Risk of Abdominal Obesity Associated with Phthalate Exposure of Nurses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometry
2.2. Analyses of Phthalate
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flegal, K.M.; Carroll, M.D.; Kit, B.K.; Ogden, C.L. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 2012, 307, 491–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fryar, C.D.; Carroll, M.D.; Afful, J. Prevalence of Overweight, Obesity, and Severe Obesity among Adults Aged 20 and over: United States, 1960–1962 through 2017–2018. NCHS Health E-Stats. 2020. Available online: https://www.cdc.gov/nchs/data/hestat/obesity_adult_15_16/obesity_adult_15_16.html (accessed on 14 April 2021).
- WHO Consultation on Obesity; World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation. 2000. Available online: https://apps.who.int/iris/handle/10665/42330 (accessed on 6 June 2021).
- Maroney, D.; Golub, S. Nurses’ attitudes toward obese persons and certain ethnic groups. Percept. Mot. Ski. 2008, 75, 387–391. [Google Scholar] [CrossRef]
- Niedhammer, I.; Lert, F.; Marne, M.J. Prevalence of overweight and weight gain in relation to night work in a nurses’ cohort. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 625–633. [Google Scholar] [PubMed]
- Institute of Medicine (US) Committee on Assessing Interactions among Social. Behavioral, and Genetic Factors in Health. In Genes, Behavior, and the Social Environment: Moving Beyond the Nature/Nurture Debate; Hernandez, L.M., Blazer, D.G., Eds.; National Academies Press (US): Washington, DC, USA, 2006. [Google Scholar] [PubMed]
- Office of the Surgeon General (US); Office of Disease Prevention and Health Promotion (US); Centers for Disease Control and Prevention (US); National Institutes of Health (US). The Surgeon General’s Call to Action to Prevent and Decrease Overweight and Obesity; Office of the Surgeon General (US): Rockville, MD, USA, 2001. [PubMed]
- Krakauer, N.Y.; Krakauer, J.C. The new anthropometrics and abdominal obesity: A body shape index, hip index, and anthropometric risk index. In Nutrition in the Prevention and Treatment of Abdominal Obesity, 2nd ed.; Watson, R.R., Ed.; Elsevier: New York, NY, USA, 2019; pp. 19–27. [Google Scholar]
- Thomas, D.M.; Bredlau, C.; Bosy-Westphal, A.; Mueller, M.; Shen, W.; Gallagher, D.; Maeda, Y.; McDougall, A.; Peterson, C.M.; Ravussin, E.; et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity 2013, 21, 2264–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Ambrosi, J.; Silva, C.; Catalan, V.; Rodriguez, A.; Galofre, J.C.; Escalada, J.; Valentí, V.; Rotellar, F.; Romero, S.; Ramírez, B.; et al. Clinical usefulness of a new equation for estimating body fat. Diabetes Care 2012, 35, 383–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pigeyre, M.; Yazdi, F.T.; Kaur, Y.; Meyre, D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin. Sci. 2016, 130, 943–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stel, J.; Legler, J. The Role of Epigenetics in the Latent Effects of Early Life Exposure to Obesogenic Endocrine Disrupting Chemicals. Endocrinology 2015, 156, 3466–3472. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, F. Phthalates and Other Endocrine-Disrupting Chemicals: The 21st Century’s Plague for Reproductive Health. Fertil. Steril. 2019, 115, 885–886. [Google Scholar] [CrossRef] [Green Version]
- Vandenberg, L.N.; Colborn, T.; Hayes, T.B.; Heindel, J.J.; Jacobs, D.R., Jr.; Lee, D.H.; Shioda, T.; Soto, A.M.; vom Saal, F.S.; Welshons, W.V.; et al. Hormones and endocrine-disrupting chemicals: Low-dose effects and non-monotonic dose responses. Endocr. Rev. 2012, 33, 378–455. [Google Scholar] [CrossRef]
- Lagarde, F.; Beausoleil, C.; Belcher, S.M.; Belzunces, L.P.; Emond, C.; Guerbet, M.; Rousselle, C. Non-monotonic dose-response relationships and endocrine disruptors: A qualitative method of assessment. Environ. Health 2015, 14, 13. [Google Scholar] [CrossRef] [Green Version]
- Vandentorren, S.; Zeman, F.; Morin, L.; Sarter, H.; Bidondo, M.L.; Oleko, A.; Leridon, H. Bisphenol-A and phthalates contamination of urine samples by catheters in the Elfe pilot study: Implications for large-scale biomonitoring studies. Environ. Res. 2011, 111, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Corriveau, J.; Champoux-Jenane, A.; Gagnon, J.; Moss, E.; Dumas, P.; Gaudreau, E.; Chevrier, J.; Chalifour, L.E. Recovery from a Myocardial Infarction Is Impaired in Male C57bl/6 N Mice Acutely Exposed to the Bisphenols and Phthalates That Escape from Medical Devices Used in Cardiac Surgery. Toxicol. Sci. 2019, 168, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Šuta, M. Zdravotní rizika ftalátů v souvislosti se zdravotní péčí a možnosti jejich redukce. Interní Med. Pro Praxi 2007, 9, 288–291. [Google Scholar]
- Kyle, U.G.; Schutz, Y.; Dupertuis, Y.M.; Pichard, C. Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index. Nutrition 2003, 19, 597–604. [Google Scholar] [CrossRef]
- He, H.; Pan, L.; Du, J.; Jin, Y.; Wang, L.; Jia, P.; Shan, G. Effect of fat mass index, fat free mass index and body mass index on childhood blood pressure: A cross-sectional study in south China. Transl. Pediatrics 2021, 10, 541–551. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. An Anthropometric Risk Index Based on Combining Height, Weight, Waist, and Hip Measurements. J. Obes. 2016, 2016, 8094275. [Google Scholar] [CrossRef] [Green Version]
- Pilka, T.; Petrovicova, I.; Kolena, B.; Zatko, T.; Trnovec, T. Relationship between Variation of Seasonal Temperature and Extent of Occupational Exposure to Phthalates. Environ. Sci. Pollut. Res. Int. 2014, 22, 434–440. [Google Scholar] [CrossRef]
- Koch, H.M.; Rüther, M.; Schütze, A.; Conrad, A.; Pälmke, C.; Apel, P.; Brüning, T.; Kolossa-Gehring, M. Phthalate metabolites in 24-h urine samples of the German Environmental Specimen Bank (ESB) from 1988 to 2015 and a comparison with US NHANES data from 1999 to 2012. Int. J. Hyg. Environ. Health 2017, 220, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Esteban López, M.; Göen, T.; Mol, H.; Nübler, S.; Haji-Abbas-Zarrabi, K.; Koch, H.M.; Kasper-Sonnenberg, M.; Dvorakova, D.; Hajslova, J.; Antignac, J.P.; et al. The European human biomonitoring platform—Design and implementation of a laboratory quality assurance/quality control (QA/QC) programme for selected priority chemicals. Int. J. Hyg. Environ. Health 2021, 234, 113740. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, H.; Kannan, K. A Review of Biomonitoring of Phthalate Exposures. Toxics 2019, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Kolena, B.; Petrovičová, I.; Šidlovská, M.; Hlisníková, H.; Bystričanová, L.; Wimmerová, S.; Trnovec, T. Occupational Hazards and Risks Associated with Phthalates among Slovakian Firefighters. Int. J. Environ. Res. Public Health 2020, 17, 2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zota, A.R.; Calafat, A.M.; Woodruff, T.J. Temporal trends in phthalate exposures: Findings from the National Health and Nutrition Examination Survey, 2001–2010. Environ. Health Perspect. 2014, 122, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Song, M.; Guo, M.; Chi, C.; Mo, F.; Shen, X. Pollution levels and characteristics of phthalate esters in indoor air in hospitals. J. Environ. Sci. 2015, 37, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Poitou, K.; Rogez-Florent, T.; Lecoeur, M.; Danel, C.; Regnault, R.; Vérité, P.; Monteil, C.; Foulon, C. Analysis of Phthalates and Alternative Plasticizers in Gloves by Gas Chromatography-Mass Spectrometry and Liquid Chromatography-UV Detection: A Comparative Study. Toxics 2021, 9, 200. [Google Scholar] [CrossRef]
- Vimalkumar, K.; Zhu, H.; Kannan, K. Widespread occurrence of phthalate and non-phthalate plasticizers in single-use facemasks collected in the United States. Environ. Int. 2022, 158, 106967. [Google Scholar] [CrossRef]
- Chiang, H.C.; Kuo, Y.T.; Shen, C.C.; Lin, Y.H.; Wang, S.L.; Tsou, T.C. Mono(2-ethylhexyl)phthalate accumulation disturbs energy metabolism of fat cells. Arch. Toxicol. 2016, 90, 589–601. [Google Scholar] [CrossRef]
- Hines, C.J.; Hopf, N.B.; Deddens, J.A.; Silva, M.J.; Calafat, A.M. Occupational exposure to diisononyl phthalate (DiNP) in polyvinyl chloride processing operations. Int. Arch. Occup. Environ. Health 2012, 85, 317–325. [Google Scholar] [CrossRef]
- Vafeiadi, M.; Myridakis, A.; Roumeliotaki, T.; Margetaki, K.; Chalkiadaki, G.; Dermitzaki, E.; Venihaki, M.; Sarri, K.; Vassilaki, M.; Leventakou, V.; et al. Association of Early Life Exposure to Phthalates with Obesity and Cardiometabolic Traits in Childhood: Sex Specific Associations. Front. Public Health 2018, 6, 327. [Google Scholar] [CrossRef] [Green Version]
- Pomatto, V.; Cottone, E.; Cocci, P.; Mozzicafreddo, M.; Mosconi, G.; Nelson, E.R.; Palermo, F.A.; Bovolin, P. Plasticizers used in food-contact materials affect adipogenesis in 3T3-L1 cells. J. Steroid Biochem. Mol. Biol. 2018, 178, 322–332. [Google Scholar] [CrossRef]
- Amin, M.M.; Parastar, S.; Ebrahimpour, K.; Shoshtari-Yeganeh, B.; Hashemi, M.; Mansourian, M.; Kelishadi, R. Association of urinary phthalate metabolites concentrations with body mass index and waist circumference. Environ. Sci. Pollut. Res. Int. 2018, 25, 11143–11151. [Google Scholar] [CrossRef]
- Yin, L.; Yu, K.S.; Lu, K.; Yu, X. Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: A High Content Cellomics and metabolomic analysis. Toxicol. In Vitro 2016, 32, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Hatch, E.E.; Nelson, J.W.; Qureshi, M.M.; Weinberg, J.; Moore, L.L.; Singer, M.; Webster, T.F. Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: A cross-sectional study of NHANES data, 1999–2002. Environ. Health 2008, 7, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolena, B.; Petrovicova, I.; Pilka, T.; Pucherova, Z.; Munk, M.; Matula, B.; Vankova, V.; Petlus, P.; Jenisova, Z.; Rozova, Z.; et al. Phthalate exposure and health-related outcomes in specific types of work environment. Int. J. Environ. Res. Public Health 2017, 11, 5628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrovičová, I.; Kolena, B.; Šidlovská, M.; Pilka, T.; Wimmerová, S.; Trnovec, T. Occupational exposure to phthalates in relation to gender, consumer practices and body composition. Environ. Sci. Pollut. Res. Int. 2016, 23, 24125–24134. [Google Scholar] [CrossRef] [PubMed]
- Biemann, R.; Blüher, M.; Isermann, B. Exposure to endocrine-disrupting compounds such as phthalates and bisphenol A is associated with an increased risk for obesity. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101546. [Google Scholar] [CrossRef] [PubMed]
- James-Todd, T.M.; Huang, T.; Seely, E.W.; Saxena, A.R. The association between phthalates and metabolic syndrome: The National Health and Nutrition Examination Survey 2001–2010. Environ. Health. 2016, 15, 52. [Google Scholar] [CrossRef] [Green Version]
- Newbold, R.R.; Padilla-Banks, E.; Jefferson, W.N. Environmental estrogens and obesity. Mol. Cell. Endocrinol. 2009, 304, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Karabulut, G.; Barlas, N. The possible effects of mono butyl phthalate (MBP) and mono (2-ethylhexyl) phthalate (MEHP) on INS-1 pancreatic beta cells. Toxicol. Res. 2021, 10, 601–612. [Google Scholar] [CrossRef]
- Stojanoska, M.M.; Milosevic, N.; Milic, N.; Abenavoli, L. The influence of phthalates and bisphenol A on the obesity development and glucose metabolism disorders. Endocrine 2016, 55, 666–681. [Google Scholar] [CrossRef]
- Stahlhut, R.W.; van Wijngaarden, E.; Dye, T.D.; Cook, S.; Swan, S.H. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ. Health Perspect. 2007, 115, 876–882. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Hauser, R.; Hu, F.B.; Franke, A.A.; Liu, S.; Sun, Q. Urinary concentrations of bisphenol A and phthalate metabolites and weight change: A prospective investigation in US women. Int. J. Obes. 2014, 38, 1532–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, P.M.; Roos, V.; Rönn, M.; Johansson, L.; Ahlström, H.; Kullberg, J.; Lind, L. Serum concentrations of phthalate metabolites are related to abdominal fat distribution two years later in elderly women. Environ. Health. 2012, 11, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Meer, T.P.; van Faassen, M.; van Beek, A.P.; Snieder, H.; Kema, I.P.; Wolffenbuttel, B.H.; van Vliet-Ostaptchouk, J.V. Exposure to Endocrine Disrupting Chemicals in the Dutch general population is associated with adiposity-related traits. Sci. Rep. 2020, 10, 9311. [Google Scholar] [CrossRef] [PubMed]
- Campioli, E.; Batarseh, A.; Li, J.; Papadopoulos, V. The endocrine disruptor mono-(2-ethylhexyl) phthalate affects the differentiation of human liposarcoma cells (SW 872). PLoS ONE 2011, 6, e28750. [Google Scholar] [CrossRef] [Green Version]
- Feige, J.N.; Gelman, L.; Rossi, D.; Zoete, V.; Métivier, R.; Tudor, C.; Anghel, S.I.; Grosdidier, A.; Lathion, C.; Engelborghs, Y.; et al. The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor gamma modulator that promotes adipogenesis. J. Biol. Chem. 2007, 282, 19152–19166. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.; Flaws, J.A. Subchronic Exposure to Di(2-ethylhexyl) Phthalate and Diisononyl Phthalate During Adulthood Has Immediate and Long-Term Reproductive Consequences in Female Mice. Toxicol. Sci. 2019, 168, 620–631. [Google Scholar] [CrossRef]
- Bacon, J.L. The Menopausal Transition. Obstet. Gynecol. Clin. 2017, 44, 285–296. [Google Scholar] [CrossRef]
- Haggerty, D.K.; Flaws, J.A.; Li, Z.; Strakovsky, R.S. Phthalate exposures and one-year change in body mass index across the menopausal transition. Environ. Res. 2021, 194, 110598. [Google Scholar] [CrossRef]
- Chiang, C.; Pacyga, D.C.; Strakovsky, R.S.; Smith, R.L.; James-Todd, T.; Williams, P.L.; Hauser, R.; Meling, D.D.; Li, Z.; Flaws, J.A. Urinary phthalate metabolite concentrations and serum hormone levels in pre- and perimenopausal women from the Midlife Women’s Health Study. Environ. Int. 2021, 156, 106633. [Google Scholar] [CrossRef]
- Takeuchi, S.; Iida, M.; Kobayashi, S.; Jin, K.; Matsuda, T.; Kojima, H. Differential effects of phthalate esters on transcriptional activities via human estrogen receptors alpha and beta, and androgen receptor. Toxicology 2005, 210, 223–233. [Google Scholar] [CrossRef]
- Engel, A.; Buhrke, T.; Imber, F.; Jessel, S.; Seidel, A.; Völkel, W.; Lampen, A. Agonistic and antagonistic effects of phthalates and their urinary metabolites on the steroid hormone receptors ERα, ERβ, and AR. Toxicol. Lett. 2017, 277, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Page, B.D.; Lacroix, G.M. The occurrence of phthalate ester and di-2-ethylhexyl adipate plasticizers in Canadian packaging and food sampled in 1985–1989: A survey. Food Addit. Contam. 1995, 12, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Serrano, S.E.; Karr, C.J.; Seixas, N.S.; Nguyen, R.H.; Barrett, E.S.; Janssen, S.; Redmon, B.; Swan, S.H.; Sathyanarayana, S. Dietary phthalate exposure in pregnant women and the impact of consumer practices. Int. J. Environ. Res. Public Health 2014, 11, 6193–6215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bošnir, J.; Puntari, D.; Gali, A.; Škes, I.; Dijanić, T.; Klarić, M.; Grgić, M.; Čurković, M.; Šmit, Z. Migration of Phthalates from Plastic Containers into Soft Drinks and Mineral Water. Food Technol. Biotechnol. 2007, 45, 91–95. [Google Scholar]
- Al-Saleh, I.; Shinwari, N.; Alsabbaheen, A. Phthalates residues in plastic bottled waters. J. Toxicol. Sci. 2011, 36, 469–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaki, G.; Shoeib, T. Concentrations of several phthalates contaminants in Egyptian bottled water: Effects of storage conditions and estimate of human exposure. Sci. Total Environ. 2018, 618, 142–150. [Google Scholar] [CrossRef]
- Han, S.J.; Lee, S.H. Nontraditional Risk Factors for Obesity in Modern Society. J. Obes. Metab. Syndr. 2021, 30, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Fonken, L.K.; Aubrecht, T.G.; Meléndez-Fernández, O.H.; Weil, Z.M.; Nelson, R.J. Dim light at night disrupts molecular circadian rhythms and increases body weight. J. Biol. Rhythm. 2013, 28, 262–271. [Google Scholar] [CrossRef]
- Rybnikova, N.A.; Haim, A.; Portnov, B.A. Does artificial light-at-night exposure contribute to the worldwide obesity pandemic? Int. J. Obes. 2016, 40, 815–823. [Google Scholar] [CrossRef]
- Strohmaier, S.; Devore, E.E.; Zhang, Y.; Schernhammer, E.S. A Review of Data of Findings on Night Shift Work and the Development of DM and CVD Events: A Synthesis of the Proposed Molecular Mechanisms. Curr. Diabetes Rep. 2018, 18, 132. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.M.; White, A.J.; Jackson, C.L.; Weinberg, C.R.; Sandler, D.P. Association of Exposure to Artificial Light at Night While Sleeping with Risk of Obesity in Women. JAMA Intern. Med. 2019, 179, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Jones, R.R.; Powell-Wiley, T.M.; Jia, P.; James, P.; Xiao, Q. A large prospective investigation of outdoor light at night and obesity in the NIH-AARP Diet and Health Study. Environ. Health. 2020, 19, 74. [Google Scholar] [CrossRef] [PubMed]
Anthropometric Parameter | Percentile | ||||||
---|---|---|---|---|---|---|---|
Mean | Median | MIN | MAX | 5 | 95 | SD | |
Body height (cm) | 164.79 | 163.43 | 155.06 | 197.93 | 157.33 | 172.33 | 6.99 |
Body weight (kg) | 71.45 | 68.15 | 55.10 | 122.50 | 57.20 | 107.60 | 14.61 |
BMI (kg/m2) | 26.32 | 25.14 | 20.64 | 48.44 | 20.86 | 37.16 | 5.26 |
Hip circumference (cm) | 103.63 | 102.50 | 90.00 | 148.33 | 92.00 | 128.33 | 10.55 |
Waist circumference (cm) | 93.32 | 91.66 | 58.00 | 133.00 | 77.00 | 120.66 | 13.52 |
WHR | 0.89 | 0.90 | 0.54 | 1.16 | 0.81 | 0.98 | 0.08 |
WHtR | 0.56 | 0.55 | 0.35 | 0.84 | 0.46 | 0.72 | 0.08 |
FMI | 9.06 | 7.82 | 1.14 | 26.35 | 2.62 | 17.54 | 4.52 |
Lean mass | 46.76 | 46.30 | 38.08 | 60.15 | 38.17 | 59.50 | 6.37 |
FFMI | 17.26 | 16.55 | 11.29 | 22.09 | 14.59 | 21.66 | 2.41 |
Visceral fat (%) | 6.46 | 6.00 | 1.00 | 16.00 | 1.00 | 12.00 | 3.39 |
ABSI | 0.08 | 0.08 | 0.05 | 0.10 | 0.08 | 0.09 | 0.01 |
HI | 104.95 | 105.05 | 91.46 | 114.05 | 97.90 | 112.68 | 4.25 |
z BMI | −0.18 | −0.36 | −1.05 | 3.05 | −1.01 | 1.38 | 0.79 |
z ABSI | 0.63 | 0.65 | −5.54 | 3.36 | −0.78 | 2.25 | 1.29 |
z HI | 0.07 | 0.13 | −3.11 | 2.01 | −1.56 | 1.71 | 0.96 |
BMI risk | 0.94 | 0.89 | 0.84 | 1.85 | 0.84 | 1.17 | 0.16 |
ABSI risk | 1.14 | 1.08 | 0.86 | 1.65 | 0.87 | 1.65 | 0.23 |
HI risk | 1.00 | 0.96 | 0.95 | 1.36 | 0.95 | 1.14 | 0.08 |
ARI risk | 1.07 | 0.97 | 0.73 | 2.18 | 0.80 | 1.62 | 0.30 |
Phthalate Metabolite | Percentile | ||||||
---|---|---|---|---|---|---|---|
Mean | Median | SD | MIN | MAX | 5 | 95 | |
MMP | 27.54 | 0.50 | 183.21 | 0.50 | 1297.04 | 0.50 | 8.95 |
MEP | 102.00 | 33.77 | 177.44 | 1.81 | 823.21 | 2.91 | 487.29 |
MBzP | 1.16 | 0.50 | 1.55 | 0.50 | 10.60 | 0.50 | 3.16 |
MiBP | 23.35 | 15.82 | 24.97 | 1.77 | 122.90 | 1.77 | 86.67 |
OH-MiBP | 4.77 | 2.00 | 9.39 | 0.50 | 60.33 | 0.50 | 11.76 |
MnBP | 39.62 | 25.54 | 46.68 | 1.77 | 272.11 | 5.40 | 112.78 |
OH-MnBP | 9.25 | 5.91 | 10.46 | 0.70 | 48.61 | 0.70 | 36.34 |
MEHP | 1.99 | 1.00 | 1.55 | 1.00 | 7.19 | 1.00 | 5.17 |
OH MEHP | 14.62 | 6.70 | 40.85 | 0.70 | 291.93 | 0.70 | 33.37 |
oxo MEHP | 5.66 | 4.13 | 5.72 | 0.70 | 34.88 | 0.70 | 14.49 |
cx MEPP | 10.66 | 9.17 | 9.73 | 0.70 | 66.66 | 2.56 | 19.97 |
MiNP | 0.79 | 0.75 | 0.26 | 0.75 | 2.60 | 0.75 | 0.75 |
oxo MiNP | 1.59 | 0.75 | 1.58 | 0.75 | 6.89 | 0.75 | 6.71 |
cx MiNP | 3.89 | 2.97 | 3.38 | 0.70 | 19.75 | 0.70 | 9.69 |
MnPeP | 1.25 | 1.25 | 0.00 | 1.25 | 1.25 | 1.25 | 1.25 |
MCHP | 1.19 | 0.50 | 4.90 | 0.50 | 7.24 | 0.50 | 0.50 |
MnOP | 0.83 | 0.75 | 0.33 | 0.75 | 2.42 | 0.75 | 1.74 |
Anthropometric Parameter | Phthalate Metabolite | β (95% CI) | p |
---|---|---|---|
BMI | MBzP | 0.655 (7.219; 15.064) | <0.001 |
MEHP | −0.365 (−11.313; −2.558) | 0.003 | |
Hip circumference (cm) | MBzP | 0.486 (8.123; 25.029) | <0.001 |
MEHP | −0.402 (−24.170; −6.462) | 0.001 | |
DiNP | 0.307 (2.101; 19.085) | 0.016 | |
Waist circumference cm) | MBzP | 0.497 (10.187; 33.283) | <0.001 |
MEHP | −0.291 (−27.084; −1.310) | 0.032 | |
WHtR | MBzP | 0.520 (0.068; 0.205) | <0.001 |
MEHP | −0.312 (−0.168; −0.015) | 0.019 | |
Fat content (kg) | MBzP | 0.302 (0.487; 20.047) | 0.040 |
OH-MnBP | −0.736 (−28.338; −5.101) | 0.006 | |
MiBP | 0.547 (0.279; 26.777) | 0.046 | |
FMI | MBzP | 0.565 (4.592; 11.916) | 0.000 |
MEHP | −0.330 (−9.469; −1.295) | 0.011 | |
FFMI | MBzP | 0.307 (0.321; 4.458) | 0.025 |
MMP | 0.280 (0.055; 2.094) | 0.039 | |
Visceral fat content | MBzP | 0.307 (0.338; 6.400) | 0.030 |
zBMI | MBzP | 0.600 (0.916; 2.138) | <0.001 |
MEHP | −0.390 (−1.790; −0.426) | 0.002 | |
BMI-risk | MBzP | 0.551 (0.150; 0.408) | <0.001 |
MEHP | −0.309 (−0.318; −0.031) | 0.019 | |
HI-risk | MBzP | 0.444 (0.047; 0.178) | 0.001 |
ARI-risk | DnBP | 0.337 (0.042; 0.429) | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolena, B.; Hlisníková, H.; Kečkéšová, Ľ.; Šidlovská, M.; Trnovec, T.; Petrovičová, I. Risk of Abdominal Obesity Associated with Phthalate Exposure of Nurses. Toxics 2022, 10, 143. https://doi.org/10.3390/toxics10030143
Kolena B, Hlisníková H, Kečkéšová Ľ, Šidlovská M, Trnovec T, Petrovičová I. Risk of Abdominal Obesity Associated with Phthalate Exposure of Nurses. Toxics. 2022; 10(3):143. https://doi.org/10.3390/toxics10030143
Chicago/Turabian StyleKolena, Branislav, Henrieta Hlisníková, Ľubica Kečkéšová, Miroslava Šidlovská, Tomáš Trnovec, and Ida Petrovičová. 2022. "Risk of Abdominal Obesity Associated with Phthalate Exposure of Nurses" Toxics 10, no. 3: 143. https://doi.org/10.3390/toxics10030143
APA StyleKolena, B., Hlisníková, H., Kečkéšová, Ľ., Šidlovská, M., Trnovec, T., & Petrovičová, I. (2022). Risk of Abdominal Obesity Associated with Phthalate Exposure of Nurses. Toxics, 10(3), 143. https://doi.org/10.3390/toxics10030143