Benzimidazoles and Plants: Uptake, Transformation and Effect
Funding
Data Availability Statement
Conflicts of Interest
References
- Bisognin, R.P.; Wolff, D.B.; Carissimi, E.; Prestes, O.D.; Zanella, R. Occurrence and fate of pharmaceuticals in effluent and sludge from a wastewater treatment plant in Brazil. Environ. Technol. 2021, 42, 2292–2303. [Google Scholar] [CrossRef] [PubMed]
- Bartikova, H.; Skalova, L.; Stuchlikova, L.; Vokral, I.; Vanek, T.; Podlipna, R. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment. Drug Metab. Rev. 2015, 47, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Horvat, A.J.M.; Babić, S.; Pavlović, D.M.; Ašperger, D.; Pelko, S.; Kaštelan-Macan, M.; Petrović, M.; Mance, A.D. Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. TrAC Trends Anal. Chem. 2012, 31, 61–84. [Google Scholar] [CrossRef]
- Boxall, A.B.A.; Kolpin, D.W.; Halling-Sorensen, B.; Tolls, J. Are veterinary medicines causing environmental risks? Environ. Sci. Technol. 2003, 37, 286A–294A. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogra, N.; Kumar, A.; Mukhopadhyay, T. Fenbendazole acts as a moderate microtubule destabilizing agent and causes cancer cell death by modulating multiple cellular pathways. Sci. Rep. 2018, 8, 11926. [Google Scholar] [CrossRef] [PubMed]
- Podlipna, R.; Skalova, L.; Seidlova, H.; Szotakova, B.; Kubicek, V.; Stuchlikova, L.; Jirasko, R.; Vanek, T.; Vokral, I. Biotransformation of benzimidazole anthelmintics in reed (Phragmites australis) as a potential tool for their detoxification in environment. Bioresour. Technol. 2013, 144, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Stuchlikova, L.; Jirasko, R.; Skalova, L.; Pavlik, F.; Szotakova, B.; Holcapek, M.; Vanek, T.; Podlipna, R. Metabolic pathways of benzimidazole anthelmintics in harebell (Campanula rotundifolia). Chemosphere 2016, 157, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Raisova, L.S.; Podlipna, R.; Szotakova, B.; Syslova, E.; Skalova, L. Evaluation of drug uptake and deactivation in plant: Fate of albendazole in ribwort plantain (Plantago laceolata) cells and regenerants. Ecotoxicol. Environ. Saf. 2017, 141, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Navratilova, M.; Stuchlikova, L.R.; Matouskova, P.; Ambroz, M.; Lamka, J.; Vokral, I.; Szotakova, B.; Skalova, L. Proof of the environmental circulation of veterinary drug albendazole in real farm conditions. Environ. Pollut. 2021, 286, 117590. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Qamar, A.G.; Hayat, K.; Ashraf, S.; Williams, A.R. Anthelmintic resistance and novel control options in equine gastrointestinal nematodes. Parasitology 2019, 146, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.; Schussler, W.; Porzelt, M. Sulfamethazine and flubendazole in seepage water after the sprinkling of manured areas. Chemosphere 2008, 72, 1292–1297. [Google Scholar] [CrossRef] [PubMed]
- Wagil, M.; Bialk-Bielinska, A.; Puckowski, A.; Wychodnik, K.; Maszkowska, J.; Mulkiewicz, E.; Kumirska, J.; Stepnowski, P.; Stolte, S. Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. Environ. Sci. Pollut. Res. 2015, 22, 2566–2573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zrncic, M.; Gros, M.; Babic, S.; Kastelan-Macan, M.; Barcelo, D.; Petrovic, M. Analysis of anthelmintics in surface water by ultra high performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry. Chemosphere 2014, 99, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Sim, W.J.; Kim, H.Y.; Choi, S.D.; Kwon, J.H.; Oh, J.E. Evaluation of pharmaceuticals and personal care products with emphasis on anthelmintics in human sanitary waste, sewage, hospital wastewater, livestock wastewater and receiving water. J. Hazard. Mater. 2013, 248, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Stuchlikova, L.R.; Skalova, L.; Szotakova, B.; Syslova, E.; Vokral, I.; Vanek, T.; Podlipna, R. Biotransformation of flubendazole and fenbendazole and their effects in the ribwort plantain (Plantago lanceolata). Ecotoxicol. Environ. Saf. 2018, 147, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Syslova, E.; Landa, P.; Navratilova, M.; Stuchlikova, L.R.; Matouskova, P.; Skalova, L.; Szotakova, B.; Vanek, T.S.; Podlipna, R. Ivermectin biotransformation and impact on transcriptome in Arabidopsis thaliana. Chemosphere 2019, 234, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Podlipna, R.; Navratilova, M.; Stuchlikova, L.R.; Motkova, K.; Langhansova, L.; Skalova, L.; Szotakova, B. Soybean (Glycine max) Is Able to Absorb, Metabolize and Accumulate Fenbendazole in All Organs Including Beans. Int. J. Mol. Sci. 2021, 22, 6647. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podlipná, R. Benzimidazoles and Plants: Uptake, Transformation and Effect. Toxics 2022, 10, 135. https://doi.org/10.3390/toxics10030135
Podlipná R. Benzimidazoles and Plants: Uptake, Transformation and Effect. Toxics. 2022; 10(3):135. https://doi.org/10.3390/toxics10030135
Chicago/Turabian StylePodlipná, Radka. 2022. "Benzimidazoles and Plants: Uptake, Transformation and Effect" Toxics 10, no. 3: 135. https://doi.org/10.3390/toxics10030135
APA StylePodlipná, R. (2022). Benzimidazoles and Plants: Uptake, Transformation and Effect. Toxics, 10(3), 135. https://doi.org/10.3390/toxics10030135