argentina and Brazil. Food Addit. Contam.-Part A Chem. Anal. Control. Expo. Risk Assess. 2013, 30, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Santonicola, S.; Albrizio, S.; Murru, N.; Ferrante, M.C.; Mercogliano, R. Study on the occurrence of polycyclic aromatic hydrocarbons in milk and meat/fish based baby food available in Italy. Chemosphere 2017, 184, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Dobrinas, S.; Soceanu, A.; Popescu, V.; Coatu, V. Polycyclic aromatic hydrocarbons and pesticides in milk powder. J. Dairy Res. 2016, 83, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Ohura, T.; Sakakibara, H.; Watanabe, I.; Shim, W.J.; Manage, P.M.; Guruge, K.S. Spatial and vertical distributions of sedimentary halogenated polycyclic aromatic hydrocarbons in moderately polluted areas of Asia. Environ. Pollut. 2015, 196, 331–340. [Google Scholar] [CrossRef]
- Pieterse, B.; Felzel, E.; Winter, R.; Van Der Burg, B.; Brouwer, A. PAH-CALUX, an optimized bioassay for AhR-mediated hazard identification of polycyclic aromatic hydrocarbons (PAHs) as individual compounds and in complex mixtures. Environ. Sci. Technol. 2013, 47, 11651–11659. [Google Scholar] [CrossRef]
- Huang, C.; Xu, X.; Wang, D.; Ma, M.; Rao, K.; Wang, Z. The aryl hydrocarbon receptor (AhR) activity and DNA-damaging effects of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs). Chemosphere 2018, 211, 640–647. [Google Scholar] [CrossRef]
Type of Product | Country of Sample | Concentration Ranges or Mean (ng/g Dry Weight) | Method of | Reference | ||
---|---|---|---|---|---|---|
Sum of Parent PAHs | Sum of ClPAHs | Sum of BrPAHs | Determination | |||
Milk powder | Argentina and Brazil | 11.8–78.4 | Not studied | Not studied | HPLC/DAD | [21] |
Milk powder | Romania | 0.47–1.32 | Not studied | Not studied | GC/MS | [23] |
Infant formula | Japan | 2.01 | Not studied | Not studied | HPLC/fluorescence detector | [3] |
Milk-based baby food | Italy | 52.25 | Not studied | Not studied | HPLC/fluorescence detector | [22] |
Milk powder | China | 2.37–11.83 | n.d.–7.38 | Not studied | GC-QqQ-MS | [14] |
Milk powder | Sri Lanka | n.d.–0.13 | 0.01–3.35 | 1.20–5.15 | Orbitrap GC/MS | This study |
Milk powder | Japan | <0.001–16 | 0.04–2.54 | n.d.–2.03 | Orbitrap GC/MS | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goswami, P.; Wickrama-Arachchige, A.U.-K.; Yamada, M.; Ohura, T.; Guruge, K.S. Presence of Halogenated Polycyclic Aromatic Hydrocarbons in Milk Powder and the Consequence to Human Health. Toxics 2022, 10, 621. https://doi.org/10.3390/toxics10100621
Goswami P, Wickrama-Arachchige AU-K, Yamada M, Ohura T, Guruge KS. Presence of Halogenated Polycyclic Aromatic Hydrocarbons in Milk Powder and the Consequence to Human Health. Toxics. 2022; 10(10):621. https://doi.org/10.3390/toxics10100621
Chicago/Turabian StyleGoswami, Prasun, Anura Upasanta-Kumara Wickrama-Arachchige, Momoka Yamada, Takeshi Ohura, and Keerthi S. Guruge. 2022. "Presence of Halogenated Polycyclic Aromatic Hydrocarbons in Milk Powder and the Consequence to Human Health" Toxics 10, no. 10: 621. https://doi.org/10.3390/toxics10100621
APA StyleGoswami, P., Wickrama-Arachchige, A. U. -K., Yamada, M., Ohura, T., & Guruge, K. S. (2022). Presence of Halogenated Polycyclic Aromatic Hydrocarbons in Milk Powder and the Consequence to Human Health. Toxics, 10(10), 621. https://doi.org/10.3390/toxics10100621