Quantitative Assessment and Spatial Analysis of Metals and Metalloids in Soil Using the Geo-Accumulation Index in the Capital Town of Romblon Province, Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Points
2.2. Collection of Samples
2.3. Sample Preparation and Analysis
2.4. Assessment of Metal Pollution in Soils and Sediments
2.5. Correlation Analysis
2.6. Spatial Analysis
2.7. Geo-Accumulation Index
3. Results and Discussion
3.1. Concentration of Metals and Metalloids in Soil Samples
3.2. Assessment of Metal Pollution in Soils
3.3. Correlation Analysis
3.4. Spatial Analysis using NN-PSO-Inverse Distance Weighted Interpolation
3.5. Geo-Accumulation Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Dousova, B.; Buzek, F.; Rothwell, J.; Krejcova, S.; Lhotka, M. Adsorption behavior of arsenic relating to different natural solids: Soils, stream sediments and peats. Sci. Total Environ. 2012, 433, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Wang, S.; Qin, J.; Wu, R.; Li, H. Pollution characteristics and ecological risk assessment of heavy metals in paddy fields of Fujian province, China. Sci. Rep. 2020, 10, 12244. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, H. Accumulation of heavy metals in roadside soil in urban area and the related impacting factors. Int. J. Environ. Res. Public Health 2018, 15, 1064. [Google Scholar] [CrossRef] [Green Version]
- Kolawole, T.O.; Olatunji, A.S.; Jimoh, M.T.; Fajemila, O.T. Heavy metal contamination and ecological risk assessment in soils and sediments of an industrial area in Southwestern Nigeria. J. Health Pollut. 2018, 8, 180906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaiswal, A.; Verma, A.; Jaiswal, P. Detrimental effects of heavy metals in soil, plants, and aquatic ecosystems and in humans. J. Environ. Pathol. Toxicol. Oncol. 2018, 37, 183–197. [Google Scholar] [CrossRef]
- National Geographic. Sediment. Available online: https://education.nationalgeographic.org/resource/sediment (accessed on 28 September 2022).
- Caja, C.C.; Ibunes, N.L.; Paril, J.A.; Reyes, A.R.; Nazareno, J.P.; Monjardin, C.E.; Uy, F.A. Effects of land cover changes to the quantity of water supply and hydrologic cycle using water balance models. In MATEC Web of Conferences; EDP Sciences: Ulis, France, 2018; p. 06004. [Google Scholar]
- Yang, X.; Yang, Y.; Wan, Y.; Wu, R.; Feng, D.; Li, K. Source identification and comprehensive apportionment of the accumulation of soil heavy metals by integrating pollution landscapes, pathways, and receptors. Sci. Total Environ. 2021, 786, 147436. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, J.; Zhu, L. Impact of a super typhoon on heavy metal distribution, migration, availability in agricultural soils. Environ. Pollut. 2021, 289, 117835. [Google Scholar] [CrossRef]
- Huang, S.; Xiao, L.; Zhang, Y.; Wang, L.; Tang, L. Interactive effects of natural and anthropogenic factors on heterogenetic accumulations of heavy metals in surface soils through geodetector analysis. Sci. Total Environ. 2021, 789, 147937. [Google Scholar] [CrossRef]
- Dimalanta, C.B.; Ramos, E.G.L.; Yumul, G.P., Jr.; Bellon, H. New features from the Romblon Island Group: Key to understanding the arc–continent collision in Central Philippines. Tectonophysics 2009, 479, 120–129. [Google Scholar] [CrossRef]
- Adepoju, M.O.; Adekoya, J.A. Heavy metal distribution and assessment in stream sediments of River Orle, Southwestern Nigeria. Arab. J. Geosci. 2014, 7, 743–756. [Google Scholar] [CrossRef]
- Obaje, S.O.; Ogunyele, A.C.; Adeola, A.O.; Akingboye, A.S. Assessment of stream sediments pollution by potentially toxic elements in the active mining area of Okpella, Edo State, Nigeria. Rud. Geol. Naft. Zb. 2019, 34, 43–50. [Google Scholar] [CrossRef]
- Chaanda, M.S.; Izeze, O.; Osaze, I.T. Environmental geochemistry of Igarra marble mining district, southwestern Nigeria. J. Environ. Prot. 2019, 10, 722–737. [Google Scholar] [CrossRef] [Green Version]
- Keshavarzi, A.; Kumar, V. Spatial distribution and potential ecological risk assessment of heavy metals in agricultural soils of Northeastern Iran. Geol. Ecol. Landsc. 2020, 4, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Allafta, H.; Opp, C. Spatio-temporal variability and pollution sources identification of the surface sediments of Shatt Al-Arab River, Southern Iraq. Sci. rep. 2020, 10, 6979. [Google Scholar] [CrossRef] [Green Version]
- Suska-Malawska, M.; Vyrakhamanova, A.; Ibraeva, M.; Poshanov, M.; Sulwiński, M.; Toderich, K.; Mętrak, M. Spatial and In-Depth Distribution of Soil Salinity and Heavy Metals (Pb, Zn, Cd, Ni, Cu) in Arable Irrigated Soils in Southern Kazakhstan. Agronomy 2022, 12, 1207. [Google Scholar] [CrossRef]
- Amirgaliyev, N.A.; Ismukhanova, L.T. The Level of Anthropogenic Pollution of the Kapshagay Water Reservoir, Republic of Kazakhstan. In Water Resources Management in Central Asia; Springer: Berlin/Heidelberg, Germany, 2020; pp. 143–162. [Google Scholar]
- Adimalla, N.; Qian, H.; Wang, H. Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: An approach of spatial distribution and multivariate statistical analysis. Environ. Monit. Assess. 2019, 191, 246. [Google Scholar] [CrossRef]
- Kabir, M.; Islam, M.; Hoq, M.; Tusher, T.R. Appraisal of heavy metal contamination in sediments of the Shitalakhya River in Bangladesh using pollution indices, geo-spatial, and multivariate statistical analysis. Arab. J. Geosci. 2020, 13, 1135. [Google Scholar] [CrossRef]
- Cai, L.M.; Wang, Q.S.; Wen, H.H.; Luo, J.; Wang, S. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicol. Environ. Saf. 2019, 168, 184–191. [Google Scholar] [CrossRef]
- Ota, Y.; Suzuki, A.; Yamaoka, K.; Nagao, M.; Tanaka, Y.; Irizuki, T.; Fujiwara, O.; Yoshioka, K.; Kawagata, S.; Kawano, S.; et al. Geochemical distribution of heavy metal elements and potential ecological risk assessment of Matsushima Bay sediments during 2012–2016. Sci. Total Environ. 2021, 751, 141825. [Google Scholar] [CrossRef]
- Nolos, R.C.; Agarin, C.J.M.; Domino, M.Y.R.; Bonifacio, P.B.; Chan, E.B.; Mascareñas, D.R.; Senoro, D.B. Health Risks due to metal concentrations in soil and vegetables from the six municipalities of the Island Province in the Philippines. Int. J. Environ. Res. Public Health 2022, 19, 1587. [Google Scholar] [CrossRef]
- Van Thinh, N.; Osanai, Y.; Adachi, T.; Thai, P.K.; Nakano, N.; Ozaki, A.; Kuwahara, Y.; Kato, R.; Makio, M.; Kurosawa, K. Chemical speciation and bioavailability concentration of arsenic and heavy metals in sediment and soil cores in estuarine ecosystem, Vietnam. Microchem. J. 2018, 139, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Senoro, D.B.; de Jesus, K.L.M.; Mendoza, L.C.; Apostol, E.M.D.; Escalona, K.S.; Chan, E.B. Groundwater Quality Monitoring Using In-Situ Measurements and Hybrid Machine Learning with Empirical Bayesian Kriging Interpolation Method. Appl. Sci. 2021, 12, 132. [Google Scholar] [CrossRef]
- Popkova, E.G.; Ragulina, Y.V.; Bogoviz, A.V. Fundamental differences of transition to industry 4.0 from previous industrial revolutions. In Industry 4.0: Industrial Revolution of the 21st Century; Springer: Cham, Switzerland, 2019; pp. 21–29. [Google Scholar]
- Lin, Y.H.; Hu, Y.C. Electrical energy management based on a hybrid artificial neural network-particle swarm optimization-integrated two-stage non-intrusive load monitoring process in smart homes. Processes 2018, 6, 236. [Google Scholar] [CrossRef] [Green Version]
- Gholami, V.; Booij, M.J.; Tehrani, E.N.; Hadian, M.A. Spatial soil erosion estimation using an artificial neural network (ANN) and field plot data. Catena 2018, 163, 210–218. [Google Scholar] [CrossRef]
- Shahabi, M.; Jafarzadeh, A.A.; Neyshabouri, M.R.; Ghorbani, M.A.; Valizadeh Kamran, K. Spatial modeling of soil salinity using multiple linear regression, ordinary kriging and artificial neural network methods. Arch. Agron. Soil Sci. 2017, 63, 151–160. [Google Scholar] [CrossRef]
- Jia, Z.; Zhou, S.; Su, Q.; Yi, H.; Wang, J. Comparison study on the estimation of the spatial distribution of regional soil metal (loid) s pollution based on kriging interpolation and BP neural network. Int. J. Environ. Res. Public Health 2018, 15, 34. [Google Scholar] [CrossRef] [Green Version]
- Nourani, V.; Kalantari, O. Integrated artificial neural network for spatiotemporal modeling of rainfall–runoff–sediment processes. Environ. Eng. Sci. 2010, 27, 411–422. [Google Scholar] [CrossRef]
- Moridnejad, A.; Abdollahi, H.; Alavipanah, S.K.; Samani, J.M.V.; Moridnejad, O.; Karimi, N. Applying artificial neural networks to estimate suspended sediment concentrations along the southern coast of the Caspian Sea using MODIS images. Arab. J. Geosci. 2015, 8, 891–901. [Google Scholar] [CrossRef]
- Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Bahadori, A.; Zandi, Y.; Salih, M.N.; Nguyen, H.; Dou, J.; Song, X.; Poi-Ngian, S. Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete. Appl. Sci. 2019, 9, 5534. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, S.; Basak, S.; Peters, R.A. Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives. Mach. Learn. Knowl. Extr. 2018, 1, 157–191. [Google Scholar] [CrossRef]
- Eckman, S.; Himelein, K. Methods of Geo-Spatial Sampling. In Data Collection in Fragile States; Hoogeveen, J., Pape, U., Eds.; Palgrave Macmillan: Cham, Switzerland; London, UK, 2020; pp. 103–128. [Google Scholar]
- Wang, Z.; Bao, J.; Wang, T.; Moryani, H.T.; Kang, W.; Zheng, J.; Zhan, C.; Xiao, W. Hazardous heavy metals accumulation and health risk assessment of different vegetable species in contaminated soils from a typical mining city, central China. Int. J. Environ. Res. Public Health 2021, 18, 2617. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Soil Sampling Operating Procedure. Available online: https://www.epa.gov/sites/default/files/2015-06/documents/Soil-Sampling.pdf (accessed on 28 September 2022).
- Usman, K.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Sci. Rep. 2019, 9, 5658. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Yuan, Z.; Cheng, Q.; Zhang, Z.; Yang, J. Rapid in situ determination of heavy metal concentrations in polluted water via portable XRF: Using Cu and Pb as example. Environ. Pollut. 2018, 243, 1325–1333. [Google Scholar] [CrossRef]
- Ma, J.; Ding, Y.; Gan, V.J.; Lin, C.; Wan, Z. Spatiotemporal prediction of PM2. 5 concentrations at different time granularities using IDW-BLSTM. IEEE Access 2019, 7, 107897–107907. [Google Scholar] [CrossRef]
- Muller, G. Schwermetalle in den sediments des Rheins-Veranderungen seitt 1971. Umschan 1979, 79, 778–783. [Google Scholar]
- Fodoué, Y.; Ismaila, A.; Yannah, M.; Wirmvem, M.J.; Mana, C.B. Heavy Metal Contamination and Ecological Risk Assessment in Soils of the Pawara Gold Mining Area, Eastern Cameroon. Earth 2022, 3, 907–924. [Google Scholar] [CrossRef]
- Hu, B.; Chen, S.; Hu, J.; Xia, F.; Xu, J.; Li, Y.; Shi, Z. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS ONE 2017, 12, e0172438. [Google Scholar] [CrossRef] [Green Version]
- Canadian Council of Ministers of the Environment. Soil Quality Guidelines for the Protection of Environmental and Human Health. Available online: https://ccme.ca/en/results/123,9,12,71,124,139,229,61,129/ch/4 (accessed on 28 September 2022).
- Huang, S.H.; Chang, T.C.; Chien, H.C.; Wang, Z.S.; Chang, Y.C.; Wang, Y.L.; Hsi, H.C. Comprehending the Causes of Presence of Copper and Common Heavy Metals in Sediments of Irrigation Canals in Taiwan. Minerals 2021, 11, 416. [Google Scholar] [CrossRef]
- Aiman, U.; Mahmood, A.; Waheed, S.; Malik, R.N. Enrichment, geo-accumulation and risk surveillance of toxic metals for different environmental compartments from Mehmood Booti dumping site, Lahore city, Pakistan. Chemosphere 2016, 144, 2229–2237. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Fan, J.; Zhu, W.; Amombo, E.; Lou, Y.; Chen, L.; Fu, J. Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front. Plant Sci. 2016, 7, 755. [Google Scholar] [CrossRef] [PubMed]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef] [Green Version]
- Quantin, C.; Ettler, V.; Garnier, J.; Šebek, O. Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. C. R. Geosci. 2008, 340, 872–882. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Zhang, Y.; Ding, M.; Li, L. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai–Tibet highway. Sci. Total Environ. 2015, 521, 160–172. [Google Scholar] [CrossRef]
- De Jesus, K.L.M.; Senoro, D.B.; Dela Cruz, J.C.; Chan, E.B. A Hybrid Neural Network–Particle Swarm Optimization Informed Spatial Interpolation Technique for Groundwater Quality Mapping in a Small Island Province of the Philippines. Toxics 2021, 9, 273. [Google Scholar] [CrossRef]
- De Jesus, K.L.M.; Senoro, D.B.; Dela Cruz, J.C.; Chan, E.B. Neuro-Particle Swarm Optimization Based In-Situ Prediction Model for Heavy Metals Concentration in Groundwater and Surface Water. Toxics 2022, 10, 95. [Google Scholar] [CrossRef]
- Senoro, D.B.; de Jesus, K.L.M.; Nolos, R.C.; Lamac, M.R.L.; Deseo, K.M.; Tabelin, C.B. In Situ Measurements of Domestic Water Quality and Health Risks by Elevated Concentration of Heavy Metals and Metalloids Using Monte Carlo and MLGI Methods. Toxics 2022, 10, 342. [Google Scholar] [CrossRef]
- Barbieri, M.J.J.G.G. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Amadi, A.N.; Nwankwoala, H.O. Evaluation of heavy metal in soils from Enyimba dumpsite in Aba, southeastern Nigeria using contamination factor and geo-accumulation index. Energy Environ. Res. 2013, 3, 125–134. [Google Scholar]
- Needleman, H. Lead poisoning. Annu. Rev. Med. 2004, 55, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Monjardin, C.E.F.; Gomez, R.A.; Cruz, M.N.G.D.; Capili, D.L.R.; Tan, F.J.; Uy, F.A.A. Sediment Transport and water quality analyses of Naic River, Cavite, Philippines. In Proceedings of the 2021 IEEE Conference on Technologies for Sustainability (SusTech), Irvine, CA, USA, 22–24 April 2021; IEEE: Piscataway, NJ, USA; pp. 1–8. [Google Scholar]
- Garbuio, F.J.; Howard, J.L.; dos Santos, L.M. Impact of human activities on soil contamination. Appl. Environ. Soil Sci. 2012, 2012, 619548. [Google Scholar] [CrossRef] [Green Version]
- Monjardin, C.E.F.; Senoro, D.B.; Magbanlac, J.J.M.; de Jesus, K.L.M.; Tabelin, C.B.; Natal, P.M. Geo-Accumulation Index of Manganese in Soils Due to Flooding in Boac and Mogpog Rivers, Marinduque, Philippines with Mining Disaster Exposure. Appl. Sci. 2022, 12, 3527. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, Z.; Zhang, Q.; Zhang, H. Spatial distribution, risk assessment, and source identification of pollutants around gold tailings ponds: A case study in Pinggu District, Beijing, China. Environ. Monit. Assess. 2021, 193, 483. [Google Scholar] [CrossRef]
- Jiang, J. Research and Evaluation of Heavy Metal Pollution of Contaminated Site. E3S Web Conf. 2019, 131, 01107. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, W.; Zhao, Y.; He, P.; Wang, L.; Nguyen, L.T.T. Assessment of Heavy Metal Pollution Characteristics and Ecological Risk in Soils around a Rare Earth Mine in Gannan. Sci. Program. 2022, 2022, 5873919. [Google Scholar]
- Zulaehah, I.; Handayani, C.O.; Zu’Amah, H. Heavy metal pollution assessment in paddy fields and dryland in Bandung District, West Java. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012114. [Google Scholar]
- Ashraf, M.A.; Maah, M.J.; Yusoff, I. Soil contamination, risk assessment and remediation. Environ. Risk Assess. Soil Contam. 2014, 1, 3–56. [Google Scholar]
- Hua, L.; Yang, X.; Liu, Y.; Tan, X.; Yang, Y. Spatial distributions, pollution assessment, and qualified source apportionment of soil heavy metals in a typical mineral mining city in China. Sustainability 2018, 10, 3115. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.L.; Deng, F.Y.; Liu, Y. Study on Spatial Distribution and Seasonal Variations of Trace Metal Contamination in Sediments from the Three Adjacent Areas of the Yellow River Using HR-ICP-MS. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2016, 36, 2705–2711. [Google Scholar]
- Nowrouzi, M.; Pourkhabbaz, A. Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve, Iran. Chem. Speciat. Bioavailab. 2014, 26, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Kimijima, S.; Sakakibara, M.; Pateda, S.M.; Sera, K. Contamination Level in Geo-Accumulation Index of River Sediments at Artisanal and Small-Scale Gold Mining Area in Gorontalo Province, Indonesia. Int. J. Environ. Res. Public Health 2022, 19, 6094. [Google Scholar]
- Radomirović, M.; Ćirović, Ž.; Maksin, D.; Bakić, T.; Lukić, J.; Stanković, S.; Onjia, A. Ecological risk assessment of heavy metals in the soil at a former painting industry facility. Front. Environ. Sci. 2020, 8, 560415. [Google Scholar] [CrossRef]
- Wu, J.; Teng, Y.; Lu, S.; Wang, Y.; Jiao, X. Evaluation of soil contamination indices in a mining area of Jiangxi, China. PLoS ONE 2014, 9, e112917. [Google Scholar] [CrossRef]
- Su, J.F.; Le, D.P.; Liu, C.H.; Lin, J.D.; Xiao, X.J. Critical care management of patients with barium poisoning: A case series. Chin. Med. J. 2020, 133, 724–725. [Google Scholar] [CrossRef]
Class of Pollution | I | II | III | IV | V |
---|---|---|---|---|---|
Pi | ≤1.0 | 1.0–2.0 | 2.0–3.0 | 3.0–5.0 | >5.0 |
Pn | ≤0.7 | 0.7–1.0 | 1.0–2.0 | 2.0–3.0 | >3.0 |
Pollution Level | Clean | Warning | Light | Intermediate | Severe |
Er | <40 | 40 ≤ Er < 80 | 80 ≤ Er < 160 | 160 ≤ Er < 320 | Er ≥320 |
Risk Index | <150 | 150–300 | 300–600 | 600–1200 | >1200 |
Pollution Risk | Low | Moderate | Considerable | High | Very high |
Metals | Media | Mean ± Std. Dev Concentration (mg/kg) | Range: Min–Max (mg/kg) | SQS/SGV (mg/kg) |
---|---|---|---|---|
Pb | Soil | 12.951 ± 35.463 | 0–236.594 | 70 [44] |
Sediments | 2.9803 ± 8.5015 | 0–37.5898 | 48 [45] | |
Cr | Soil | 0.2481 ± 1.4537 | 0–10.5977 | 64 [44] |
Sediments | 1.5720 ± 2.8782 | 0–12.9132 | 76 [45] | |
Ni | Soil | 1.1217 ± 4.5621 | 0–31.2878 | 45 [44] |
Sediments | 1.8447 ± 3.2672 | 0–14.933 | 24 [45] | |
Mn | Soil | 49.436 ± 108.16 | 0–591.835 | 180 [44] |
Sediments | 41.091 ± 88.314 | 0–395.884 | 30 [46] | |
Cu | Soil | 14.470 ± 36.412 | 0–233.098 | 63 [44] |
Sediments | 6.1405 ± 10.595 | 0–43.8773 | 50 [45] | |
Ba | Soil | 18.724 ± 11.489 | 0–41.2469 | 750 [44] |
Sediments | 1.0393 ± 3.1308 | 0–13.7099 | - | |
As | Soil | 0.0028 ± 0.0048 | 0–0.02743 | 12 [44] |
Sediments | 0.0038 ± 0.0029 | 0–0.00914 | 11 [45] | |
Fe | Soil | 3258.3645 ± 6367.0062 | 0–30,529.3 | - |
Sediments | 1446.4403 ± 3201.1433 | 0–12,682.3 | 15 [46] | |
Zn | Soil | 109.5809 ± 542.9625 | 0–4080.59 | 250 [44] |
Sediments | 6.0795 ± 13.4192 | 0–52.3562 | 140 [45] |
Metals | Media | Pimax | Piave | Mean Pn (Soil) | Mean Pn (Sediments) | Mean RI (Soil) | Mean RI (Sediments) |
---|---|---|---|---|---|---|---|
Pb | Soil | 1.8385 | 0.2490 | 19.37 | 12.49 | 3.19 | 3.98 |
Sediments | 0.8849 | 0.1036 | |||||
Cr | Soil | 0.4069 | 0.0133 | ||||
Sediments | 0.4122 | 0.0932 | |||||
Ni | Soil | 0.8338 | 0.0494 | ||||
Sediments | 0.7888 | 0.1771 | |||||
Mn | Soil | 1.8133 | 0.2735 | ||||
Sediments | 3.6326 | 0.6489 | |||||
Cu | Soil | 1.9235 | 0.2785 | ||||
Sediments | 0.9368 | 0.2190 | |||||
Ba | Soil | 0.2345 | 0.1447 | ||||
Sediments | - | - | |||||
As | Soil | 0.0478 | 0.0110 | ||||
Sediments | 0.0288 | 0.0154 | |||||
Fe | Soil | 27.388 | 5.3682 | ||||
Sediments | 17.652 | 2.9776 | |||||
Zn | Soil | 4.0401 | 0.3955 | ||||
Sediments | 0.6115 | 0.1002 |
Hidden Neurons | No. of Particles | No. of Iterations | Elapsed Time (Sec) | R Validation | R Testing | |
---|---|---|---|---|---|---|
As | 24 | 2 | 2000 | 127.71542 | 0.99075 | 0.99469 |
Ba | 25 | 8 | 2000 | 129.91471 | 0.98974 | 0.98092 |
Cu | 26 | 6 | 2000 | 125.81433 | 0.99723 | 0.97607 |
Cr | 30 | 4 | 2000 | 136.83323 | 0.99912 | 0.99909 |
Fe | 29 | 7 | 2000 | 125.62094 | 0.96847 | 0.99916 |
Pb | 28 | 8 | 2000 | 125.53996 | 0.98120 | 0.99644 |
Mn | 23 | 5 | 2000 | 125.44344 | 0.99711 | 0.99988 |
Ni | 27 | 8 | 2000 | 124.70619 | 0.99992 | 0.99652 |
Zn | 26 | 10 | 2000 | 125.64613 | 0.97132 | 0.99644 |
Pn | 30 | 1 | 2000 | 125.29881 | 0.95174 | 0.98768 |
Hidden Neurons | No. of Particles | No. of Iterations | Elapsed Time (Sec) | R Validation | R Testing | |
---|---|---|---|---|---|---|
As | 25 | 10 | 2000 | 133.36397 | 0.99121 | 0.99997 |
Ba | 29 | 5 | 2000 | 140.33520 | 0.99996 | 0.98946 |
Cu | 22 | 7 | 2000 | 127.38098 | 0.99398 | 0.99999 |
Cr | 27 | 3 | 2000 | 132.87273 | 0.99994 | 0.99981 |
Fe | 26 | 5 | 2000 | 132.74669 | 0.99710 | 0.99661 |
Pb | 25 | 3 | 2000 | 134.09987 | 0.95636 | 0.99115 |
Mn | 29 | 4 | 2000 | 223.43633 | 0.99842 | 0.99990 |
Ni | 30 | 5 | 2000 | 204.67335 | 0.96586 | 0.98279 |
Zn | 28 | 10 | 2000 | 200.37023 | 0.99905 | 0.99975 |
Pn | 29 | 6 | 2000 | 126.24143 | 0.99743 | 0.99441 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senoro, D.B.; Monjardin, C.E.F.; Fetalvero, E.G.; Benjamin, Z.E.C.; Gorospe, A.F.B.; de Jesus, K.L.M.; Ical, M.L.G.; Wong, J.P. Quantitative Assessment and Spatial Analysis of Metals and Metalloids in Soil Using the Geo-Accumulation Index in the Capital Town of Romblon Province, Philippines. Toxics 2022, 10, 633. https://doi.org/10.3390/toxics10110633
Senoro DB, Monjardin CEF, Fetalvero EG, Benjamin ZEC, Gorospe AFB, de Jesus KLM, Ical MLG, Wong JP. Quantitative Assessment and Spatial Analysis of Metals and Metalloids in Soil Using the Geo-Accumulation Index in the Capital Town of Romblon Province, Philippines. Toxics. 2022; 10(11):633. https://doi.org/10.3390/toxics10110633
Chicago/Turabian StyleSenoro, Delia B., Cris Edward F. Monjardin, Eddie G. Fetalvero, Zidrick Ed C. Benjamin, Alejandro Felipe B. Gorospe, Kevin Lawrence M. de Jesus, Mark Lawrence G. Ical, and Jonathan P. Wong. 2022. "Quantitative Assessment and Spatial Analysis of Metals and Metalloids in Soil Using the Geo-Accumulation Index in the Capital Town of Romblon Province, Philippines" Toxics 10, no. 11: 633. https://doi.org/10.3390/toxics10110633
APA StyleSenoro, D. B., Monjardin, C. E. F., Fetalvero, E. G., Benjamin, Z. E. C., Gorospe, A. F. B., de Jesus, K. L. M., Ical, M. L. G., & Wong, J. P. (2022). Quantitative Assessment and Spatial Analysis of Metals and Metalloids in Soil Using the Geo-Accumulation Index in the Capital Town of Romblon Province, Philippines. Toxics, 10(11), 633. https://doi.org/10.3390/toxics10110633