Association of Short-Term Exposure to PM2.5 with Blood Lipids and the Modification Effects of Insulin Resistance: A Panel Study in Wuhan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. PM2.5 Exposure Measurement
2.3. Biomarkers Measurement
2.4. Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.2. Association between PM2.5 and Blood Lipids
3.3. Interaction of PM2.5 with HOMA-IR and Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, S.; Nie, Y.; Weng, J.; Cheng, N.; Hu, X.; Ren, X.; Pei, H.; Bai, Y. Association between Short-Term Exposure to Air Pollution and Dyslipidemias among Type 2 Diabetic Patients in Northwest China: A Population-Based Study. Int. J. Environ. Res. Public Health 2018, 15, 631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.-Y.; Bloom, M.; Markevych, I.; Qian, Z.; Vaughn, M.G.; Cummings-Vaughn, L.A.; Li, S.; Chen, G.; Bowatte, G.; Perret, J.L.; et al. Exposure to ambient air pollution and blood lipids in adults: The 33 Communities Chinese Health Study. Environ. Int. 2018, 119, 485–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, C.J.; Daviglus, M.L.; Swett, K.; González, H.M.; Gallo, L.C.; Wassertheil-Smoller, S.; Giachello, A.L.; Teng, Y.; Schneiderman, N.; Talavera, G.A.; et al. Dyslipidemia Patterns among Hispanics/Latinos of Diverse Background in the United States. Am. J. Med. 2014, 127, 1186–1194.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, Y.; Niu, L.; Cao, N.; Bao, H.; Xu, X.; Zhu, H.; Yan, T.; Zhang, N.; Qiao, L.; Han, K.; et al. Prevalence of dyslipidemia and associated risk factors among adults aged >/=35 years in northern China: A cross-sectional study. BMC Public Health 2020, 20, 1068. [Google Scholar] [CrossRef]
- Fang, Y.; Li, X.-H.; Qiao, Y.; Wang, N.; Xie, P.; Zhou, G.; Su, P.; Ma, H.-Y.; Song, J.-Y. Prevalence of dyslipidemia in Tibetan monks from Gansu Province, Northwest China. Open Life Sci. 2020, 15, 152–158. [Google Scholar] [CrossRef]
- Corey, K.E.; Chalasani, N. Management of Dyslipidemia as a Cardiovascular Risk Factor in Individuals with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2014, 12, 1077–1084; quiz e59–e60. [Google Scholar] [CrossRef] [Green Version]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Toth, P.P.; Barter, P.J.; Rosenson, R.S.; Boden, W.E.; Chapman, M.J.; Cuchel, M.; D’Agostino, R.B.; Davidson, M.H.; Davidson, W.S.; Heinecke, J.W.; et al. High-density lipoproteins: A consensus statement from the National Lipid Association. J. Clin. Lipidol. 2013, 7, 484–525. [Google Scholar] [CrossRef]
- Hsu, H.-Y.; Tsai, M.-C.; Yeh, T.-L.; Hsu, L.-Y.; Hwang, L.-C.; Chien, K.-L. Association of baseline as well as change in lipid levels with the risk of cardiovascular diseases and all-cause deaths. Sci. Rep. 2021, 11, 7381. [Google Scholar] [CrossRef]
- Kurth, T.; Everett, B.M.; Buring, J.E.; Kase, C.S.; Ridker, P.M.; Gaziano, J.M. Lipid levels and the risk of ischemic stroke in women. Neurology 2007, 68, 556–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Navab, M.; Pakbin, P.; Ning, Z.; Navab, K.; Hough, G.; Morgan, T.E.; Finch, C.E.; Araujo, J.A.; Fogelman, A.M.; et al. Ambient ultrafine particles alter lipid metabolism and HDL anti-oxidant capacity in LDLR-null mice. J. Lipid Res. 2013, 54, 1608–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Chen, G.; Pan, Y.; Xia, J.; Chen, L.; Zhang, X.; Silang, Y.; Chen, J.; Xu, H.; Zeng, C.; et al. Association of long-term exposure to ambient air pollutants with blood lipids in Chinese adults: The China Multi-Ethnic Cohort study. Environ. Res. 2021, 197, 111174. [Google Scholar] [CrossRef]
- Wu, Y.; Tian, Y.; Wang, M.; Wang, X.; Wu, J.; Wang, Z.; Hu, Y. Short-term exposure to air pollution and its interaction effects with two ABO SNPs on blood lipid levels in northern China: A family-based study. Chemosphere 2020, 249, 126120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, H.; He, W.; Chen, G.; Lu, P.; Xu, R.; Yu, P.; Ye, T.; Guo, S.; Li, S.; et al. The association between ambient air pollution and blood lipids: A longitudinal study in Shijiazhuang, China. Sci. Total Environ. 2020, 752, 141648. [Google Scholar] [CrossRef] [PubMed]
- Bind, M.-A.; Peters, A.; Koutrakis, P.; Coull, B.; Vokonas, P.; Schwartz, J. Quantile Regression Analysis of the Distributional Effects of Air Pollution on Blood Pressure, Heart Rate Variability, Blood Lipids, and Biomarkers of Inflammation in Elderly American Men: The Normative Aging Study. Environ. Health Perspect. 2016, 124, 1189–1198. [Google Scholar] [CrossRef] [Green Version]
- Yeatts, K.; Svendsen, E.; Creason, J.; Alexis, N.; Herbst, M.; Scott, J.; Kupper, L.; Williams, R.; Neas, L.; Cascio, W.; et al. Coarse Particulate Matter (PM 2.5–10) Affects Heart Rate Variability, Blood Lipids, and Circulating Eosinophils in Adults with Asthma. Environ. Health Perspect. 2007, 115, 709–714. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Broadwin, R.; Basu, R.; Malig, B.; Ebisu, K.; Gold, E.B.; Qi, L.; Derby, C.; Park, S.K.; Green, S. Associations between fine particulate matter and changes in lipids/lipoproteins among midlife women. Sci. Total Environ. 2018, 654, 1179–1186. [Google Scholar] [CrossRef]
- Chen, Z.; Salam, M.T.; Toledo-Corral, C.; Watanabe, R.M.; Xiang, A.H.; Buchanan, T.A.; Habre, R.; Bastain, T.M.; Lurmann, F.; Wilson, J.P.; et al. Ambient Air Pollutants Have Adverse Effects on Insulin and Glucose Homeostasis in Mexican Americans. Diabetes Care 2016, 39, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Brady, R.P.; Shah, A.S.; Jensen, E.T.; Stafford, J.M.; D’Agostino, R.B.; Dolan, L.M.; Knight, L.; Imperatore, G.; Turley, C.B.; Liese, A.D.; et al. Glycemic control is associated with dyslipidemia over time in youth with type 2 diabetes: The SEARCH for diabetes in youth study. Pediatr. Diabetes 2021, 22, 951–959. [Google Scholar] [CrossRef]
- Toth, P.P.; Simko, R.J.; Palli, S.R.; Koselleck, D.; Quimbo, R.A.; Cziraky, M.J. The impact of serum lipids on risk for microangiopathy in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2012, 11, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanter, J.E.; Johansson, F.; LeBoeuf, R.C.; Bornfeldt, K.E. Do glucose and lipids exert independent effects on atherosclerotic lesion initiation or progression to advanced plaques? Circ. Res. 2007, 100, 769–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The Diabetes Mellitus–Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Pang, Y.; Wang, Z.; Luo, H.; Han, Y.; Ma, S.; Li, L.; Yuan, J.; Niu, Y.; Zhang, R. Abnormal fasting blood glucose enhances the risk of long-term exposure to air pollution on dyslipidemia: A cross-sectional study. Ecotoxicol. Environ. Saf. 2022, 237, 113537. [Google Scholar] [CrossRef]
- Amin, M.M.; Rafiei, N.; Poursafa, P.; Ebrahimpour, K.; Mozafarian, N.; Shoshtari-Yeganeh, B.; Hashemi, M.; Kelishadi, R. Association of benzene exposure with insulin resistance, SOD, and MDA as markers of oxidative stress in children and adolescents. Environ. Sci. Pollut. Res. 2018, 25, 34046–34052. [Google Scholar] [CrossRef]
- Brook, R.D.; Sun, Z.; Brook, J.R.; Zhao, X.; Ruan, Y.; Yan, J.; Mukherjee, B.; Rao, X.; Duan, F.; Sun, L.; et al. Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance: The Air Pollution and Cardiometabolic Disease Study. Hypertension 2016, 67, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Sun, J.; Liu, F.; Li, Z.; Wu, C.; Xiang, H. The effect of short-term fine particulate matter exposure on glucose homeostasis: A panel study in healthy adults. Atmospheric Environ. 2021, 268, 118769. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Chen, R.; Xia, Y.; Cai, J.; Ying, Z.; Lin, Z.; Liu, C.; Chen, C.; Peng, L.; Zhao, Z.; et al. Fine particulate matter constituents and stress hormones in the hypothalamus–pituitary–adrenal axis. Environ. Int. 2018, 119, 186–192. [Google Scholar] [CrossRef]
- Bernal-Rusiel, J.L.; Greve, D.N.; Reuter, M.; Fischl, B.; Sabuncu, M.R. Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models. NeuroImage 2013, 66, 249–260. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W.; Wang, Y.; Han, Y.; Zhu, T. Responses of healthy young males to fine-particle exposure are modified by exercise habits: A panel study. Environ. Health 2018, 17, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhou, C.; Xu, H.; Brook, R.D.; Liu, S.; Yi, T.; Wang, Y.; Feng, B.; Zhao, M.; Wang, X.; et al. Ambient Air Pollution Is Associated With HDL (High-Density Lipoprotein) Dysfunction in Healthy Adults. Arter. Thromb. Vasc. Biol. 2019, 39, 513–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, A.; Chen, R.; Wang, C.; Zhao, Z.; Yang, C.; Lu, J.; Chen, X.; Kan, H. Associations between size-fractionated particulate air pollution and blood pressure in a panel of type II diabetes mellitus patients. Environ. Int. 2015, 80, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, R.; Cai, J.; Shi, J.; Yang, C.; Tse, L.A.; Li, H.; Lin, Z.; Meng, X.; Liu, C.; et al. Personal exposure to fine particulate matter and blood pressure: A role of angiotensin converting enzyme and its DNA methylation. Environ. Int. 2016, 94, 661–666. [Google Scholar] [CrossRef]
- Chen, X.; Han, Y.; Chen, W.; Wang, Y.; Qiu, X.; Li, W.; Hu, M.; Wu, Y.; Wang, Q.; Zhang, H.; et al. Respiratory Inflammation and Short-Term Ambient Air Pollution Exposures in Adult Beijing Residents with and without Prediabetes: A Panel Study. Environ. Health Perspect. 2020, 128, 067004. [Google Scholar] [CrossRef]
- Peng, C.; Bind, M.-A.C.; Colicino, E.; Kloog, I.; Byun, H.-M.; Cantone, L.; Trevisi, L.; Zhong, J.; Brennan, K.; Dereix, A.E.; et al. Particulate Air Pollution and Fasting Blood Glucose in Nondiabetic Individuals: Associations and Epigenetic Mediation in the Normative Aging Study, 2000–2011. Environ. Health Perspect. 2016, 124, 1715–1721. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, Q.; Xu, Z.; Guo, X.; Wu, S. Association between short-term exposure to ambient particulate air pollution and biomarkers of oxidative stress: A meta-analysis. Environ. Res. 2020, 191, 110105. [Google Scholar] [CrossRef]
- Lanki, T.; Hampel, R.; Tiittanen, P.; Andrich, S.; Beelen, R.; Brunekreef, B.; Dratva, J.; De Faire, U.; Fuks, K.B.; Hoffmann, B.; et al. Air Pollution from Road Traffic and Systemic Inflammation in Adults: A Cross-Sectional Analysis in the European ESCAPE Project. Environ. Health Perspect. 2015, 123, 785–791. [Google Scholar] [CrossRef] [Green Version]
- O’Toole, T.E.; Hellmann, J.; Wheat, L.; Haberzettl, P.; Lee, J.; Conklin, D.J.; Bhatnagar, A.; Pope, C.A., III. Episodic Exposure to Fine Particulate Air Pollution Decreases Circulating Levels of Endothelial Progenitor Cells. Circ. Res. 2010, 107, 200–203. [Google Scholar] [CrossRef] [Green Version]
- McGuinn, L.A.; Schneider, A.; McGarrah, R.W.; Ward-Caviness, C.; Neas, L.M.; Di, Q.; Schwartz, J.; Hauser, E.R.; Kraus, W.E.; Cascio, W.E.; et al. Association of long-term PM2.5 exposure with traditional and novel lipid measures related to cardiovascular disease risk. Environ. Int. 2018, 122, 193–200. [Google Scholar] [CrossRef]
- Bell, G.; Mora, S.; Greenland, P.; Tsai, M.; Gill, E.; Kaufman, J.D. Association of Air Pollution Exposures with High-Density Lipoprotein Cholesterol and Particle Number: The Multi-Ethnic Study of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 976–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, R.; Song, X.; Bai, Y.; Chen, J.; Zhao, Q.; Liu, S.; Xu, H.; Wang, T.; Feng, B.; Zhang, Y.; et al. Are current Chinese national ambient air quality standards on 24-h averages for particulate matter sufficient to protect public health? J. Environ. Sci. 2018, 71, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Kalemba-Drożdż, M. The interaction between air pollution and diet does not influence the DNA damage in lymphocytes of pregnant women. Environ. Res. 2015, 136, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-N.; Ha, B.; Seog, W.; Hwang, I.-U. Long-term exposure to air pollution and the blood lipid levels of healthy young men. Environ. Int. 2022, 161, 107119. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Sun, Q. Fine particulate matter air pollution and atherosclerosis: Mechanistic insights. Biochim. Biophys. Acta Gen. Subj. 2016, 1860, 2863–2868. [Google Scholar] [CrossRef]
- Pope, C.A., III; Bhatnagar, A.; McCracken, J.P.; Abplanalp, W.; Conklin, D.J.; O’Toole, T. Exposure to Fine Particulate Air Pollution is Associated with Endothelial Injury and Systemic Inflammation. Circ. Res. 2016, 119, 1204–1214. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Meng, X.; Zhao, A.; Wang, C.; Yang, C.; Li, H.; Cai, J.; Zhao, Z.; Kan, H. DNA hypomethylation and its mediation in the effects of fine particulate air pollution on cardiovascular biomarkers: A randomized crossover trial. Environ. Int. 2016, 94, 614–619. [Google Scholar] [CrossRef]
- Gaio, V.; Roquette, R.; Dias, C.M.; Nunes, B. Ambient air pollution and lipid profile: Systematic review and meta-analysis. Environ. Pollut. 2019, 254 Pt B, 113036. [Google Scholar] [CrossRef]
- Gui, Z.-H.; Yang, B.-Y.; Zou, Z.; Ma, J.; Jing, J.; Wang, H.-J.; Dong, G.-H.; Ma, Y.-H.; Guo, Y.; Chen, Y.-J. Exposure to ambient air pollution and blood lipids in children and adolescents: A national population based study in China. Environ. Pollut. 2020, 266 Pt 3, 115422. [Google Scholar] [CrossRef]
- Nagpal, M.; De, D.; Handa, S.; Pal, A.; Sachdeva, N. Insulin Resistance and Metabolic Syndrome in Young Men with Acne. JAMA Dermatol. 2016, 152, 399–404. [Google Scholar] [CrossRef]
n (%) | Mean ± SD | Median (Q1, Q3) | |
---|---|---|---|
Gender, n (%) | |||
Male | 14 (20.0%) | ||
Female | 56 (80.0%) | ||
Age (years) | 20.37 ± 1.59 | ||
BMI (kg/m2) | 21.50 ± 2.75 | ||
blood lipids (mmol/L) | |||
TG | 0.90 (0.73, 1.12) | ||
TC | 4.57 (4.09, 5.21) | ||
LDL-C | 1.98 (1.63, 2.35) | ||
HDL-C | 1.38 (1.23, 1.54) |
PM2.5 Lags | TG (95%CI) | TC (95%CI) | LDL-C (95%CI) | HDL-C (95%CI) | ||||
---|---|---|---|---|---|---|---|---|
Crude | Adjusted | Crude | Adjusted | Crude | Adjusted | Crude | Adjusted | |
8–16 h | −0.99 (−1.81, −0.16) | −0.70 (−1.54, 0.15) | 0.09 (−0.27, 0.45) | 0.08 (−0.28, 0.45) | −0.41 (−0.89, 0.08) | −0.39 (−0.88, 0.10) | 0.27 (−0.13, 0.67) | 0.23 (−0.19, 0.64) |
16–24 h | −0.76 (−1.64, 0.14) | −0.44 (−1.38, 0.50) | −0.01 (−0.40, 0.37) | −0.05 (−0.45, 0.36) | −0.70 (−1.21, −0.19) | −0.66 (−1.20, −0.12) | −0.15 (−0.58, 0.28) | −0.22 (−0.67, 0.24) |
24–32 h | −1.06 (−1.77, −0.35) | −0.91 (−1.63, −0.18) | −0.30 (−0.61, 0.01) | −0.33 (−0.64, −0.01) | −0.81 (−1.22, −0.40) | −0.83 (−1.25, −0.42) | −0.15 (−0.50, 0.19) | −0.20 (−0.55, 0.15) |
32–40 h | −0.71 (−1.40, −0.03) | −0.43 (−1.14, 0.29) | −0.14 (−0.44, 0.16) | −0.20 (−0.51, 0.11) | −0.75 (−1.14, −0.35) | −0.82 (−1.23, −0.41) | −0.23 (−0.56, 0.10) | −0.30 (−0.65, 0.04) |
40–48 h | −0.83 (−1.83, 0.18) | −0.58 (−1.60, 0.46) | −0.25 (−0.68, 0.19) | −0.26 (−0.71, 0.18) | −0.56 (−1.14, 0.03) | −0.46 (−1.06, 0.14) | −0.02 (−0.50, 0.47) | 0.02 (−0.48, 0.53) |
48–56 h | −0.85 (−1.79, 0.10) | −0.97 (−1.97, 0.04) | 0.05 (−0.36, 0.47) | 0.23 (−0.20, 0.67) | −0.26 (−0.81, 0.29) | −0.06 (−0.65, 0.53) | 0.28 (−0.18, 0.74) | 0.31 (−0.18, 0.81) |
56–64 h | 0.02 (-0.83, 0.88) | 0.22 (−0.63, 1.08) | 0.22 (−0.15, 0.58) | 0.32 (−0.05, 0.69) | −0.41 (−0.90, 0.08) | −0.30 (−0.80, 0.20) | 0.57 (0.16, 0.98) | 0.62 (0.21, 1.04) |
64–72 h | −0.01 (−0.73, 0.71) | 0.05 (−0.68, 0.78) | −0.07 (−0.38, 0.24) | 0.01 (−0.30, 0.33) | −0.15 (−0.56, 0.27) | −0.12 (−0.54, 0.30) | 0.67 (0.33, 1.01) | 0.67 (0.32, 1.02) |
0–8 h | −0.13 (−0.97, 0.72) | 0.09 (−0.75, 0.94) | 0.30 (−0.06, 0.66) | 0.16 (−0.04, 0.54) | −0.44 (−0.93, 0.04) | −0.27 (−0.75, 0.22) | 0.29 (−0.12, 0.69) | 0.31 (−0.10, 0.72) |
0–16 h | −0.72 (−1.67, 0.23) | −0.27 (−1.23, 0.70) | 0.25 (−0.16, 0.66) | 0.33 (−0.09, 0.74) | −0.55 (−1.09, 0.004) | −0.45 (−1.00, 0.11) | 0.36 (−0.10, 0.82) | 0.32 (−0.15, 0.79) |
0–24 h | −0.84 (−1.82, 0.16) | −0.34 (−1.36, 0.69) | 0.17 (−0.25, 0.60) | 0.24 (−0.20, 0.69) | −0.68 (−1.25, −0.11) | −0.58 (−1.16, 0.01) | 0.20 (−0.28, −0.68) | 0.15 (−0.34, 0.65) |
0–32 h | −1.10 (−2.06, −0.12) | −0.65 (−1.66, 0.36) | −0.01 (−043, 0.41) | 0.02 (−0.41, 0.46) | −0.87 (−1.43, −0.31) | −0.84 (−1.41, −0.26) | 0.07 (−0.40, 0.55) | 0.00 (−0.50, 0.49) |
0–40 h | −1.07 (−1.99, −0.14) | −0.62 (−1.59, 0.36) | −0.06 (−0.46, 0.35) | −0.05 (−0.47, 0.37) | −0.92 (−1.45, −0.38) | −0.93 (−1.48, −0.37) | −0.03 (−0.48, 0.42) | −0.13 (−0.60, 0.35) |
0–48 h | −1.14 (−2.12, −0.15) | −0.66 (−1.69, 0.38) | −0.10 (−0.52, 0.33) | −0.09 (−0.54, 0.36) | −0.95 (−1.51, −0.38) | −0.94 (−1.53, −0.35) | −0.03 (−0.51, 0.45) | −0.12 (−0.63, 0.38) |
0–56 h | −1.25 (−2.29, −0.20) | −0.80 (−1.88, 0.30) | −0.08 (−0.54, 0.37) | −0.04 (−0.51, 0.43) | −0.97 (−1.57, −0.36) | −0.92 (−1.55, −0.29) | 0.02 (−0.49, 0.53) | −0.08 (−0.61, 0.46) |
0–64 h | −1.15 (−2.23, −0.07) | −0.68 (−1.79, 0.45) | −0.03 (−0.50, 0.44) | 0.04 (−0.44, 0.53) | −0.98 (−1.60, −0.36) | −0.91 (−1.55, −0.26) | 0.13 (−0.39, 0.66) | 0.07 (−0.48, 0.62) |
0–72 h | −1.06 (−2.15, 0.04) | −0.54 (−1.67, 0.60) | −0.05 (−0.52, 0.43) | 0.06 (−0.43, 0.55) | −0.93 (−1.56, −0.30) | −0.84 (−1.49, −0.18) | 0.30 (−0.23, 0.83) | 0.26 (−0.30, 0.81) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Peng, S.; Li, Z.; Liu, F.; Wu, C.; Lu, Y.; Xiang, H. Association of Short-Term Exposure to PM2.5 with Blood Lipids and the Modification Effects of Insulin Resistance: A Panel Study in Wuhan. Toxics 2022, 10, 663. https://doi.org/10.3390/toxics10110663
Sun J, Peng S, Li Z, Liu F, Wu C, Lu Y, Xiang H. Association of Short-Term Exposure to PM2.5 with Blood Lipids and the Modification Effects of Insulin Resistance: A Panel Study in Wuhan. Toxics. 2022; 10(11):663. https://doi.org/10.3390/toxics10110663
Chicago/Turabian StyleSun, Jinhui, Shouxin Peng, Zhaoyuan Li, Feifei Liu, Chuangxin Wu, Yuanan Lu, and Hao Xiang. 2022. "Association of Short-Term Exposure to PM2.5 with Blood Lipids and the Modification Effects of Insulin Resistance: A Panel Study in Wuhan" Toxics 10, no. 11: 663. https://doi.org/10.3390/toxics10110663