Determination of Paddy Soil Ammonia Nitrogen Using Rapid Detection Kit Coupled with Microplate Reader
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Main Instruments
2.3. Main Reagents
2.4. Reagent Configuration
2.5. Kit Method
2.6. Indophenol Blue Colorimetry
2.7. Preparation of Standard Working Curve
2.8. Statistical Analysis
3. Results and Discussion
3.1. Selection of Reaction Conditions (Time and Temperature) for the Determination of Soil Ammonia Nitrogen Using the Kit Method
3.2. Comparison of Standard Working Curves of Soil Ammonia Nitrogen Reaction
3.3. Comparative Study on the Determination of Soil Ammonia Nitrogen Using the Kit Method and the Indophenol Blue Method
3.3.1. Comparison of Determination Results of Ammonia Nitrogen in Soils with Different Nitrogen Contents
3.3.2. Comparison of Determination Results of Ammonia Nitrogen in Soils with Different Chemical Properties
3.4. Precision Comparison between Kit Method and Indophenol Blue Method
3.5. Recovery Rate and Detection Limit of Kit Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, G.; Jiang, M.; Lu, D.; Zhao, X.; Chen, M. Optimum combination of irrigation and nitrogen supply form achieving high photosynthetic and nitrogen utilization efficiency. J. Plant Nutr. Fertil. 2020, 26, 1239–1250. [Google Scholar]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; MacDonald, J.D.; Gasser, M.-O.; Bertrand, N. Reducing ammonia volatilization in a no-till soil by incorporating urea and pig slurry in shallow bands. Nutr. Cycl. Agroecosyst. 2009, 84, 71–80. [Google Scholar] [CrossRef]
- Shang, Q.; Gao, C.; Yang, X.; Wu, P.; Ling, N.; Shen, Q.; Guo, S. Ammonia volatilization in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Biol. Fertil. Soils 2014, 50, 715–725. [Google Scholar] [CrossRef]
- Zhong, X.; Zhou, X.; Fei, J.; Huang, Y.; Wang, G.; Kang, X.; Hu, W.; Zhang, H.; Rong, X.; Peng, J. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agric. Ecosyst. Environ. 2021, 306, 107183. [Google Scholar] [CrossRef]
- Yu, S.; Xue, L.; Hua, Y.; Li, D.; Xie, F.; Feng, Y.; Sun, Q.; Yang, L. Effect of Applying Hydrochar for Reduction of Ammonia Volatilization and Mechanisms in Paddy Soil. Environ. Sci. 2020, 41, 922–931. [Google Scholar]
- Jiang, Y.; Sun, Y.; Pan, J.; Qi, S.; Chen, Q.; Tong, D. Nitrogen removal and N2O emission in subsurface wastewater infiltration systems with/without intermittent aeration under different organic loading rates. Bioresour. Technol. 2017, 244, 8–14. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Xu, W.; Liu, X.; Wei, J.; Wang, Z.; Yang, Y. Global estimates of dry ammonia deposition inferred from space-measurements. Sci. Total Environ. 2020, 730, 139189. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y. Evaluating the potential health and economic effects of nitrogen fertilizer application in grain production systems of China. J. Clean. Prod. 2020, 264, 121635. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 2013, 20, 8092–8131. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Yuan, D.; Yang, Z.; Shi, X.; Li, H.; Jin, H.; Ran, L. Development of analytical methods for ammonium determination in seawater over the last two decades. Trends Anal. Chem. 2019, 119, 115627. [Google Scholar] [CrossRef]
- Li, D.; Xu, X.; Li, Z.; Wang, T.; Wang, C. Detection methods of ammonia nitrogen in water: A review. Trends Anal. Chem. 2020, 127, 115890. [Google Scholar] [CrossRef]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Gong, X.; Zhang, J.; Zhang, Z.; Zhou, Y. Measurement of NH3−-N in Soil with Nessler’s Reagent Colorimetry. Environ. Sci. Technol. 2006, 29, 43–44. [Google Scholar]
- Duong, H.D.; Rhee, J.I. A ratiometric fluorescence sensor for the detection of ammonia in water. Sens. Actuators B Chem. 2014, 190, 768–774. [Google Scholar] [CrossRef]
- Li, Z.; Wang, T.; Xu, X.; Cong, W.; Li, D. An “on–off” fluorescent probe based on cucurbit[7]uril for highly sensitive determination of ammonia nitrogen in aquaculture water. Anal. Methods 2021, 13, 4090–4098. [Google Scholar] [CrossRef]
- Zhu, Y. Uncertainty evaluation of the determination of ammonia nitrogen in water by continuous flow analysis with online distillation system. Environ. Dev. 2020, 32, 152–154. [Google Scholar]
- Wu, H.; Zhu, H.; Yuan, M.; Xu, R.; Xue, L. Determination of Ammonium Nitrogen and Nitrate Nitrogen in Soil by Gas Phase Molecular Absorption Spectrometry. Rock Miner. Anal. 2021, 40, 165–171. [Google Scholar]
- Wu, Z.; Chen, D.; Li, Q. Comparison of Ammonia Gas Sensitive Electrode Method and Nessler Reagent Spectrophotometry for Determination of Ammonia Nitrogen in Surface Water. Environ. Monit. 2019, 11, 19–22. [Google Scholar]
- Yildiz, Y.; Karadag, R.; Cheema, M.; Sayedahmed, M. Ion Selective Electrode Determination of Ammonia Nitrogen in Passaic River Waste Water in New Jersey Essex County Area. Am. J. Anal. Chem. 2022, 13, 96–107. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, J.; Cui, G.; Zhao, C.; Suo, H.; He, D. A novel electrochemical ammonia–nitrogen sensor based on carbon cloth-supported hierarchical Pt nanosheets-Ni(OH)2 nanosheets nanocomposites. Chem. Eng. Sci. 2021, 239, 116634. [Google Scholar] [CrossRef]
- Liang, Y.; Yan, C.; Guo, Q.; Xu, J.; Hu, H. Spectrophotometric determination of ammonia nitrogen in water by flow injection analysis based on NH3- o-phthalaldehyde -Na2SO3 reaction. Anal. Chem. Res. 2016, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, L. Rapid Determination of Ammonia Nitrogen, Nitrite Nitrogen and Nitrate Nitrogen in Soil by Ion Chromatography. Shandong Chem. Ind. 2020, 49, 71–73+76. [Google Scholar]
- Zhang, L.; Xu, L.; Wang, J.; Yuan, H.; He, Z. Comparison of soil total phosphorus determination by ICP-OES microplate reader and national standard method. Agric. Technol. 2018, 38, 15–19. [Google Scholar]
- Zhou, J.; Huang, R.; Yuan, Y.; Tian, S.; Hu, L.; Chen, K.; Tang, J.; Zhang, W. Microtitration Assay of Total Petroleum Hydrocarbons in Contaminated Soils Using Ultrasonic Extraction and Multiskan Spectrum. Spectrosc. Spectr. Anal. 2017, 37, 3647–3652. [Google Scholar]
- Guo, W.; Xin, Y.; Zhang, J.; Wang, H. Determination of ammonium in water by a microplate reader with indophenol-blue colorimetric method. Soil Fertil. Sci. China 2018, 4, 166–170. [Google Scholar]
- Song, S.; Wang, R.; Xin, Y.; Zhang, J.; Wang, H. Rapid Determination of Inorganic Nitrogen in Soil by Spectrophotometry with a Microplate Reader. Chin. J. Inorg. Anal. Chem. 2019, 9, 35–41. [Google Scholar]
- Lei, W.; Zhang, Z.; Zhang, H.; Wang, J.; Ren, X. Comparative Research on Determination of Ammonium Nitrogen in Soil Which extracted by Potassium chloride and sodium chloride. China South. Agric. Mach. 2019, 50, 43–65. [Google Scholar]
- Bao, W.; Huang, Z.; Lv, B.; Liu, X. Comparison of gas-phase molecular absorption spectrometry and spectrophotometry for determination of ammonia nitrogen in soil. Chin. J. Anal. Lab. 2019, 38, 1436–1439. [Google Scholar]
- Lv, B.; Pan, Y.; Lan, Y.; Bai, H. Determination of ammonia-nitrogen in soil by using potassium chloride extraction and gas-phase molecular absorption spectrometry. Chem. Eng. 2019, 9, 28–30. [Google Scholar]
- Lv, B.; Bai, H.; Pan, Y.; Lan, Y. Study on innovative extraction condition and analysis method to contents of ammonium in soil. Hubei Agric. Sci. 2020, 59, 141–143+153. [Google Scholar]
- Li, A.; Wu, H.; Li, H.; He, X. Determination of Nitrite-Nirogen, Ammonia- Nitrogen and Nitrate-Nitrogen in soilland Sediment by Gas-Phase Molecular Absorption Spectrometry. Phys. Chem. Test. Chem. Subvol. 2021, 57, 794–798. [Google Scholar]
- Yu, X.; Zhang, M. Research on the Determination of Soil Ammonium Nitrogen Content Using Potassium Chloride Extraction. Agric. Sci. Technol. Equip. 2013, 3, 11–12. [Google Scholar]
- Wang, Z.; Li, J.; Liu, L.; Gao, R. Development and application of new-type eco-friendly kit for rapid test of ammonia nitrogen in water. Chin. J. Health Lab. Technol. 2014, 24, 2146–2148. [Google Scholar]
- Li, W. Development and application of new-type eco-friendly kit for rapid test of ammonia nitrogen in water. Glob. Mark. 2016, 1, 57–58. [Google Scholar]
- Feng, H.; Zhang, Y.; Li, C.; Feng, D.; Ma, Y.; Yang, H. An Accelerated Detection Kit for Soil Available Ammonia Nitrogen. CN208206804U[P], 7 December 2018. [Google Scholar]
- Tian, C.; Ma, P.; Deng, C. Determination of ammonia nitrogen in soil by rapid extraction. CN112014339A[P], 1 December 2020. [Google Scholar]
- Wu, D.; Zhou, S.; Liu, Y. Study on rapid detection method of ammonia nitrogen in aquatic environment. Chin. J. Anal. Lab. 2015, 34, 429–432. [Google Scholar]
- Wang, H.; Wang, Y.; Yu, Z. Determination of Ammonia Nitrogen in Soil by Automatic Flow Injection-Spectrophotometry. Chin. J. Inorg. Anal. Chem. 2022, 12, 102–106. [Google Scholar]
- Zhang, Y.; Xu, A.; Shang, H.; Ma, A. Ammonium Contents in Potassium Chloride Impurities and its Impact on Soil NH4+-N Determination. Chin. J. Soil Sci. 2010, 41, 1134–1137. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality: Recommendations; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
Sample | Treatment | Fertilizer Amount (kg·hm−2) | Sample | Treatment | Fertilizer Amount (kg·hm−2) |
---|---|---|---|---|---|
FY1 | Formula fertilizer | 456 | JD3 | Womeike soil conditioner | 9000 |
FY2 | Organic fertilizer | 288 | JD4 | Mulanqing soil conditioner | 9000 |
FY3 | Wanli Shennong slow-release fertilizer | 373.5 | JD5 | Mulanqing soil conditioner | 4500 |
FY4 | Xinlianxin slow-release fertilizer | 373.5 | JD6 | Tebeigai soil conditioner | 750 |
FY5 | Yantai Longdeng slow-release fertilizer | 373.5 | TL1 | Mulanqing soil conditioner | 9000 |
FY6 | Jindaaohe slow-release fertilizer | 373.5 | TL2 | Tebeigai soil conditioner | 750 |
FY7 | Yangfeng baomo slow-release fertilizer | 373.5 | TL3 | Tebeigai soil conditioner | 1500 |
FY8 | CK | 0 | YH1 | Organic slow-release fertilizer | 276 |
JD1 | CK | 0 | YH2 | Conventional fertilization | 314 |
JD2 | Tebeigai soil conditioner | 1500 | YH3 | Yongxiao slow-release fertilizer | 276 |
Sample | pH | OM (g·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) |
---|---|---|---|---|
FY1 | 5.46 ± 0.08 | 22.64 ± 0.34 | 16.22 ± 0.24 | 32.28 ± 1.56 |
FY2 | 5.28 ± 0.15 | 28.65 ± 0.43 | 28.33 ± 0.48 | 36.12 ± 1.68 |
FY3 | 5.10 ± 0.23 | 30.91 ± 1.46 | 26.00 ± 0.54 | 34.06 ± 1.33 |
FY4 | 5.22 ± 0.15 | 30.85 ± 0.58 | 11.30 ± 0.32 | 32.28 ± 1.34 |
FY5 | 5.13 ± 0.52 | 32.51 ± 1.25 | 16.24 ± 0.15 | 46.99 ± 2.56 |
JD1 | 4.26 ± 0.06 | 21.86 ± 0.39 | 12.27 ± 0.17 | 230.46 ± 12.17 |
JD2 | 5.19 ± 0.49 | 32.31 ± 0.55 | 11.97 ± 0.22 | 256.20 ± 13.59 |
JD3 | 5.90 ± 0.33 | 18.53 ± 1.49 | 10.83 ± 0.63 | 250.40 ± 10.35 |
Sample | Ammonia Nitrogen (mg·kg−1) | t-Test Results | |||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | p1 | p2 | p3 | |
FY1 | 67.72 ± 0.80 | 46.59 ± 0.62 | 49.73 ± 2.65 | 68.47 ± 0.27 | 0.00 | 0.00 | 0.20 |
FY2 | 72.45 ± 6.69 | 65.29 ± 2.10 | 46.83 ± 1.25 | 71.06 ± 1.42 | 0.15 | 0.00 | 0.74 |
FY3 | 58.81 ± 6.15 | 41.40 ± 1.55 | 44.18 ± 2.66 | 56.53 ± 0.86 | 0.03 | 0.02 | 0.59 |
FY4 | 44.29 ± 6.35 | 36.48 ± 1.09 | 32.41 ± 2.44 | 45.57 ± 0.40 | 0.10 | 0.04 | 0.75 |
FY5 | 4.68 ± 0.45 | 3.65 ± 0.31 | 5.92 ± 0.09 | 5.80 ± 0.60 | 0.03 | 0.04 | 0.06 |
JD1 | 6.35 ± 0.10 | 13.83 ± 0.55 | 10.88 ± 1.37 | 9.45 ± 0.77 | 0.081 | 0.632 | 0.285 |
JD2 | 4.68 ± 0.76 | 3.53 ± 0.27 | 4.90 ± 0.57 | 5.19 ± 0.16 | 0.07 | 0.70 | 0.37 |
JD3 | 9.56 ± 0.44 | 13.83 ± 0.55 | 10.88 ± 1.37 | 9.45 ± 0.77 | 0.00 | 0.19 | 0.83 |
Sample | pH | OM (g·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) |
---|---|---|---|---|
JD4 | 4.48 ± 0.22 | 16.66 ± 0.83 | 11.81 ± 0.59 | 285.87 ± 14.29 |
JD5 | 4.06 ± 0.20 | 16.44 ± 0.82 | 12.46 ± 0.62 | 256.01 ± 12.80 |
JD6 | 4.58 ± 0.23 | 16.21 ± 0.81 | 15.39 ± 0.77 | 201.10 ± 10.06 |
TL1 | 7.50 ± 0.38 | 22.08 ± 1.10 | 15.15 ± 0.76 | 221.36 ± 11.07 |
TL2 | 7.37 ± 0.37 | 31.47 ± 1.57 | 14.22 ± 0.71 | 243.30 ± 12.17 |
TL3 | 7.17 ± 0.36 | 29.41 ± 1.47 | 14.60 ± 0.73 | 278.80 ± 13.94 |
FY6 | 5.68 ± 0.29 | 20.80 ± 1.04 | 2.60 ± 0.13 | 29.00 ± 1.45 |
FY7 | 5.22 ± 0.26 | 30.20 ± 1.51 | 26.90 ± 1.35 | 41.20 ± 2.06 |
FY8 | 5.09 ± 0.25 | 31.66 ± 1.58 | 35.66 ± 1.78 | 43.06 ± 2.15 |
YH1 | 5.24 ± 0.26 | 37.30 ± 1.87 | 9.90 ± 0.20 | 57.32 ± 2.87 |
YH2 | 5.17 ± 0.26 | 37.76 ± 1.89 | 10.00 ± 0.50 | 65.37 ± 3.26 |
YH3 | 5.69 ± 0.29 | 42.97 ± 2.15 | 20.64 ± 0.41 | 62.85 ± 3.14 |
Sample | Ammonia Nitrogen (mg·kg−1) | t-Test Results | |||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | p1 | p2 | p3 | |
JD4 | 9.55 ± 1.73 | 5.57 ± 0.36 | 9.65 ± 0.41 | 9.48 ± 0.59 | 0.00 | 0.86 | 0.92 |
JD5 | 37.80 ± 9.15 | 25.86 ± 1.80 | 26.64 ± 1.87 | 30.09 ± 1.09 | 0.09 | 0.11 | 0.22 |
JD6 | 5.72 ± 0.80 | 4.28 ± 0.86 | 6.46 ± 0.37 | 5.42 ± 0.34 | 0.11 | 0.07 | 0.05 |
TL1 | 6.18 ± 1.94 | 6.32 ± 1.06 | 4.60 ± 0.20 | 5.62 ± 0.71 | 0.86 | 0.02 | 0.37 |
TL2 | 6.45 ± 0.55 | 6.35 ± 0.23 | 7.91 ± 1.39 | 6..10 ± 0.24 | 0.79 | 0.17 | 0.40 |
TL3 | 6.64 ± 0.36 | 6.11 ± 0.32 | 6.90 ± 1.92 | 6.00 ± 0.29 | 0.13 | 0.83 | 0.07 |
FY6 | 35.95 ± 0.51 | 31.79 ± 0.51 | 31.95 ± 1.09 | 37.05 ± 0.12 | 0.14 | 0.16 | 0.67 |
FY7 | 24.60 ± 4.77 | 24.43 ± 0.68 | 21.96 ± 2.88 | 24.12 ± 1.42 | 0.96 | 0.46 | 0.88 |
FY8 | 56.73 ± 5.45 | 42.92 ± 2.66 | 41.78 ± 2.21 | 54.65 ± 3.39 | 0.02 | 0.01 | 0.61 |
YH1 | 14.88 ± 0.68 | 11.92 ± 0.46 | 10.78 ± 0.05 | 14.67 ± 0.04 | 0.06 | 0.02 | 0.87 |
YH2 | 11.98 ± 0.27 | 10.61 ± 1.21 | 11.11 ± 0.05 | 9.83 ± 2.32 | 0.13 | 0.10 | 0.19 |
YH3 | 4.46 ± 0.95 | 10.04 ± 0.10 | 6.91 ± 0.18 | 4.17 ± 0.26 | 0.01 | 0.04 | 0.64 |
Sample | Relative Standard Deviation (%) | |
---|---|---|
T1 | T4 | |
JD4 | 18.10 | 6.20 |
JD5 | 13.90 | 6.20 |
JD6 | 23.80 | 10.40 |
TL1 | 31.40 | 12.60 |
TL2 | 8.60 | 3.90 |
TL3 | 18.50 | 4.80 |
FY6 | 9.60 | 6.20 |
FY7 | 19.40 | 5.90 |
FY8 | 10.70 | 3.50 |
YH1 | 4.60 | 0.30 |
YH2 | 2.30 | 15.80 |
YH3 | 21.40 | 8.00 |
Average | 15.20 | 7.00 |
Sample | Standard Addition Concentration (mg·L−1) | Measured Value (mg·L−1) | Standard Adding Recovery Rate (%) | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
JD3 | 1.00 | 0.91 | 0.82 | 0.95 | 89.30 ± 6.71 |
TL2 | 1.00 | 1.19 | 1.16 | 1.19 | 118.23 ± 1.52 |
YH2 | 1.00 | 1.05 | 0.94 | 1.09 | 102.35 ± 7.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wu, D.; Abid, A.A.; Liu, Y.; Zhou, J.; Zhang, Q. Determination of Paddy Soil Ammonia Nitrogen Using Rapid Detection Kit Coupled with Microplate Reader. Toxics 2022, 10, 725. https://doi.org/10.3390/toxics10120725
Liu X, Wu D, Abid AA, Liu Y, Zhou J, Zhang Q. Determination of Paddy Soil Ammonia Nitrogen Using Rapid Detection Kit Coupled with Microplate Reader. Toxics. 2022; 10(12):725. https://doi.org/10.3390/toxics10120725
Chicago/Turabian StyleLiu, Xiaoting, Dan Wu, Abbas Ali Abid, Ying Liu, Jianfeng Zhou, and Qichun Zhang. 2022. "Determination of Paddy Soil Ammonia Nitrogen Using Rapid Detection Kit Coupled with Microplate Reader" Toxics 10, no. 12: 725. https://doi.org/10.3390/toxics10120725
APA StyleLiu, X., Wu, D., Abid, A. A., Liu, Y., Zhou, J., & Zhang, Q. (2022). Determination of Paddy Soil Ammonia Nitrogen Using Rapid Detection Kit Coupled with Microplate Reader. Toxics, 10(12), 725. https://doi.org/10.3390/toxics10120725